
 VOL. 9, NO. 12, DECEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2467

NEW EMBEDDED COMPUTING ARCHITECTURE USING
HETEROGENEOUS PROCESSORS FOR FAST

PROCESSING AND LOWER COMPLEXITY

Muataz Hameed Salih, R. Badlishah Ahmed, L.A. Hassnawi, R. Kh. Al-Janabi and Omar. F. Yousif
School of Computer and Communication Engineering Universiti Malaysia Perlis (UniMAP) Perlis, Malaysia

E-Mail: muataz@unimap.edu.my

ABSTRACT

When it comes to communicating between processors in a Multi-Computing system, there are many choices.
Exotic architectures are available with tens to hundreds of cores. This allows plentiful processing power to be utilized on
problems. However, how to retain the cores feed with data? Core is a wasted resource when idle. Both of bandwidth
between resources and latency incurred in transfers are performance concern. That can significantly affect the bandwidth
for small transfers and can also make the system-transfer function exceed its design requirements for real-time operation.
The solution to this problem lies in multi-level of computing architecture. A new architecture at SoC and chip level is
designed and implemented to come up with high-performance embedded multi-computing architecture for AUV. It will be
based on FPGA technology that will be as computing unit and router for other processing units as well. The designed
architecture provides a concurrent environment for programming and testing. Furthermore, numerous FPGA mega core
modules are provided to easily verify the targeted problem, address processing issues and balance data movement with
processing power. The outputs and deliverables from the designed architecture are manifold in terms of performance and
throughput accuracy; covering a sensing area of over 95%. The designed architecture seeks to provide dynamic
reconfigurable platform with the knowledge and tools needed to improve in today's academic, research, industry
environment and realistic applications.

Keywords: embedded system design, FPGA system design, simultaneous multithreading, autonomous underwater vehicle.

INTRODUCTION

In order to ensure speedy and accurate processing
throughput, the underwater vehicle system needs a precise
and efficient computational monitoring platform.
Moreover, precision is also important to lower the
operational complexity and facilitate the decision making
process. To make the system easy-to-handle and manage,
the computational platform should be compact and
scalable.

The current platforms for underwater vehicle
system used commercially by developers consist of Digital
Signal Processing (DSP) chip, microcontroller, ATX-PC
board and embedded single soft processor on an FPGA.
Though the platform operates in a systematic way, it
consists of a number of phases and there are two major
problems that challenge the effectiveness of these
platforms. The entire procedure of fetching data,
processing it, filtering information and produce results
make the process of decision making ambiguous and
unnecessarily complex. Moreover, when there are so many
factors working together, there are unnecessary processing
delays due to synchronization, information transfer.
Hardware issues like computational power and
architectural units’ synchronization can also cause
significant delay in data processing which impacts the
accuracy of decision making process. This is the reason
that researchers and developers are coming up with
alternate solutions and more robust architectural design for
underwater vehicle system.

One way to remove the inability issue and
facilitate fast data processing is to determine the post

processing scenarios. Developers and researchers, think
data delays are caused due to issues during the data
processing process, therefore they are considering on the
post-processing data analysis first in order to resolve the
inability issue. However, the post-processing procedures
of data processing and operation are mostly accurate and
robust therefore the idea of post-processing analysis is not
applicable to online mission. So, to completely avoid the
post-processing approach a robust, effective computational
platform is required for the submarine vehicles system.

Multiprocessor

Embedded computing

Although it is not easy to figure the differences
between general purpose computing and embedded
computing, general purpose computers are not as scalable
as embedded computers. Embedded computers have
evolved from large-sized working stations to on-chip
systems. Moreover, embedded computers have also
improved considerably in terms of sophistication, data
processing and complexity. With the advent of
semiconductors in the IT world, embedded computers
have become more reliable and robust than ever and their
prices have also dropped considerably. Below is a detailed
discussion about the major differences between general
purpose and embedded computer and their applications [1,
2].

