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ABSTRACT 

Nowadays, the oil industry efforts revolve around the exploitation of hydrocarbon-bearing shale formations. At 
the current rate of exploitation several shale formations can produce for more than 200 hundred years. Therefore, 
researches are conducted for a better characterization of these formations so all the local details can be captured by the 
mathematical models. From the well test point of view, some mathematical models to observe transient pressure behavior 
have been introduced. However, such models are very complex and may not be practical for a practicing engineering who 
neither does have the time to code such models or their computer programming capabilities are not good enough. Then, 
this work takes two mathematical models from the literature as the basis to develop a practical well test interpretation 
methodology using characteristic points found of the pressure and pressure derivative curves. The resulting methodology 
was successfully tested with synthetic examples. 
 
Keywords: pseudosteady state, bilinear flow regime, transient-pressure analysis, shale. 
 
1. INTRODUCTION 

Currently, pressure transient analysis is focused 
on the characterization of such unconventional systems as 
shale formations which permeability is extremely low 
going to the range of microdarcies to nanodarcies.  

The mathematical model governing either rate- or 
pressure-transient behavior are complex and none of the 
commercial well test interpretation softwares have 
included them. Then, there is a need of providing practical 
interpretation techniques as those presented by Bernal, 
Escobar, and Ghisays-Ruiz (2014) and Escobar, 
Montenegro, and Bernal (2014) who used the philosophy 
of the TDS technique, Tiab (1993), for the development of 
easy-to-use interpretation methodology. 

The models proposed by Brown et al. (2011) 
allows to study the well-pressure behavior of shale 
formations using the stimulated reservoir volume, SRV, 
concept around a horizontal well and divided into three 
different zones which have individual properties. The first 
one corresponds to the finite-conductivity hydraulic 
fracture. The second zone deals with the inner reservoir 
region which can be either homogeneous or naturally 
fractured, and the third one deals with the external portion.  
Brown et al. (2011) consider that the naturally fracture 
reservoir can be governed by a pseudosteady-state or 
transient model; then, two models were developed by them 
and use in this work to provide an interpretation 
methodology using characteristic points found on the 
pressure derivative plot. The developed equations were 
successfully tested with simulated cases. 
 
 
 
 

2. MATHEMATICAL FORMULATION 
 
2.1. Mathematical model 

This study is based on the solutions of the 
trilinear-flow model for pressure-transient responses of 
fractured horizontal wells in unconventional shale 
reservoirs presented by Brown et al. (2011) who 
developed their solutions following the work of Cinco-Ley 
and Meng (1988) for the finite-conductivity fracture 
solution in a dual-porosity reservoir. Brown et al. (2011) 
derived their solution for the outer reservoir, inner 
reservoir, and the hydraulic fracture, and then couple the 
solutions with the flux- and pressure- continuity conditions 
on the interfaces between the regions and then inverted 
numerically from the Laplace space. Their mathematical 
model is brought here and given below. 
 
Outer reservoir solution 

The outer reservoir solution in the Laplace space 
is given by: 
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The outer reservoir solution, POD, is given in 

terms of the inner-reservoir pressure at the interface of the 
inner and outer reservoir pressure at the interface of the 

inner and outer reservoirs,
,1D

ID x
P

  
 
Inner-reservoir solution 

The solution for this case in the Laplace space is: 
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Where the outer-reservoir parameter used in the 

trilinear-flow model is: 
 

tanh ( 1)o OD OD eDs s x                        (3) 

 
And the outer-reservoir parameter, o, used in 

trilinear- flow model is, 
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Hydraulic-fracture solution 

The hydraulic fracture parameters used in the 
trilinear- flow model are: 
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The dimensionless pressure solution for the 

hydraulic fracture is obtained as: 
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Wellbore-pressure solution 

The dimensionless wellbore pressure is obtained 
at xD = 0 is given by, 
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The skin factor caused by flow choking within 

the fracture is provided by Mukherjee and Economides 
(1991): 
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The dimensionless wellbore pressure after the end 

of the radial flow in the hydraulic fracture: 
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The effect of wellbore storage was incorporated 
into the solution by substituting PD from Equation (10) 
into the following convolution expression in the Laplace 
domain: 
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The dimensionless wellbore storage coefficient, 

CD, is given:  
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Dual-porosity parameters 

The naturally-fractured reservoir parameters 
introduced by Warren and Root (1963) were used by 
Brown et al. (2011),  
 

( )

( ) ( )
t f

t f t m

c

c c




 




 

  
                                             (13) 

 

2 m

f

k
l

k
 




                                                            (14) 

