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ABSTRACT 

Simple algebraic test procedures are presented to analyze aperiodic as well as relative stability in a given stable 

linear time-invariant discrete system represented in the form of its characteristics equation 𝑓(𝑍)  = 0. The proposed 

schemes are applied to various illustrations. 
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INTRODUCTION 

For a given absolutely stable linear time-invariant 

discrete system represented by its characteristics 

equation𝑓 (𝑍)  =  0, with all the roots having z < 1, the 

aperiodic and relative stability can be obtained using either 

controller or compensator in the given system. In general, 

in instrumentation systems aperiodic stability is important 

[4] and relative stability is used in the design of two-

dimensional digital filters [5, 6]. To infer the above 

situations, simple test procedures are suggested below. 

 

LITERATURE SURVEY 

Stability criterion for a continuous-time 

polynomial was established long time ago. These results 

were generalized for Hurwitz stability robustness property 

recently where a quick qualitative measure of stability 

robustness of more general types of polynomials (polyopic 

and multi-linear) than those that can be handled by 

Khqritonov theorems (interval polynomials) can be easily 

obtained. Similar results for discrete-time polynomials are 

even more desirable, for in this case even for the simplest 

case of interval polynomials; one has to do the 

computationally extensive edge polynomial stability 

checks. Nour-Eldin introduced Markov-like parameters for 

discrete-time case and established a stability criterion 

based on these parameters. This criterion was simplified 

first and then further in attributed. 

A frequency-domain graphical (hodograph) 

approach was presented for left-sector (relative) stability 

robustness analysis of a given real or complex nominal 

polynomial was discussed by Katbab and Jury [8] which 

have to be tested for having interlacing real zero property. 

The Schur testing of the required edges of the cube was 

performed using three different methods, namely, the 

critical edge polynomial, edge stability as an eigen value 

problem, and edge stability using co-linearity conditions 

and comparison of these three methods was discussed by 

Kraus Mansour and Jury [9]. Katbab and Jury [6] in their 

Generalization to multidimensional digital filters with real 

and complex coefficients proved that the Applications of 

the results may be found in robust stability analysis of 

digital signal processing and control theory. Katbab and et 

al. [7] investigated on Markov-like parameters and  

defined for a discrete-time polynomial and proved that 

these  results are generalized for Schur invariance 

property, and the maximum allowable variation in the 

associated parameters are obtained via evaluating some 

comer points with the  results gives a quick qualitative 

measure of stability robustness of discrete-time 

polynomials. Karivaratha Rajan and Reddy [5] had 

corroborated procedures to test discrete scattering Hurwitz 

polynomials and simplified the complexity of the test 

procedure. The number of polynomials required to check 

robust stability is one, two, and three, respectively, instead 

of four. Furthermore, it is shown that for n 2 6, the number 

of polynomials for robust stability checking is necessarily 

four, thus further simplification was a proceeding given by 

Anderson and et al. [1]. Jury [4] proposed a note of 

aperiodicity of linear discrete system and corrected in 

corollary by Szaraniec and deals with both distinct and 

multiple roots in the interval. 

Byrne [2] had revealed that Fitts’ third-order 

counter example to Aizerman’s conjecture is false for 

some values were proved mathematically. A simplified 

version of the conditions for the analytical absolute 

stability test was introduced by Jury [3] and revealed that 

the absolute stability test polynomial have no positive real 

zero. Fuller [10] proposed a methodology to check 

whether a control system is having the dead-beat condition 

(Aperiodic stability analysis) and revealed that the 

characteristic equations with real coefficients can be 

transformed into characteristic equations with complex 

coefficients.  

 

APERIODIC STABILITY ANALYSIS 

If the characteristics roots of  𝑓(𝑍)  =  0 lie in the 

sector region 0  𝑍 <  1 and all are simple (distinct), then 

the system becomes aperiodically stable since all the roots 

are positive then the system characteristic equation can be 

written as 

𝐹 (𝑧)  =  (𝑧 − 𝑥1) (𝑧 − 𝑥2) . . . .  (𝑧 − 𝑥𝑛)  =  0     (1) 
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Where, 𝑥𝑖 are distinct roots of𝑓 (𝑍)  =  0. 