When it comes to power requirements and energy
considerations, embedded systems are more demanding
than general purpose computers. These computers need

 VOL. 9, NO. 12, DECEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2468

heat-sink and thermal packages to keep the processing
units cool which adds to the overall costs of these systems.
Especially designed heat sinks are used in these systems
because normal heat sinks cannot be installed on small
chips. The problem of energy efficiency is particularly
evident in handsets, as they rely on batteries to function
and it is difficult to keep the temperature of batteries low
[3, 4].

The modern in application in which embedded
systems are used have more dynamic computational
requirements. It is believed that computational needs
escalated with the boom of scalable algorithms, data and
information compression, novel and dynamic
communication standards. When talking about the
computation requirements, one cannot ignore the real time
performance requirements. A number of high-tech love
systems that rely on embedded systems for real time data
monitoring and processing, have complex processing
requirements. For example, a real time image or video
processing systems, requires the rate of frames per second
to be adjusted in accordance to the output requirements if
the application. The systems in which there is not a lot of
streaming for decoding the information have even more
complex processing needs. Same is the case with control
and feedback systems used in telecommunication and
automobiles industries; they have very high and
customized demands [5-7].

Applications that rely on embedded systems need
a wide assortment of computational needs and processing
requirements that have to be fulfilled. Components
working in a closed loop cellular arrangement are
expensive than other components which are used in
general purpose computers because they are designed for
long-term use. This is the reason that developers demand
that these components should be upgradable and portable
so they can grow with the system in which they are
deployed and fulfill the real-time requirements of these
systems. Network operations and designers consider it
wise to invest in making the embedded systems scalable
and upgradable because it can secure the initial
investment. However, commercial components, designed
particularly for providing client services are affordable but
they have a shorter lifespan than dedicated embedded
components [6, 8].

Hetrogenouse processors

When a variety of computational modules are
integrated together, they form a heterogeneous computing
system. However, the functionality of a heterogeneous
system depends on the types of computational units. It can
serve the purpose of a GPP (General Purpose Processor),
FPFA (Field Programmable Gate Array), DSP (Digital
Signal Processor), ASIC (Application Specific Integrated
Circuit) and GPU (Graphics Processing Unit). So it can be
said that a heterogeneous computing system consist of
processors with different functionality and instructional set
architectures.

Today systems need to be highly reactive and
multi-functional and this is the reason that heterogeneous

systems have replaced simple processing units.
Heterogeneity allows computational systems to interact
with network and video/audio applications at the same
time, thus enhancing their efficiency and reactivity. Before
the advent of heterogeneity, techniques like frequency
scaling were used to increase the efficiency of systems.
However, these techniques were not dramatically effective
and created obstructions like power-wall and memory-wall
[1, 2]. This is the reason hat technologists had to
incorporate hardware amendments to increase the
productivity of systems and making them heterogeneous
[3, 4]. Heterogeneity allows a system designer to use
different kinds of processors and elements and integrate
them together to develop an all-inclusive processing
system [5]. Changes in the hardware or integration of two
or more different types of processors make a system multi-
core or parallel computing system. Technologists also
consider such types of systems as ‘hybrid systems’ [6].

As integrated chips have replaced bulky
elements, so it has become easier for fabricators to scale
and integrate elements. However, there are a number of
challenges in heterogeneous systems due to parallel
processing, which are not present in homogenous systems.
Unlike heterogeneous systems, the parallel-processing
components in homogenous systems have uniformly
structured instruction set architecture, which is easier to
code, decode and troubleshoot [7]. Due to non-uniformity,
the coding in heterogeneous computational systems needs
multiple assemblers, simulators and compilers. This makes
the development and integration phases considerably
complicated. Furthermore, it is required to adopt a
cohesive approach to simultaneously develop various
modules of a heterogeneous system [8-11].

Moreover, it is difficult for programmers to code
every element differently. It not only increases work load
for programmers, but also slows down the process of
development. Integrating and interleave hardware specific
programming codes, increases the probability of loopholes
and makes the system extremely complex [12-18]. There
is no denying the fact that heterogeneous systems are far
efficient than homogenous computational units, but it is
difficult to handle these systems [19, 20].