 
Where l  is a reference length chosen as the half 

length of the hydraulic fracture; that is, l = xf. 
Kazemi et al. (1976) proposed the following first 

approximation for the shape factor of rectangular matrix 
blocks:  
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Serra et al. (1983) define the storativity and flowcapacity 
ratios for the transient dual-porosity model, respectively, 
by: 
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The dimensionless oil pressure and the pressure 

derivative, respectively, are: 
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The dimensionless gas pseudopressure and the 
dimensionless pseudopressure derivative, respectively, for 
the constant-production-rate solution are: 
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The dimensionless time is defined by; 
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The inner-reservoir diffusivity,   
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The hydraulic-fracture diffusivity,  
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The outer-reservoir diffusivity, 
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The dimensionless distances in the x and y 

direction are defined, respectively, by  
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The dimensionless distances to the reservoir 

boundaries are given by xeD and yeD.  
According to Brown et al. (2011), the pressure-

transient response of a horizontal well with nF identical 
transverse hydraulic fractures can be modeled by 
considering one of the fractures producing from a 
rectangular reservoir section at a rate: 
 

f
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q

n
                                                             (28) 

 
The fracture is located centrally in the closed 

rectangular drainage area  

, 2 2
fdrainage e eA x y                                               (29) 

 
The half-fracture length, xf, can be related to 

reservoir length, xe, by: 
 

2e fx x                                                             (30) 

 
The dimensionless fracture and reservoir 

conductivities, respectively: 
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For any dual-porosity model, CFD and CRD are 

defined on the basis of the bulk permeability of the inner 

reservoir Ik . Brown et al. (2011) also defined the hydraulic 

fracture diffusivity and the outer-reservoir diffusivity 
ratios, respectively, as: 
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For the transient dual-porosity model:  
 

I fk k                                                             (35)    
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And the intrinsic fracture storativity is; 
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For the pseudosteady dual-porosity model:  
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And the intrinsic fracture storativity 
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2.2. TDS formulation for pseudostady dual-porosity  
       model  

The Equations will be developed for oil flow. For 
gas flow refer to Appendix A and B. Even though, Brown 
et. al. (2011) presented pressure solutions for each flow 
regime, new simpler expressions based on the 
observations of the pressure derivative are derived in this 
work. However, a metholodology with the equations 
proposed by Brown et. al. (2011) for each flow regime is 
provided in Appendixes C and D. 
 
2.2.1. Initial flow regime 

The flow at early times displays a pressure 
derivative which slope goes from 0.25 to 0.5 depending 
upon the value of the storativity ratio, ω, as defined by 
Equation 13. This flow regime shows up at diferent times 
depending on the ω values, as shown in Figure-1. The 
early time portion of the log-log plot of the dimensionless 
pressure derivative versus dimensionless time curve under 
constant flow capacity ratio, λ, and variable storativity 
ratio, ω, is used for the determination of the initial flow 
regime governing equations.  

For this model the developed equations depend 
on the storativity ratio value, ω. The estimated 
permeability value correponds to the one in the inner zone 
of the stimulated reservoir volume, SRV. To obtain an 
appropriate flow overning equation is necessary to adjust 
the application range according to the values the 
storativity ratio, ω. 
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Figure-1. Effect of storativity ratio, ω, on the initial flow 
(early time) for the dual-porosity pseudosteady model 

under constant flow capacity ratio, λ, and yD=xD=1. 
 

The determination of the governing equation for 
for ω ≥ 0.1 at early time requires a log-log plot of tD*PD’ 
or tD*m(P)D’ versus tD/(1+ω)4 using a constant flow 
capacity ratio, λ, as shown in Figure-2. The initial flow is 
characterized by a typical 0.25-slope line (bilinear flow 
regime) on the pressure derivative curve. 
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Figure-2. Effect storativity ratio, ω, on the initial flow for 
the case ω ≥ 0.1 on the pressure derivative behavior using 
the the dual-porosity pseudosteady model with constant 

flow capacity ratio, λ, and yD=xD=1 
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Once the dimensionless quantities given by 

Equations (19), (22) and (23) are replaced into Equation 
(41), it yields;   
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Equation (42) allows solving for the permeability 

of the inner reservoir;  
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Notice that the hydraulic half- fracture length, xf, 

can be solved from Equation (43), 
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 When 0.01 ≤ ω < 0.1, the early flow is defined by 
a slope of 0.33 in a log plot of the pressure derivate. It 
gives a relationship of three log cycles in the time axis 
against two log cycles in the pressure derivative axis. As 
shown in Figure-3, the flow behavior does not present a 
uniformity related to the variation of ω, then, it was 
necessary to determine the most representative 
mathematical representation  of the initial flow behavior 
which was performed by using a probabilistic average, 
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Figure-3. Initial flow behavior for the case 0.01 ≤ ω < 0.1 
on the pressure derivative behavior governed by the dual-
porosity pseudosteady model with constant flow capacity 

ratio, λ, and yD=xD=1. 
 

