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ABSTRACT

This article presents an approach to finding analytical solutions of the axisymmetric problem of linear elasticity,
which is based on setting up the problem fully formulated in stresses. It closely studies the example of finding stress-strain

state of an ellipsoid cocavity under the inner pressure.
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INTRODUCTION

Analytical methods of elastic solution has
recently not decreased in relevance but became even more
important, notwithstanding that for finding stress-strain
state specialized software packages are widely used. It is
connected with the fact that problems arising in modern
technology are more complicated, especially after
appearing of new materials. Without strict analytical
estimations, correctness of a software-based solution can
hardly be proved.

Many researchers, for example [1-4], studied the
stress-strain state of Figures with stress raisers, such as
pores, elastic or hard inclusions. A more detailed reference
list can be found in [5]. Such inhomogeneities are seen in
building and composition materials, geology, medical
science [6-10]. Often these problems are axisymmetric and
are usually solved via Lame's equation or Love’s function.
It should be noted that when solving certain problems via
specified methods one encounters difficulties in
subordinating a solution to boundary conditions because of
boundary values’ complexity.

As distinct from well-known approaches to
solving such problems, this work uses setting up in
stresses, suggested by Shamina V.A.[11].

S=0,,(r0)8 8, +0,( 0)kk +o,(r0)8s,

displacement vector -
u=u,(r,0)€, +u,(r,0)k.
Here p,@,z are cylindrical coordinates with

unit vectors é'p,é(p,k ; 1,0, are spherical coordinates

with unit vectors €,,€,,€,, (Figure-1). Axis z coincides

Main part
The essence of the approach is the following:

a) Main equations are two equilibrium equations and two
uniformity equations, written in stresses. Static and
kinematic boundary values are written in stresses.

b) The solution is represented in the form of power series
in angle’s cosine between the axis of rotation and
sphere radius. These series’ coefficients, depending on
radial coordinate of spherical coordinate system, are
calculated via system of ordinary differential
equations of Euler.

The advantage of this approach is that this
system’s indeterminates coincide with static and kinematic
boundary values, and this, in its turn, simplifies satisfying
of boundary conditions on spherical surface.

To formulate setting up of a problem, let’s use
relations given in [5].

Stress tensor is represented in the form of

+0,,(r,0)( k +kg,),(1)

with Figure's rotation axis. Thus, though stress tensor is
written in cylindrical coordinates, but independent

arguments are coordinates (r,d). Stress tensor

components (1) satisfy the following differential
equations:
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A and g are Lame’s physical constants.
Axial component of displacement is found via following equations (3):
ou . .00,
2u 8rz =cosd(o, —0,,)+2sindo , +sin 9%+a3 cos 4,
(4)
lou, _ . .00, .
2;1? i -sind(o,, —o,,)+2c0s0c , —rsing —0,siné.

or

There you could see theoretical foundations of
the approach we represent. This approach helped to solve z Tk
benchmark problems of stretching on the infinite distance
of a taut space, which contained single inhomogeneity in
the form of a spherical pore, orbicular hard or elastic
inclusion, and also Lame’s problem for a thickwalled
spherical vessel. Obtained analytical solutions coincided
with those which had been published before [12, 13].

Now we will show applicability of the method
under study for problems with bodies, boundaries of which
are close to spherical one. @

Figure-1.

Let us assume that in the space under pressure
there is an inhomogeneity in the form of rotation ellipsoid

with semi-axes @,b. Let us introduce coordinates (r, &)
in such a way that coordinate lines r = const coincide

with boundaries of a body (inhomogeneity). Then
coordinates will be connected via Joukowski function:
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2 2 _
z:R(Hg—]cosH, p:R[r—g—jsine, gZ:a b R:a+b. (5)
r r

a+b’ 2
Substituting (5) into (2), considering that desired stresses will be sought in the form of small-parameter expansion & :
ok
oy = Ze Cijk» )
k=0

we will reconstitute the main system into the following one:

0 0 0 0 0
Tonk sin g+ £2% cos 9+ 1| Ck o5~ 0k gin g |+ C020 g g 4 L0k 9.4 RF, =¥,
or or r\ oo 00

r or r{ o060

0 0
appkzﬂ—h%—auk#—a“s/uzﬂ _rsingd 2%k sing+ L 9%k cos = ¥,
20+m) 20+ m) CF 2+ or r 00

- aO-zz k aO-pz k .- 1 ao-pz k aO-zz k .: .
rsin@ —Ccosé + =sin@ +—-| ———c0sf ————sinb |+o ,, +RrF,, sind; =",
0 00 e '

()

. 8 8 60— Z,K - 6(7 Z,K
rsin ea(am —azzyk)+ cose%(amk —azzyk)+ 2rcosé a’; —-2sin0—==—

0? 0 0? 0
_{sin H[rz ;23"‘ +ar 20k, 63"‘}+20059 g;k}z ¥,
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or 00?