Architectural Design

In this paper, in this research, a design is
proposed that uses an embedded system which consists of
dual-issue processing unit as the major component which
is integrated with all the other elements installed on the
board. The REP chosen for this design comprises of two
main phases. The first stage is called dual-issue task fetch
and the second one focuses at load and store operations.
Moreover the pan also includes data memory and timer
synchronization tasks. The main unit incorporated into the
system is responsible for fetching, processing, filleting and
decoding the information and then issuing the tasks to the
execution pipelines. Figure-1 explains in detail the local
organization of components on the REP. The design also
has another unit called the branch unit that is meant to host
a dynamic branch. The accuracy of the branch has been

 VOL. 9, NO. 12, DECEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2469

improved by this approach but it has reduced the latency
of the system.

Figure-1. Block diagram of designed processor (REP).

The REP is capable of differentiating the control
data from operational data, thus allowing parallel access to
each kind of data and allowing to reduce the number of
execution pipelines. Microcontrollers have 32-bit pipelines
which are further set associative in 64 ways. These lines
are compatible with parity tags and this makes them
perfect for protecting memory arrays from program
execution and soft errors. The implementation of the REP
platform also allows dedicated and targeted
troubleshooting which allows reading the data directly
from the source and sending it to the designated arrays.
The connection between memory components and
microcontroller allows task-side interface functioning of
the processor.

Memory can translate the address, and in
embedded systems, memory bus has direct access to the
control block and stored information. A virtual memory is
also present in the system which is supported by all
applications that rely on embedded systems. The virtual
memory approach is supported by all those applications
which require real time and scalable logical mapping of
addresses. The translation abilities, however, are
controlled by a buffer look-aside table.

There are two timers and primary time-
management bus present in the REP. The timers consist of
a FIT (Fixed Time Interval) and a DEC chip which is
meant to decrement the timer. Moreover, there are three
separate and synchronized PLB interfaces present in the
REP. Two PLBs support both reading and writing
operations and the remaining supervises read dedicated
tasks. The layout of PLB interfaces and timers on the
FPGA board is explained in Figure-2.

Figure-2. The proposed architecture.

The main design, layout and execution of the core
processor, is based on three interlinked and embedded
modules. The intermediate module is designed in the ECC
architecture and the overall design of each module is
dependent in the design of the REP.

Another major element integrated in the design is
floating bus. The previous layout of the REP had fixed
allocated bus. On the other hand, the design presented in
this research has an entire and dedicated system of buses.
It means that buses can actually float through the entire
system and all the sub-modules of the system are operated
by the network of the buses. The I/O manager has a
separate design for input data which consist of N
component matrix arranged in 2D. The sensors used for
inputs are arranged in XY plane. The I/O member
locations of the database have an internal memory chip
which prevents the interconnection between internal and
external memory. This is one to enhance the speed of the
system.

In order to improve the overall performance of
the systems, a number of subsystems are incorporated in
the design. The self-assessment sub-module uses an
emulator that process and identifies targets in the overall
behavior of the system. Another subsystem is view system
which aims at converting the processed ad filtered data
into SVGA (Super Video Graphics Array) signal which
are transferred to the chip for useful interpretation of
information.

RESULT AND SYSTEM EVALUATION

It is challenging to make sure that the localization
of information and navigation are performed precisely
underwater, due to obvious hurdles. Therefore it is
elementary to determine the system (AUV) has to travel to
achieve accurate readings and repeatable measurements
that can be applied to other applications. A number of
approaches have been used previously to design a vehicle
system, but most of these systems followed the principles
of acoustic or vision. This study, however, proposed two
different approaches to design a REP system for
underwater localization. The approach is based on

 VOL. 9, NO. 12, DECEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2470

embedding sound sensors on the AUV which are designed
to monitor views and directions. There are almost 32
sensors used in this design and the layout is explained in
Figure-3.