Once the dimensionless quantities given by 
Equations (19), (22) and (23) are replaced into Equation 
45, it results;   
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Equation (46) allows solving for the inner-

reservoir permeability;  
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Notice that the half-fracture length, xf, can be 

obtained from Equation (47), 
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Finally, the last case of ω variation at early time 

takes places for 0 < ω < 0.01 which is characterized by a 
half-slope (linear flow regime) in the pressure derivative 
log-log plot. A typical representation of the homogeneus 
reservoir occurs when ω=0 as depicted in Figure-4. 
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Figure-4. Initial flow pressure derivative behavior for ω < 
0.01 with dual-porosity pseudosteady model under 

constant flow capacity ratio, λ, and yD=xD=1. 
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After plugging the dimensionless quantities into 

Equation (49), we obtain;   
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Equation (50) allows solving for the permeability 

of the inner reservoir;  
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Notice that the half-fracture length, xf, can also be 

solved from Equation (51), 
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For the three early-time cases the reservoir lenght 

can be solved from Equation (30) which depends only on 
the half- fracture length, xf. 
 
2.2.2. Second flow regime on first pseudosteady state 

Once the initial flow regime vanishes, a second 
unit-slope flow regime is observed on the prssure 
derivative log-log plot. It has been arbitriarily refered here 
as “first pseudosteady-state regime” which is affected by 
both the flow capacity, λ, and the storativity ratios, ω. The 
former affects the duration time when the regime is 
presented as shown in Figure-5; thereby, the starting time 
of the first pseudosteady state regime converges at the 
same point for different  values. With this parameter the 
flow regime varies in length but it is the same in terms of 
location (no parallel displacement along the time axis).  In 
contrast, the storativity ratio, ω, causes a parallel 
displacement along the time axis as shown in Figure-6.  
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Figure-5. First pseudosteady state behavior observed in 
the dual-porosity pseudosteady model under constant 

storativity ratio, ω, and yD=xD=1. 
 

The general equation for the unit-slope 
pseudosteady-state period is:  
 

*( ) 'D D Dt P b t                                                             (53) 

 
As the displacement along the time axis is 

defined by the value of storativity ratio, ω, it is possible to 
develop an expression to obtain b as a function of ω. 
These observations lead to obtain the following 
expression: 
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Figure-6. First pseudosteady state behavior observed in 
the dual-porosity pseudosteady model under constant 

flow capacity ratio, λ, and yD=xD=1. 
 

1) Equation (54) which constants are given in 
Table-1 was developed to estimate b using the storativity 
ratio, ω. Its range of application is for values of 0 ≤ ω < 1. 
 

10.5( )b A B C 


                                                  (54) 

 
Table-1. Constants for Equation 54. 

 

Constant Value 

A 0.00361707 

B 0.646008952 

C -0.00058982 

     

The b value obtained from Equation (54) is 
replaced into equation (53). It is important to point out that 
when ω=1, the first pseudosteady-state regime does not 
exist; then, the late-time pseudosteady-state period is only 
seen inidicating a homogeneous behavior. The storativity 
ratio, ω, only depends on fracture storativity. This 
represents the other extreme case where there is no matrix 
contribution. 

Once the dimensionless quantities given by 
Equations (19), (22) and (23) are replaced into Equation 
(53), it yields;   
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            (54) 

 
The first pseudosteady-state regime can be used 

to estimate either the hydraulic half-fracture length, xf, or 
the well drainage area whether or not the permeability 
value is known. 
 

 

1

20.03723444
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f
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x
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    
      (55) 

 
Finally, drainage area and half-reservoir length, 

xe, can be computed using equations (29) and (30), 
respectively. 
 
2.2.3. Late-time pseudosteady-state regime 

Pseudosteady-state is the last flow regime that 
can be seen in a test run long enough in the systems we are 
dealing with. This is recognized by a unit-slope straight 
line. It is important to remark that in transient-pressure 
analysis for the dual-porosity pseudosteady model, this 
behavior is independent of the flow capacity ratio, λ, and 
the storativity ratio, ω; see Figures-5 and 6; however, the 
behavior of the late pseudosteady-state regime is particular 
for different dimensionless length values (yD= 0.35, 0.5, 
075 and 1), as shown in Figure-6. 

For this reason the determination of the 
governing equation for the late pseudosteady period 
requires a log-log plot of tD*PD’ or tD*m(P)D’  versus tDA 
using a constant parameter of flow-capacity ratio and  
storativity ratio (λ and ω = constant)  and different 
dimensionless length values (yD= 0.35, 0.5, 075 and 1), as 
shown in Figure-7. In each case, a uniform behavior was 
found by dividing the dimensionless time by the 
dimensionless length of the stimulated reservoir volume 
for each case, respectively.  
 

2
D

DA
D

t
t

y


                                                            (56) 
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Figure-7. Effect of the variation of the dimensionless 
length on the pseudosteady-state period for the late 
pseudosteady-state period in the dual-porosity 
pseudosteady model with constant flow capacity ratio, λ, 
and constant storativity ratio, ω. 
 

