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ABSTRACT 

This article presents an approach to finding analytical solutions of the axisymmetric problem of linear elasticity, 
which is based on setting up the problem fully formulated in stresses. It closely studies the example of finding stress-strain 
state of an ellipsoid cocavity under the inner pressure. 
 
Keywords: ellipsoid cocavity, analytical solution, axisymmetric problems, setting up problem, stress, cocavity, exact solution. 
 
INTRODUCTION 

Analytical methods of elastic solution has 
recently not decreased in relevance but became even more 
important, notwithstanding that for finding stress-strain 
state specialized software packages are widely used. It is 
connected with the fact that problems arising in modern 
technology are more complicated, especially after 
appearing of new materials. Without strict analytical 
estimations, correctness of a software-based solution can 
hardly be proved.           

Many researchers, for example [1-4], studied the 
stress-strain state of Figures with stress raisers, such as 
pores, elastic or hard inclusions. A more detailed reference 
list can be found in [5]. Such inhomogeneities are seen in 
building and composition materials, geology, medical 
science [6-10]. Often these problems are axisymmetric and 
are usually solved via Lame's equation or Love’s function. 
It should be noted that when solving certain problems via 
specified methods one encounters difficulties in 
subordinating a solution to boundary conditions because of 
boundary values’ complexity.             

As distinct from well-known approaches to 
solving such problems, this work uses setting up in 
stresses, suggested by Shamina V.A.[11].   

Main part 
 The essence of the approach is the following: 
 
a) Main equations are two equilibrium equations and two 

uniformity equations, written in stresses. Static and 
kinematic boundary values are written in stresses.     

b) The solution is represented in the form of power series 
in angle’s cosine between the axis of rotation and 
sphere radius. These series’ coefficients, depending on 
radial coordinate of spherical coordinate system, are 
calculated via system of ordinary differential 
equations of Euler. 

 
 The advantage of this approach is that this 
system’s indeterminates coincide with static and kinematic 
boundary values, and this, in its turn, simplifies satisfying 
of boundary conditions  on spherical surface.      

To formulate setting up of a problem, let’s use 
relations given in [5].     
Stress tensor is represented in the form of  
 

 

(1)),)(,(),(),(),(=   ekkereerkkreer zzz


  

 
displacement vector -  

.),(),(= krueruu z

     

Here z,,  are cylindrical coordinates with 

unit vectors kee


,,  ;  ,,r  are spherical coordinates 

with unit vectors eee


,, 21 (Figure-1). Axis z  coincides 

with Figure's rotation axis. Thus, though stress tensor is 
written in cylindrical coordinates, but independent 
arguments are coordinates ),( r . Stress tensor 

components (1) satisfy the following differential 
equations:   
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  and   are Lame’s physical constants. 

Axial component of displacement is found via following equations (3):  
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There you could see theoretical foundations of 

the approach we represent. This approach helped to solve 
benchmark problems of stretching on the infinite distance 
of a taut space, which contained single inhomogeneity in 
the form of a spherical pore, orbicular hard or elastic 
inclusion, and also Lame’s problem for a thickwalled 
spherical vessel. Obtained analytical solutions coincided 
with those which had been published before [12, 13].          

Now we will show applicability of the method 
under study for problems with bodies, boundaries of which 
are close to spherical one.     
 

 
 

Figure-1. 
 

Let us assume that in the space under pressure 
there is an inhomogeneity in the form of rotation ellipsoid 
with semi-axes ba, . Let us introduce coordinates ),( r  

in such a way that coordinate lines constr =  coincide 
with boundaries of a body (inhomogeneity). Then 
coordinates will be connected via Joukowski function: 
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Substituting (5) into (2), considering that desired stresses will be sought in the form of small-parameter expansion  :  
 

kij
k

N

k
ij ,

2

0=

=   ,                                                                                                                                                      (6) 

 
we will reconstitute the main system into the following one: 
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where  
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The system’s solution will be sought in the form of series 
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Right-hand members of equations (8) will be also written in series  
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This will allow us to write the system (8) in a simpler form, using the change of variables ,  
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These variables are connected with stresses and displacements via following relations:   
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As a result we obtain the system 
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which may be written in a simpler form:  
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The system (12) simplicity lies in that it consists 
of Euler’s equations. Besides, the system will be solved 
step by step, starting from the last equation and  going to 

previous ones, finishing with calculating of the first 
equation. At each step there will be one unknown function.     

In the approach we represent, statical boundary 

conditions are components of the vector 1


: 
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At the boundary constr   as kinematic 
boundary values we do not use displacement vector 

components, but we use values zU13 ,  which are 

connected with it and may be written in stresses 
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Thus, when solving system (12) with boundary 

conditions (13),(14) we can find stress-strain state of 
bodies, boundaries of which are close to spherical ones.  

It is evident that in the ellipsoid  case under study 
only boundary conditions (13) will be involved, and when 
finding zero-order approximation, system (12) will be 
homogeneous. Statical boundary conditions will be as 
follows: 
 

  sincossin=1, pz  ,  

 

  coscossin=1, pzzzz   

 
Thus, zero-order approximation will coincide 

with the known solution for a thick-walled sphere with an 
infinite radius and under inner hydrostatical pressure. 
Substituting this solution into the system we will find that:   
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Now we will write the system in detail to find the 

initial approximation. 
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At once we can write that 33333 ,,,, SUZRT  

will be equal to zero, because number of members in the 
series is limited. As a particular solution of the problem 
under study we can take the following values:     
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The general solution of the system will be 

composed of particular solution and homogeneous system 
solution, which will satisfy boundary conditions   
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These boundary conditions are obtained from the 
statical ones:   
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For we seek the first approximation, boundary 

conditions will contain only members with zero and 
second power of  . Eventually statical boundary 
conditions will assume the desired form (15) after they 
will have been written in terms of boundary values (9).     
Now we can write the system’s solution:  
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Using formulas (10) taking into account (6) we shall write ,1ij . Thus, the first approximation of the problem under study 

will be as follows: 
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We obtained an analytical solution in the first 

approximation. In this way we can also obtain expressions 
for displacements by formulas (10).      

To define its applicability limits is the same 

problem but without assumption of smallness of 2 , and 
it was solved via finite element method implemented with 
the help of COMSOL Multiphysics; a similar approach 
was suggested in [14].  
 

 
 

Figure-2. 
 

From Figure-2 (stress diagrams 
0/
( 0.26= , 

0.37= ) depending on the coordinate   with different 

values of 2 ) it follows that analytical solution in the first 
approximation differs from solution obtained via FEM 

( 0.10 2   ) for not more than 11%. These relations 

are true for all components of the stress tensor written in 
the cylindrical coordinates system. It should be noted that 

stress   maximally at the poles of cocavity and under 

0.040 2    differs from value of this stress on the 
sphere for not more than 10%.  
 
CONCLUSIONS 

By the example of a problem of estimating stress-
strain state of an ellipsoid cocavity under inner 
hydrostatical pressure, we represented detailed method of 
solving axisymmetric problems, setting up of which has 
been completely formulated in stresses. Besides, from 

obtained solution it follows that under 0.042   the 
ellipsoid cocavity can be approximated by the sphere.   

The approach we represented simplifies 
problem’s solution subordination to boundary conditions 
and allows to find at the same time both stress and 
displacement by algebraic formulas (10).    
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