 

In general, the equation (1) can be arranged as 

 

𝐹 (𝑧) =     𝑍𝑛 −  (𝑥1  +  𝑥2  +   𝑥3 + . . . .  𝑥𝑛)𝑍𝑛−1 +
 (𝑥1𝑥2  +  𝑥2 𝑥3 +. . ..  )𝑍𝑛−2  −     (𝑥1𝑥2𝑥3  +
 𝑥3 𝑥4𝑥5 + . . . . )𝑍𝑛−3+ . . . . + (𝑥1𝑥2 … . 𝑥𝑛)  =  0       (2) 

From the equation (2), it is observed that the 

necessary condition for aperiodic stability, the sign of 

𝑍|𝑛−𝑘+1| must alternate; in other words the coefficients of 

𝑓 (𝑍)  =  0 should alternate in sign. 

 

The equation F (Z) is rewritten for simplicity as 

 

𝐹(𝑧) =  𝑧𝑛 − 𝑎𝑛−1𝑧𝑛−1 + 𝑎𝑛−2𝑧𝑛−2− . . . + 𝑎0 = 0    (3) 

 

with 𝑍 =  −𝑍, the coefficients of equation (3) will 

become positive in the sector region, −1 <  𝑍  0. 

To test the aperiodic stability of a given linear 

time-invariant continuous system represented in the form 

of its characteristics equation, 

 

𝐹(𝑠) = 𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + 𝑎𝑛−2𝑠𝑛−2 + ⋯ + 𝑎0 = 0    (4) 

 

Fuller [10] formulated a transformed equation of 

f(s) = 0 as 

 

𝐹(𝑠) = 𝑓(𝑠)|𝑠=𝑠2 + 𝑠
𝑑𝑓(𝑠)

𝑑𝑠
|

𝑠=𝑠2
= 0     (5) 

 

The degree of F(s) is twice of f(s) and the Routh’s 

test [1, 2] is applied for the equation (5). If the first 

column of Routh’s table does not possess any sign change, 

then the system represented by the equation (4) is 

aperiodically stable. Thus, extending Fuller’s idea, the 

following transformed equation is written for the equation 

(3) as 

 

𝐹(𝑍) = 𝑓(𝑍)|𝑍=𝑍2 + 𝑍
𝑑𝑓(𝑍)

𝑑𝑍
|

𝑧=𝑍2
= 0     (6) 

 

Thus, this transformed equation (6) can be 

handled by Routh’s test verify the sufficiency condition 

for aperiodic stability in the Z-domain. 

Thus, above proposed procedure is applied for the 

following illustrative examples. 

 

Illustrations 

 

Example-1 

Consider a stable system having 

𝐹 (𝑧)  =  𝑧2 −  1.1𝑧 +  0.3 =  0 
Since the coefficients of f(z) alternate in sign, the 

necessary condition is satisfied for this 𝑓 (𝑧) with 𝑍 = −𝑍 

the transformed equation is formed as 

𝐹 (𝑧) = (𝑧4 +  1.1𝑧2 +  0.3) +  (2𝑧3 +  1.1𝑧) =  0            
To test for sufficiency condition the Routh’s table is 

formed for 𝑓 (𝑧)  =  0. 

 

 

1 −1.1 0.3 

2 1.1 0 

0.55 0.3   

0.01 0   

0.3     

 

Since all the elements in the first column of 

Routh’s table are all positive it is assumed that the system 

is aperiodically stable, with f (z) =0. 

 

Example-2 

Let 𝑓(𝑧) =  𝑧2–  0.5𝑧 +  0.8 =  0 
with 𝑧 =  −𝑧, 𝑓(−𝑧) =  𝑧2 +  0.5𝑧 +  0.8 =  0 

The Routh table is formed 

 

1 0.5 0.8 

2 0.5 0 

0.25 0.8  

1.475

0.25
 0  

0.8   

 

Since there is a sign change in the first column of 

Routh’s table, the discrete system represented by f(z)=0 is 

not aperiodically stable. 

 

Example-3 

For a given stable system with  

𝑓 (𝑧)  =  𝑧2–  1.1𝑧 +  𝑘 =  0 
The range for K is evaluated for aperiodic 

stability with 𝑧 =  −𝑧. 