Then, it is possible to write a general 
dimensionless pressure or pseudopressure derivative 
expression for the pseudosteady-state period, as follows, 
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                               (57) 

 
Once the dimensionless terms given by Equations 

(19), (22) and (23) are replaced in Equation (57), an 
expression for the determination of the half- fracture 
length, xf, is obtained, 
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Figure-8. Effect of the variation of the dimensionless 
length on the late pseudosteady-state period for the dual-
porosity pseudosteady model with constant flow capacity 

ratio, λ and constant storativity ratio, ω. 
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Notice that xf can be solved from Equations (55) 

and (58) whether or not the permeability value is known. 
For this reason is possible calculate the distance y-
coordinate. 
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2.2.4. Dimensionless storativity, ω, ratio and flow  
          capacity ratio, λ 

The calculation of the flow capacity ratio, λ, and 
storativity ratio, ω, use the transition period observed in a 
log-log plot of the dimensionless pressure derivative 
versus dimensionless time which is characterized by a 
trough and permits defining correlations to estimate the 
above-mentioned parameters. 

The maximum peak found on the pressure 
derivative was correlated to calculate, λ, this characteristic 
points were chosen since it is independent of ω as pointed 
out in Figure-9.  
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Figure-9. Effect of storativity ratio, ω, on the maximum 
point (peak) pressure derivative during the start of the 
transition period for the dual-porosity pseudosteady 

model. 
 

Using the dimensionless pressure derivative value 
at the peak during the start of transition period (tD*PD’)max 
allows obtaining: 
 

   
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max
max

* '
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D D

C
A B t P
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
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                (60) 

 
The range of application of Equation (60) is for 

1x10-5 ≤ λ < 1. That applies to extreme cases. Constants A 
through C are given in Table-2. 
 

Table-2. Constants for Equation (60). 
 

Constant Value 

A -0.22892364 

B 1.693500511 

C 0.004208008 

 
The minimum point (trough) of the pressure 

derivative, (tD *PD’) min, is used to evaluate the storativity 
ratio, ω. This point, however, is affected by λ, then, a 
correct equation for ω computation should include, so that: 
 

   3min min( * ') * ( * ') *D D D DA B t P C t P       (61) 
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Constants A through C are given in Table-3. 
 

Table-3. Constants for Equation (61). 
 

Constant Value 

A -0.00674835 

B 0.090506793 

C 0.205670929 
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Figura-10. Absence of the trough when ω > 0.1 in the 
dual- porosity pseudosteady model, λ constant and yD=xD. 

 
The range of application of Equation (61) is 1x10-

3 ≤ ω ≤ 0.1. This range applies when the transition period 
is evident in the pressure derivative vs. time log-log 
because for ω values greater than 0.1, see Figure-10, the 
minimum point (trough) is not seen which prevents 
finding a characteristic point to develop an expression in 
these cases. It is important to clarify that the above 
developed equations were obtained considering yD=xD=1. 
 
2.3. TDS formulation for transient dual-porosity model 
 
2.3.1 Initial flow regime 

This is presented for all values of the flow 
capacity ratio, λ, and the storativity ratio, ω defined by 
Equations (16) and (17), respectively, during the bilinear 
flow regime on the pressure derivative curve as shown in 
Figures (10) and (11). This means that the initial flow is 
independent of the λ and ω values. 
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Figure-11. Effect of the flow capacity ratio, λ, on the 
bilinear flow regime for the transient dual-porosity 

model, with ω = 0.1. 
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Figure-12. Effect of the storativity ratio, ω, on the bilinear 
flow regiem for transient dual-porosity model, with  

λ = 0.5. 
 

The bilinear flow regime also takes place at about 
the same period of time for the different yD values as 
shown in Figure-13. Therefore, its behavior does not 
depend upon neither the variation of the dimensionless 
reservoir length, ye, nor the λ and ω parameters. 
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Figure-13. Effect of the dimensionless reservoir length, 
yD, variation on the bilinear flow regime for the transient 

dual-porosity model, with constant values of λ and ω. 
 

Then, at early time the flow is governed by the 
following equation: 
 

 * ' 0.2052D D Dt P t                                              (61) 

 
Once the dimensionless quantities given by 

Equations (19), (22) and (23) are replaced into Equation 
61, it yields;   
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Equation (62) allows solving for the inner-

reservoir permeability as follows;  
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Notice that the hydraulic half-fracture length, xf, 
can also be solved from Equation (63), 
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                (64) 

 
2.3.2. Pseudosteady-state period  

This is recognized by a unit-slope straight line on 
the pressure derivative curve. It is important to note that, 
contrary to the dual-porosity pseudosteady-state model, 
the transient model has only one pseudosteady-state period 
since this models assumes that kI = kf, therefore, the first 
pseudosteady-sate period is absent. Additionally, for this 
model, the pressure transient behavior is not fully 
independent of both the flow capacity ratio, λ, and 
storativity ratio, ω, since there exists a restricction in the 
uniformity ranges of the model showing a variation of the 
intersection point, b, as a function of ω for λ values greater 
than 0.5 or for the contrary case where the intersection 
point, b, is a function of λ for ω values greater than 0.5 as 
observed in Figure-14. In other words, the developed 
equation for pseudosteady state in restricted to ω and λ > 
0.5. However, the uniformity is kept for the remaining 
values of flow-capacity-, λ, and storativity-, ω, values. 
This becomes more evident at the beginning of the 
pseudosteady-state period as shown in Figures-15 and 16.  