Figure-3. Sensor arrangements on the AUV.

The 4x8 2D matrixes are used in order to
determine the approach and design in which the network
of 32 sensors is organized. A fast ADC chip is used in
order to identify the location of the 8bit incoming signal
from a sensor. Another 2D matrix of the same
measurement s arranged to target and identifies the
location of the array sensors according to their bit
capacity. For example 3 best sensors are allocated to
monitor the side direction while remaining is specified to
represent some of their direction.

Sound sensors generate high speed signals which
are transmitted to the 8bit ADC chip. The ADC chip used
in the REP s designed to convert the incoming analog
signals from the sensors to the digital packets at a rate of 3
GSPS. These signals then enter the process using floating
localization technique. Getting signals from all directions
allow the processor to get a clear idea about evaluating
direction, distance and speed simultaneously. The REP
system is capable of pressing and responding in real time
due to its overall architecture installed in the FPGA board.
Another reason why the system responds in real time is the
crystal frequency. The crystal used in the REP can
oscillate faster than the speed of sound signals in water
transmitted by sensors. The data processing speed and
frequency of the system makes it appropriate for other
applications too, with a few amendments.

The designs proposed in the study have been
implemented for tracking the AUV signals and for passive
location. In this research study both designs have been
analyzed and their complexity in a number of applications
has been evaluated. The approach of analysis and
synthesis has been adopted in this study to evaluate the
proposed designs. Data acquisition and a number of
computational operations have been implemented to test
the effectiveness of sensors used in the REP for
underwater localization. The results prove that it is very

important to overcome the transmission errors and process
delays to make the tracking procedure as reliable as
possible. However, there are a number of challenges
regarding location and tracking which were noticed during
the implementation of the system. For example, one of the
problems is taking measurements in a parallel manner. The
current architecture of the system is designed in view of
the issues that are face during critical operations. A
number of measurements are shown for the motion of
AUV in Figures 4, 5, 6, 7, 8, 9, 10 and 11.

In order to acquire reliable and precise results, it
was very important to decide the number of iterations to
get repeated and acceptable results. The precision of
results is directly proportional to the number of iterations.
However, there is a saturated number of iterations after
which repeating the experiment can waste time. In this
case, 20 iterations were required to acquire accurate
analysis results. Extended Kalman filter is used on this
study which is better and more precise than Kalman filter.
A comparison between both filters is shown in Figures 4,
5, 6, 7, 8, 9, 10, and 11.

Figure-4. Processed sensor signal coming from the KF
after 10 iterations.

Figure-5. Processed sensor signal coming from the KF
after 19 iterations.

 VOL. 9, NO. 12, DECEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2471

Figure-6. Processed sensor signal coming from the KF
after 20 iterations.

Figure-7. Processed sensor signal coming from the KF
after 25 iterations.

Figure-8. Processed sensor signal coming from the EKF
after 10 iterations.

Figure-9. Processed sensor signal coming from the EKF
after 19 iterations.

Figure-10. Processed sensor signal coming from the EKF
after 20 iterations.

Figure-11. Processed sensor signal coming from the
EKF after 25 iterations.

 VOL. 9, NO. 12, DECEMBER 2014 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2472

CONCLUSIONS
The study analyzed the architecture and layout of

the system on the basis of three parameters. The first
important parameter is modularity of the system. The
architecture is installed on a FPGA. This architecture
allows dual functionality of the system. For large
applications like base stations, the system can work as a
single module. While for smaller applications, the system
can be divided into modules due to point to point
connection between subsystems. The second parameter is
flexibility. The architecture consists of a number of
systolic stages which can be adjusted according to the
requirements of the system. The third and last parameter is
scalability. The system can be replicated and upgraded
according to the computational requirements of the
application in which it is being used.

REFERENCES

[1] IBM. 2009. Cell Broadband Engine Programming

Tutorial. Retrieved. 05-06.

[2] John Shalf. 2010. The New Landscape of Parallel
Computer Architecture. Retrieved. 02-25.