2
0 0 0 0
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L. 100y, 1)
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ro 200
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, , , ; ; . ,

+rsing Z[raau’k’l oSO+ 200 8)4 COSO+RF,, 4+ 2(2c0¢60-1)(c, . , +RrsingF,, ,)]+rsin Ly RF
f— G J—
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trsing) Y% ging 4+ 1 9% pog g 1+ (1j o, . ﬂ—au s A
or r oo r PP 2(A + ) 24+ )

0 0
+rsin 9{%% 9—1&
r

Ccos 0}]],

20+ A )

I EA P 2u+d A
Y, = [(FJ [-2(2cos” @ 1)|:O-pp,kl 204+ 11) Oz k1 204+ 1)

The system’s solution will be sought in the form of series

0 (1.0)= Yo, 0 (D)o 0, 0, (1.0) = Yo (D]eos™

0, (r,0) = Z[a3nk(r)cose]c052”6’ i (r,0) =sin 92[ i (D) c0s 0]cos?" 0

F,.(r,0)=sin HZ[Fpnk(r)]cosz”H F,(r,0)= Z[ank(r)cose]cosz“e(g)

Right-hand members of equations (8) will be also written in series

¥, = Y[, (0os 0, ¥, =5in 00503 ¥, ()] cos™
v n=0

Y, = ‘P5 - (r)cos @] cos?" 0, ¥, =sin HZ[‘PB . COS 6’]005

n=0

This will allow us to write the system (8) in a simpler form, using the change of variables,

R(r)_r(ppnk+o-p2nlk) Z(r)_r(o-zznk-‘rapz,n,k pznlk) T(I’)—I’U

| | ,n, | 2 | (9)
_(O-zz,n,k _O-pp,n,k)_ r r +O—3,n,k ’ Sn(r) =r O 3nk

pz,n-1k
These variables are connected with stresses and displacements via following relations:

o == (RN =T, )00s™ 0, o, == 3 (Z, (1) =T, +T,,)c0s?" 0

P,
n=0 r n=0

2n 9’

2n

O ik

;Lw 3l+2y o A
ZZ( ( 2 (1) Tn—1)+2(ﬂ+ﬂ)

2uu (r,0 2 = U
M 1S|n QZS 0052”9 Mz_lzincos
R r n=0 R rn:02n+1

(R, +Z,(r)=T,))cos*" @

2n+1 9

As a result we obtain the system

_ 3a+2u
S+ p)

ISSN 1819-6608

i@

T2

31+2y}

@)

pz,n,k?

(10)
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roljR‘—(m +1R —Z -U_+2n+1T —(2n+1)S, =¥, (1) =r>¥,_(r),
. , ,

ro'dzn+2(n+1)(zm1 Z -T ,+T )=, (r)=r?¥, (),
. , ,

r av, L~ (@+)R, -Z, -T)+H(@2+1)'S, —2(+1)(+1)S,, =Wy, (r) = r?¥;, (1), , (11)

=U, +S,+R -Z +T.

In Rn Zn Sn (/1 ﬂ){[Un—Rn +(21—1)Sn]+ Rn]—Un]—Zn]—(Z]—I)Sn]]}—‘l’sn(l)—l lPSn(l)'
2u+ ! !
which 1 ay be written i aSilllplel form:

- 2(n +1)Rn + Z(n +1)Tn = _M (Fz,n+l 1, n+1) + 2(n +1)Sn+1 3 ni T lP1,r,n - \Ps,r,ml

2(A+ p)
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rd“h4m+nufwm+ﬂn=awu{ijzﬂ<,M—ﬁmo+amﬂ+wmaw4m+nwmm 12)
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The system (12) simplicity lies in that it consists
of Euler’s equations. Besides, the system will be solved
step by step, starting from the last equation and going to

5’1=0'1pép+0'1212, o*lp=0'pp(ép'él)+0'pz(lz'él)

1(0 o7 - opY (o)
o=~ La + k| A=[L]| 4+ &

Alor 7 or or or

2, du 10p op

= y U, =2u—=2-——0,-—(0,
s w =2 =2 50T
where

U,, =2cosbo, —sind(o,, —app)—sine(r?+03)—g
r r

Thus, when solving system (12) with boundary
conditions (13),(14) we can find stress-strain state of
bodies, boundaries of which are close to spherical ones.