The behavior of the late pseudosteady-state 
period is particular for different dimensionless reservoir 
length values (yD = 0.35, 0.5, 075 and 1), as shown in 
Figures-17. 

As for the pseudosteady-state model, the 
determination of the governing equation for the late 
pseudosteady period requires a log-log plot of tD*PD’ or 
tD*(mP) D’ versus tDA using a constant parameter of flow 
capacity ratio and storativity ratio (λ and ω constant) and 
different dimensionless reservoir length values (yD= 0.35, 
0.5, 075 and 1), as shown in Figure-18.  
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Figure-14. Effect of the storativity ratio, ω, on the 
pseudosteady-state regime for the transient dual-porosity 

model, with constant flow capacity ratio, λ = 0.5. 
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Figure-15. Effect of the storativity ratio, ω, on the 
pseudosteady-state period for the transient dual-porosity 

model, with constant flow capacity ratio (λ = 1x10-4). 
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Figure-16. Effect of the flow capacity ratio, λ, on the 
bilinear flow regime for the transient dual-porosity 

model, with constant storativity ratio (ω = 0.1). 
 

In each case, a uniform behavior was found by 
dividing the dimensionless time by the dimensionless 
length of the stimulated reservoir volume for each 
particular case, respectively. 
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Figure-17. Effect of the dimensionless reservoir length 
variation, yD, on the bilinear flow regime for the transient 

dual-porosity model, with constant λ and ω. 
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Figure-18. Effect of the dimensionless reservoir length 
variation on the pseudosteady-state regime for the 
pseudosteady-state period for the dual-porosity transient 
model, with constant flow capacity ratio, λ, and constant 
storativity ratio, ω. 
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Then, it is possible to write a general 

dimensionless pressure or pseudopressure derivative 
expression for the pseudosteady-state period, as follows, 
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After the dimensionless terms given by Equations 

(19), (22), (23) and (65) are replaced in Equation 66, an 
expression for the determination of the half- fracture 
length, xf, is obtained, 
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Notice that the hydraulic-fracture half-length, xf, 

can be solved from Equation (59), since Equation (67) 
makes possible the calculation of the distance y-
coordinate. 
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4. EXAMPLES 

Two synthetic examples are worked out for the 
applicability of the above developed equations, one for 
each model. Table-4 provides relevant information of the 
reservoir, well and fluid properties used for the dual- 
porosity pseudosteady-state model.  
 
 
 
 
 
 

 
Table-4. Relevant information for example of the dual-

porosity pseudosteady model. 
 

Parameter Value Parameter Value 

h (ft) 200 kf, md 1x104 

rw (ft) 0.3 kI, md 1x10-2 

μO (cp) 2.2 ko, md 2.0x10-3 

βO (bbl/STB) 1.08 qf (bbl/day) 2500 

Ω 0.0052 λ 0.0083 

x (ft) 1325 y (ft) 1325 

ϕf 0.45 ctf (1/psi) 3x10-1 

ϕI 0.12 ctI (1/psi) 1x10-4 

ϕO 0.1 ctO (1/psi) 3x10-4 

xf  (ft) 1325 wf (ft) 0.01 

ηfD 88.9 ηoD 8 x10-2 

 
For the case under consideration the pressure 

drop and its derivative against time are reported in 
Figures-19 and 20 with the purpose of determining the 
inner reservoir permeability or the half-fracture length 
depending upon the model type,  half-fracture length and 
reservoir length, which will be obtained by using the 
equations developed in this work. The other permeability 
values could be estimated using the expressions provided 
by Brown et al. (2011) according to the diffusivity ratio. 
The computations will be outlined as follows.  
 
4.1. Example-1. Pseudosteady model 

Considerations given by Equations 35 through 37 
should be taken into account in this model. The 
information provided in Table-4 and Figure-19 is useful 
for the estimation of the inner reservoir permeability, kI, 
the reservoir length and half-fracture length. 
 

Solution. As expected for this example, linear 
flow is observed at early times followed by the first 
pseudosteady-state period taking place before the 
transition period (trough). Finally, the late pseudosteady-
state period is observed. The following information was 
read from Figure-19.  
 
tL = 2636.4334 hr     
[t*P’]L = 7.5305x104 psi 
tqPSS = 8.4981x105 hr     
[t*P’]qPSS = 2.8389x106 psi 
tPSS = 1.7508x109 hr     
[t*P’]PSS = 6.5267x107 psi 
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t         = 1.751 X10      hrPSS
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+4

(t *P')       = 2.9465 X10    psiMAX
+7

(t *P')        = 6.4425 X10     psiMIN
+6

 
 

Figure-19. Log-log plot of the pressure and pressure 
derivative vs. time for the dual-porosity pseudosteady 

model synthetic example. 
 