[3] Tim Kaldewey, Guy Lohman, Rene Mueller and Peter
Volk. 2012. GPU join processing revisited. In
Proceedings of the DaMoN ’12, pp. 55-62, New York,
NY, USA.

[4] Brodtkorb, André Rigland; Christopher Dyken, Trond
R. Hagen, Jon M. Hjelmervik, Olaf O. Storaasli. May
2010. State-of-the-Art in Heterogeneous Computing.
Scientific Programming. 18: 1-33.

[5] K. Van Craeynest, A. Jalelle, L. Eeckhout, P. Narvaez
and J. Emer. 2012. Scheduling heterogeneous multi-
cores through performance impact estimation (PIE). In
ISCA ’12.

[6] 2009. Visions for Application Development on Hybrid
Computing Systems. Retrieved. 02-09.

[7] Brian Flachs, Godfried Goldrian, Peter Hofstee, Jorg-
Stephan Vogt. 2009. Bringing Heterogeneous
Multiprocessors into the Mainstream. Symposium on
Application Accelerators in High-Performance
Computing (SAAHPC'09).

[8] Cray Computers. 2013. Cray XD1 Datasheet.
Retrieved.

[9] Ron Wilson EDN. 2010. Xilinx FPGA introductions
hint at new realities. February 2, 2009 Retrieved.

[10] Mike Demler EDN. 2011. Xilinx integrates dual ARM
Cortex-A9 MPCore with 28-nm, low-power
programmable logic. March 1, 2011. Retrieved.

[11] 2013. What is Heterogeneous System Architecture
(HSA)? AMD. March 31, 2013. Retrieved.

[12] Kunzman D. M., Kale L. V. 2011. Programming
Heterogeneous Systems. 2011 IEEE International
Symposium on Parallel and Distributed Processing
Workshops and Phd Forum. p. 2061.
doi:10.1109/IPDPS.2011.377. ISBN 978-1-61284-
425-1.

[13] Siegfried Benkner, Sabri Pllana, Jesper Larsson Träff,
Philippas Tsigas, Andrew Richards, Raymond
Namyst, Beverly Bachmayer, Christoph Kessler,
David Moloney, Peter Sanders. 2012. The PEPPHER
Approach to Programmability and Performance
Portability for Heterogeneous many-core
Architectures. Advances in Parallel Computing, IOS
Press 22: 361-368, doi: 10.3233/978-1-61499-041-3-
361.

[14] D. Koufaty, D. Reddy, and S. Hahn. 2010. Bias
scheduling in heterogeneous multi-core architectures.
In EuroSys.

[15] Y. He, S. Elnikety and H. Sun. 2011. Tians
scheduling: Using partial processing in best-effort
applications. In ICDCS.

[16] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D.Weber
and T. F. Wenisch. 2011. Power management of
online dataintensive services. In ACM/IEEE
International Symposium on Computer Architecture,
ISCA ’11, pp. 319-330.

[17] J. C. Saez, D. Shelepov, A. Fedorova and M. Prieto.
2011. Leveraging workload diversity through OS
scheduling to maximize performance on single-ISA
heterogeneous multicore systems. Journal of Parallel
and Distributed Computing. 71(1): 114-131.

[18] Scott Grauer-Gray, Lifan Xu. 2012. Robert
Ayalasomayajula and John Cavazos. Auto-tuning a
high-level language targeted to GPU codes. In
Innovative Parallel Computing Conference. IEEE.

[19] Phitchaya Mangpo Phothilimthana Jason Ansel
Jonathan Ragan-Kelley Saman Amarasinghe. Portable
Performance on Heterogeneous Architectures. In
ASPLOS’13, March 16-20, 2013, Houston, Texas,
USA.

[20] Andrew Davidson, Yao Zhang, and John D. Owens.
2011. An auto-tuned method for solving large
tridiagonal systems on the GPU. In Parallel and
Distributed Processing Symposium. IEEE.