It is evident that in the ellipsoid case under study
only boundary conditions (13) will be involved, and when
finding zero-order approximation, system (12) will be
homogeneous. Statical boundary conditions will be as
follows:

0,,=0,,8iN0+c,Cc0s0=—psind,

P

0,, =0,8IN0+0,Cc0s0 =—-pcosd

,Z
Thus, zero-order approximation will coincide
with the known solution for a thick-walled sphere with an

infinite radius and under inner hydrostatical pressure.
Substituting this solution into the system we will find that:

W=3°coding W =3 Scosinl-cok, % =a1-3c0st+2c08),
W, = 3r°sin 6]3—2cos? 6

Now we will write the system in detail to find the
initial approximation.

previous ones, finishing with calculating of the first
equation. At each step there will be one unknown function.
In the approach we represent, statical boundary

conditions are components of the vector & :

0y, =04, (lZ ’ é1) +0, (ép ’ é.1)’ (13)

At the boundary I =const as kinematic
boundary values we do not use displacement vector

components, but we use values o,,U,;, which are
connected with it and may be written in stresses

_00sp

14
or a4

pp)

2

5 (20059% +siné(o,, -0o,,) +sin¢9(ragr-3—a3)J

n=0
2u+A

-S,-Z,-R)-R +U, +S,,
2(/14»[1) 1 1 Rl) Rl 1 1

T

dR, -3
r——2R,+2T, =9r~ —
dr Ro+ 2l

rdd—zr‘_)—zz0 +2T, =3 +2(Z,-T,)
dy L [ a+2
P AT, =18 3+[2(/1++Z) T,-5,-7, —R1)+R1—U1+sl}
d 5 A+2
rd—sljhzs0 —T,=-9r 3+2(/1+Z)(T1—Sl—zl—R1)+R1—UI—SI
d, d d S 200+ 49) d 2A4+4) d
LriT)er=T,=9 “1|+r2 @R, +F, ZE,
rdr(rdr °)+rdr o= (2,u+i j”dr( u R+ 2u+A "o
n=1
d 5 2u+A
rd—?—4R1+4T1:—3r3—2(§+y)(T2—SZ—ZZ—RZ)—RZ+U2+SZ,
r%—421 +AT, =33 +4(Z,-T,)
du ~ A+2
rd—r174ul+3T1:24r3+[2(/HL’)(TZ7527227R2)+R27u2+52}
ds L A+2
rd—rl—4sl—T1=6r3+2(/1+Z)(T2—SZ—ZZ—R2)+R2—UZ—SZ
d d d
r&(rETl)+4raTl+3T1:0
n=2
dr
rd—2—2R2+2T2=22(5”)(@—33—23—R3)—R3+U3+53,
r +u
dz, _
rW_ZZZ +2T,=2(Z,-T,)
du A+2u
r dr2 —2U, +T, =[2(ﬁ+ﬂ)(rg—53—ZS—R3)+R3—U3+53}
ds A+2u
rTi, 271 = 2(/1_‘_#)(1-3*83*23*R3)+R3*U3*S
2u+ A
R,-2,-U,-5, :2(l+ﬂ)(|'3—z3—R3—S3)+R3—553—U3.

2264



VOL. 9, NO. 11, NOVEMBER 2014

ARPN Journal of Engineering and Applied Sciences

ISSN 1819-6608

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

At once we can write that T3, R;,Z;,U,, S,

will be equal to zero, because number of members in the
series is limited. As a particular solution of the problem
under study we can take the following values:

T,=2,=R,=S,=U,=0;

3 24 6
TI:O' R:L:Zl:_s, Ul:__s’ 81:__3,
ir ir i
3 3 21
(F2,1:_Wv Fpu = R1+S1:_Fv':3,1: R1+51_U1:F)
15 9 6 39 15

0

1ard 0T T T T e T A T T qar®
The general solution of the system will be

composed of particular solution and homogeneous system
solution, which will satisfy boundary conditions

R,(1)=0, R,(1) =-3p,Z,(1) = 3p, Z,(1) = -3p. (15)

T1=90 p(//i’+/'l) _30 p(6/1+7ﬂ) S - _

g P(22+24) p[— 3/7

These boundary conditions are obtained from the
statical ones:

a,,=0, sif+0, CoP+¢ (0, Sind—o, coL) =—p(1+£")sing
a, =0, si+0,,09+¢ (0, sif—o,,c08) =—p(1-¢*)cod)
which after substituting oy = 07, + gzdijyl work out to

sifg

+C08q; , =—sirgd-sirdg ,+09q, ,=-3pSintc o
sing, , +€0¥g;, = pcog-sindg, , +coPq,, =3pcog-3pcodl)