It is also required to read the parameters during 
the transition period which are useful for estimating  and 
. 
 
[t*P’]max = 2.9465x107 psi 
[t*P’] min = 6.4425x106 psi 
 

It is recommended to use the unit-slope 
pseudosteady state periods to estimate xf without needing 
the inner reservoir permeability value which is carried out 
by using Equation (58) to provide xf = 1324.97 ft. An xe 

value of 2649.94 ft is found with Equation (30). Now, by 
taking a glance to Equation (55), which applies on the late 
time pseudosteady-state period, requires the value of b, 
which resulted to be 144.22 by using Equation (54). 
Applying this value into Equation (55) gives an xf value of 
1344.76 ft and xe 2689.54 ft. The last value is the one 
recommended for the reservoir area/length.  

The estimation of kI uses the initial time period 
which is dominated by linear flow regime (half slope). 
Then, the use of Equation (47) provides a value of 0.013 
md and Equation (48) gives an xf value of 1332.18 ft.   

Finally, application of Equations (60) and (61) 
allows for the estimation of the λ and ω naturally-fractured 
parameters. For such purpose the peak and trough pressure 
derivative values have to be converted to dimensionless 
form. This is performed by using Equation (19) which 
provides 70.260(max) and 15.363(trough), respectively. 
Then, Equations 60 and 61 allow obtaining values of 
0.0084 and 0.0054 for λ and ω, respectively.  
 
4.2. Example-2. Transient model 

It is required to find permeability, reservoir 
length and half-fracture length from the data reported in 
Figure-20 and the information given in Table-5. 
 

Solution. As expected for this example, only two 
flow regimes are observed. First, linear flow regime which 
is followed by late pseudosteady-state period. The 
naturally-fractured typical transition period is absent. The 
below parameters were read from Figure-20; 

Table-5. Relevant information for the transient model of 
dual- porosity. 

 

Parameter Value Parameter Value 

h (ft) 200 kf, md 1x104 

rw (ft) 0.3 kI, md 1x10-2 

μO (cp) 2.2 ko, md 2.0x10-3 

BO (bbl/STB) 1.08 qf (bbl/day) 2500 

Ω 0.0052 λ 0.0083 

x (ft) 725 y (ft) 350 

ϕf 0.45 ctf (1/psi) 3x10-1 

ϕI 0.12 ctI (1/psi) 1x10-4 

ϕO 0.1 ctO (1/psi) 3x10-4 

xf  (ft) 725 wf (ft) 0.01 

ηfD 88.9 ηoD 8 x10-2 
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t, hr

(t *P')        = 6.503 X10     psiPSS
+4

(t *P')     = 2.451 X10     psiBL
+8

 t     = 19101.89 hr    BL

 t        = 9.656 hr    PSS

 
 

Figure-20. Log-log plot of the pressure and pressure 
derivative vs. time for transient dual-porosity model 

synthetic example. 
 
tL = 2636.4334 hr     
[t* (P)’]BL = 7.5305x104 psi 
tPSS = 1.7508x109 hr     
[t*(P)’]PSS = 6.5267x107 psi 
 

It is recommended as a methodic procedure to use 
Equation (63) which applies on the late pseudosteady-state 
period to obtain an xf value de 730.6 ft. A value of xe equal 
to 1461.2 ft is found with Equation (30). Also, the 
pseudosteady-state period is used to estimate the reservoir 
distance in the y direction, Equation (68), which resulted 
to be 352.7 ft. 

Now, Equation (63) is used to find a kI value of 
0.0103 md and an xf of 754.98 ft is estimated with 
Equation 64. 
 
5. CONCLUSIONS 
a) New expressions for the interpretation of pressure-

transient tests in shale formations using both transient 
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and pseudosteady-state models are obtained by using 
characteristic points found on the pressure and 
pressure derivative versus time log-log plot. The 
equations were successfully tested with simulated 
examples so half-fracture length, inner-reservoir 
permeability and reservoir dimensions were found 
with a very good agreement with the input data. This 
study did not consider the variations of the diffusivity 
parameters ηfD and ηoD. 

b) Contrary to the transient model, the pseudosteady state 
dual-porosity model displays the transition period 
(trough) characteristic of naturally-fractured 
formations. Besides, this model displays a unit-slope 
pseudosteady-state period called here as “First 
pseudosteady state”. The transient model has no 
transition period and the influence of  and  is 
evident when this parameters are greater than 0.5. 
Then, it is recommended to analyze the behavior of 
the ranges of  and  to find expressions to allow 
their estimations. 

c) The models were used assuming square reservoir 
geometry. However, the expressions for the late 
pseudosteady-state period were corrected for 
rectangular geometries.    
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APPENDIX- A. GOVERNING EQUATIONS FOR 
GAS FLOW DUAL-POROSITY PSEUDOSTEADY 
MODEL 
 
A.1. Initial flow 
 
 ω ≥ 0.1   

The initial flow is characterized by a typical 0.25-
slope line on the pressure derivative curve, the behavior is 
given by: 
 

 

0.25

4
*( ) ' 0.4159

1
D

D D

t
t mP 



 
 
  

               (A.1)                     

 
Once the dimensionless terms given by Equations 

(19), (22) and (23) are plugged into Equation A.1 and 
solving for the inner reservoir permeability, it yields, 
 

   

1
0.25 0.75

2

237.097

(1 ) * ( ) '
f

I
t fI

q T t
k

h t mP c x  

  
        

               (A.2)                     

 

 
From the above equation it is possible to find the 

value of the hydraulic half- fracture length, xf: 
  



                                        VOL. 9, NO. 12, DECEMBER 2014                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
2662

   
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0.75
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(1 ) * ( ) '
f

f
I t I

q T t
x

k h t mP c  

  
        

             (A.3)     

 ≤ ω < 0.1 
 

The initial flow characterized by a typical 0.33-slope 
line on the pressure derivative curve, the behavior is given 
by: 
 

0.33*( ) ' 0.87847D D Dt mP t                              (A.4)                                                                                                     

 
Once the dimensionless quantities expressed by 

Equations (19), (22) and (23) are replaced into Equation 
(A.4), the permeability of the inner reservoir; can be 
solved for: 
 

   

1
0.33 0.67

2

259.0318

* ( ) '
f

I
t fI

q T t
k

h t mP c x 

  
       

               (A.5)                                                                                                     

 
From the above equation it is also possible to 

solve for the value of the half- fracture length, xf:  
 

   

1
0.33 0.66

0.67

259.0318

* ( ) '
f

f
I t I

q T t
x

k h t mP c 

  
       

                      (A.6)  

 0 < ω < 0.01  
 

The initial flow is characterized by a typical 0.5-slope 
line on the pressure derivative curve which behavior is 
governed by: 
 

*( ) ' 5.35D D Dt mP t                                            (A.7)                                                                                                     

 
Once the dimensionless terms given by Equations 

(34), (35) and (36) are plugged into Equation (A.7) and 
solving for the inner reservoir permeability; 
 

   

20.5
388.69

* ( ) '
f

I
f t I

q T t
k

h t mP x c 

  
       

                             (A.8)                                                                                                     

 
Also, from the above equation the half-fracture 

length, xf, can be solved for; 
 

   

0.5
388.66

* ( ) '
f

f
t II

q T t
x

h t mP c k 

  
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                              (A.9)                                                                  

 
A.2. Second flow regime or first pseudosteady state 

The general equation for the pseudosteady state 
with unit-slope line is: 
 

*( ) 'D D Dt mP b t                      (A.10)    

 

Since the displacement along the time axis is a 
function of the storativity ratio, ω, is possible to develop 
an expression to obtain b  as a function of it.  
 

10.5( )b A B C 


                                               (A.11) 

 
Constants A through C are given in Table-6. 
 

Table-6. Constants for Equation (A.11). 
 

Constant Value 

A 0.00361707 

B 0.646008952 

C -0.00058982 

     
The range of application of Equation (A.11) goes 

for 0 ≤ ω < 1. The first pseudosteady-state regime can be 
used for the computaion of, xf, 
 

 

1

20.3755

( ) *( ) '
f

f
t I

b q T t
x

h c t P 

  
       

                           (A.12) 

 
A.3. Pseudosteady-state regime 

Once the dimensionless terms given by Equations 
(19), (22), (23) and (65) are replaced in Equation (57), an 
expression for the determination of of the hydraulic half- 
fracture length, xf, is obtained, 

   
0.5867

* ( ) '
f PSS

f
I t I PSS

T q t
x

h c y t mP 



                                         (A.13) 

 
A.4. Dimensionless storativity (ω) ratio and flow- 
        capacity ratio (λ) 

The calculation of the parameters flow-capacity 
ratio (λ) and storativity ratio (ω) is the same for goberning 
expressions for oil model.  
 
APPENDIX- B. GOVERNING EQUATIONS FOR 
GAS FLOW TRANSIENT DUAL-POROSITY 
MODEL 
 
B.1. Initial Flow 
 The initial flow characterized by a 0.25-slope line 
on the pressure derivative curve is governed by; 
 

 * ' 0.2052D D Dt P t                                (B.1)                     

 
After replacing  the dimensionless terms provided 

by Equations (19), (22) and (23) in Equation B.1 and 
solving for the of the inner reservoir permeability, we 
obtain: 
 

   

1
0.25 0.75

2
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From the above equation it is possible to find the 

value of the hydraulic half- fracture length, xf:  
 

   
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0.75
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* ( ) '
f

f
I t I

q T t
x

k h t mP c 
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                          (B.3)  