For we seek the first approximation, boundary
conditions will contain only members with zero and
second power of &. Eventually statical boundary
conditions will assume the desired form (15) after they
will have been written in terms of boundary values (9).
Now we can write the system’s solution:

(—601—70/1)_6/7}31

(QA+14p) rP(9A+14u) 1 Tr(94+14p) 94 +14u
R =36 p(24+2u) 15 pg48/7,+56,u)+3/ P oz=3 p(22+2u) 15 pg48/1+56y)+3 o
rOA+14u) 7 r*(91+14u) r rOA+14u) 7 r*(91+14u) r

p(2A+2u) 45 p(482+564)

U, =27
b r(94+14u) 28 r3(94 +14u)

2472, 7, = o2 P!
r

5A+2u) L% p(484+56u) 15 p
r(04+14u) 28 (94 +14u)r® 1413

3 p(48/1+56y)+ 15 p

° or 94 +14u (92 +14u)

R, =3/7

_i(_gpa%—Sﬁ—Zu)_lz Ap ]

28394 +14y) 14r%

r’(94+14u)

p(48/1+56/,z)+ Qp(—5/1—2,u)+ 6Ap
T 94+14u

1 9P
01+14) T

J

9p(482+56u) (((-52-2u) pl2h 120 70
94 +14u

* 7 r3(94+14y) 91 +14u

+9/

3’

U =1/4 1824+ )P4 +2u)
° (92 +14u )22 +2u)

2p(—5z—2ﬂ) . p(481+564) 39 p
91 +14u

+

28 r*(91+14u) 14r*
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Using formulas (10) taking into account (6) we shall write o

will be as follows:

o,c0s°(6) &0,

i

Thus, the first approximation of the problem under study

+3/7

O,
rd)y=——2+3/2 +
UL P 1% (94 +14.)

482+56
(g3t 2 gy :3“)

—274242“
r r

r.3

+[1/ 21894 :162" _gp120 ;140“ )3 2‘9’1;314” Jcosz(é')—(ls(_l‘”1 —144) | 452 : 21 jcos“(ﬁ)),

o,sin(8)cos(0)

r,0)=-3/2 +
(1) r’ r*(94+14y)

.
o, sin(0) ([9/2—5/1—2u+45(48/1+56y) _159’1+314ﬂjcos(¢9)+

3
r 28 r 14 r (16)

J

1E(s(zz +244)r* =122 ~14 1) cos’(0)

2 r 14 re 14

r

~1/3+cos?(6 2
Uzz=—3a°( tcos( ))+ o, (_9,1+2y_3(631+370ﬂ)+
2 r rr(9A+14u)” 2 r 14 r
3(24+24)r2 —122 ~144)cos* (6
]cosz(€)+15( ( ) - ) ( ))).

2404 + 280 94—
+[_273ﬂ.+2,u+ 9 ( y)+ 9 9/1r314ﬂ

We obtained an analytical solution in the first
approximation. In this way we can also obtain expressions
for displacements by formulas (10).

To define its applicability limits is the same

problem but without assumption of smallness of g%, and
it was solved via finite element method implemented with
the help of COMSOL Multiphysics; a similar approach
was suggested in [14].

ns -,

L=
L

= FEWIu'=01s; 114 M e el = FEM =12
wmd e nt ) I3

Figure-2.

From Figure-2 (stress diagrams c,,lo, (4=0.26,
4 =0.37) depending on the coordinate 6 with different

values of 82) it follows that analytical solution in the first
approximation differs from solution obtained via FEM

(0<£2<0.1) for not more than 11%. These relations

are true for all components of the stress tensor written in
the cylindrical coordinates system. It should be noted that

stress o, maximally at the poles of cocavity and under

0< &2 <0.04 differs from value of this stress on the
sphere for not more than 10%.

CONCLUSIONS

By the example of a problem of estimating stress-
strain state of an ellipsoid cocavity under inner
hydrostatical pressure, we represented detailed method of
solving axisymmetric problems, setting up of which has
been completely formulated in stresses. Besides, from

obtained solution it follows that under €2 < 0.04 the
ellipsoid cocavity can be approximated by the sphere.

The approach we represented simplifies
problem’s solution subordination to boundary conditions
and allows to find at the same time both stress and
displacement by algebraic formulas (10).
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