 
B.2. Pseudosteady-state regime                                                                 

After plugging the dimensionless terms given by 
Equations (19), (22), (23) and (65) in Equation (57), an 
expression for the determination of xf is obtained, 
 

   
0.5819

* ( ) '
f PSS

f
I t I PSS

T q t
x

h c y t mP 
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APPENDIX- C. GOVERNING EQUATIONS FOR 
ASYMPTOTIC SOLUTIONS FOR PRESSURE 
AND DERIVATIVE: PSEUDOSTEADY 
DUAL-POROSITY MODEL 
 
C.1. Early time 

The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 1. 
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For pressure; 
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C.2 Intermediate time 

The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 0 and -∞ respectibility. 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0 and -∞ respectibility. 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0 and -∞ respectibility. 
 

 * ' 0D Dt P                                                                                        (C.17) 

 

 * ( ) ' 0D Dt m P                                                                                        (C.18) 

 
For pressure, 
 

1

2 3wD c
FD

P s
C

  



                              (C.19) 

 
If sc=0 



                                        VOL. 9, NO. 12, DECEMBER 2014                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2014 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
2664

221.796 1

3

f o o
I

F FI

I F

q B
k

k wh P
k x

  


 
   

  
 
 

             (C.20) 

 

2236.814 1

( ) 3

f
I

F FI

I F

q T
k

k wh m P
k x

 


 
   

  
 
 

             (C.21) 

 
The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.25. 
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For pressure, 
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If sc=0 
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 The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is is (1/4). 
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For pressure, 
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If sc=0 
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 The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 0.5. 
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For pressure, 
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If sc=0 and CFD → ∞, 
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 The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 0.5. 
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For pressure, 
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If sc=0 and CFD → ∞ 
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C.3 Late time 

The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 1. 
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For pressure, 
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APPENDIX D. GOVERNING EQUATIONS FOR 
ASYMPTOTIC SOLUTIONS FOR PRESSURE 
AND DERIVATIVE: TRANSIENT DUAL-
POROSITY MODEL 
 
D.1 Early time 

The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is is 1. 
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D.2 Intermediate time 

The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 1/8. 
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For pressure, 
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If sc=0 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.25. 
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If sc=0 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.25. 
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If sc=0, 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.25, and if sc 0 and CfD ∞ 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.5, and if sc 0 and CfD ∞ 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.5, 
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The slope of straight line on log PD vs. log tD and 

log [tD*PD’] vs. log tD is 0.5, and if sc 0 and CfD ∞ 
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D.3. Late time 

The slope of straight line on log PD vs. log tD and 
log [tD*PD’] vs. log tD is 1.  
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Nomenclature 
A Drainage area, ft2 
Bo Volumetric factor,  bbl/STB 
ct System total compressibility, 1/psi 
ctO Total compressibility of the inner reservoir,1/psi 
ctI Total compressibility of the outer reservoir, 1/psi 
ctf Total hydraulic compressibility, 1/psi 
c Wellbore-storage coeffi cient, bbl/psi 

CD Dimensionless wellbore-storage coefficient 
h Reservoir thickness, ft 
kI Permeability of the inner reservoir, md 
ko Permeability of the outer reservoir, md 
kf Hydraulic-fracture permeability, md 
nf Number of main fracture planes 
Pi Initial reservoir Pressure, psi 
P Laplace-space pressure 

Pwf Bottomhole flowing pressure, psi 
q Laplace-space flow rate 
q production rate, STB/D, Mscf/D 
rw wellbore radius, ft 
t Time, hr 
tD Dimensionless time 

t*m(P)’ Pseudopressure derivative, psi2/cp 
t*P’ Pressure derivative, psi 

T Absolute Temperature, °R 
wf Hydraulic-fracture width, ft 
u Laplace space variable 
xe effective reservoir width,  ft 
xf Hydraulic half-fracture length, ft 

xeD
 Dimensionless reservoir size in x-direction. 

yeD Dimensionless reservoir size in y-direction. 
αf Hydraulic-fracture parameter used in trilinear-flow model 
αO Outer-reservoir parameter used in trilinear-flow model 
βF hydraulic-fracture parameter used in trilinear-flow model 
βO Outer-reservoir parameter used in trilinear-flow model 
ηf Hydraulic-fracture diffusivity, ft2/hr 
ηI Inner-reservoir diffusivity, ft2/hr 
ηo Outer-reservoir diffusivity, ft2/hr 
ηfD Hydraulic-fracture-diffusivity ratio 
ηoD Outer-reservoir diffusivity ratio 
λ Flow-capacity ratio 
ω Storativity ratio 

 

Greeks 
 Porosity, fraction 
 Viscosity, cp 

 

Suffices 
o Crudo 
i Initial 
D Dimensionless 

DA Dimensionless based on drainage area 
BL Bilinear 
L Linear 

PSS Pseudosteady state 
sc Standard conditions 
TL Trilinear 

qPSS First pseudosteady state regime

 