𝑓 (−𝑧)  =  𝑧2 +  1.1𝑧 +  𝑘 =  0 
 

The Routh table is formed 

 

1 1.1 𝑘 

2 1.1  

0.55 𝑘  

0.605 − 2𝑘

0.55
  

𝑘   

 From the first column of the Routh Table, for 

aperiodic stability it is formed that  
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(i)    𝑘 >  0 

(ii)    (0.605 − 2𝑘)  >  0 

 

                       (Or)  𝑘 <  0.3025 

 

Thus the range for 𝐾 is obtain as 0 <  𝑘 <  0.3025 

 

Note 

In the formulation of Routh’s table the 

coefficients of 𝑓 (𝑍)  =  0 are entered in the first row 

while the coefficients of 𝑓′ (−𝑍)  =  0 are entered in the 

second row. The remaining table is completed as per 

Routh’s table. 

 

RELATIVE STABILITY ANALYSIS 

This analysis is important in the design of 

controller as well as compensator for stabilizing the output 

response in a quick manner; this factor mainly depends on 

the location of roots within unit circle. For absolute 

stability, |𝑍𝑖| < 1 [3]. Suppose these are designed 

situations for a given linear time-invariant discrete system 

[4] [7] having the characteristics |𝑍𝑖| <  𝛼 < 1 and 

|𝑍𝑖|  <  𝛽 < 1 respectively, and if 𝛼 <  𝛽, then the first 

designed situation is relatively stable than the second one. 

This implies that the characteristics roots of the first 

designed situation are nearer to origin then that of the 

second designed situation. The above is formation can be 

easily gathered with help of the coefficients of the 

characteristics equation 𝑓(𝑍) = 0 as discussed below. 

 

Let 

𝑓1(𝑧) = 𝑧𝑛 − 𝑠1𝑧𝑛−1 + 𝑝1𝑧𝑛−2– 𝑝2𝑧𝑛−3. . . + 𝑝𝑛 =  0    (7) 

 

and 

𝑓2(𝑧) = 𝑧𝑛 − 𝑠2𝑧𝑛−1 + 𝑞1𝑧𝑛−2– 𝑞2𝑧𝑛−3. . . + 𝑞𝑛 = 0    (8) 

 

Where 

 

𝑠1 = sum of all the roots 

𝑝1= sum of product of the roots 

𝑝2= sum of product of three roots 

 . . 

 . . 

 . . 

𝑝𝑛= product of all the roots 

 

Similarly 𝑠2, 𝑞1, 𝑞2 … . 𝑞𝑛 represents the same in 

formations for the equation (8). 

 

In general if 

 

𝑠1 < 𝑠2, 𝑝1 < 𝑞1, 𝑝2 < 𝑞2 𝑎𝑛𝑑 𝑝𝑛 < 𝑞𝑛     (9) 

 

Then the first designed situation as given by the 

equation (7) is relatively stable [8] compared to the second 

situation dictated by the equation (8). In a lighter sense, 

this indicates that all the roots of f1(Z) = 0 lie in the region 

nearer to the origin of unit circle compared to the origin 

enclosed by the roots of f2(Z)=0. Thus the proposed 

procedure is simple to apply for relatively stability study 

in the z-domain as illustrated in the following examples. 

 

Illustrations 

 

Example-1 

For a given linear time-invariant discrete system, let 

𝐹1 (𝑧)  =  𝑧3–  0.6𝑧2  +  0.28𝑧 −  0.04 =  0 
 

𝐹2 (𝑧)  =  𝑧3–  0.9𝑧2  +  0.38𝑧 −  0.06 =  0 
 

0.6 < 0.9 , 0.28 < 0.38,    0.04 < 0.06 

 
Applications of the conditions given in the 

equation (9), it is inferred that the designed situation given 

by 𝑓1(𝑍) = 0is relatively stable compared to the designed 

situation shown by 𝑓2(𝑍) = 0 
 

Example-2 

Let a discrete system be designed and its three 

situations are specified as 

𝐹1(𝑧)  =  𝑧3–  0.1𝑧2  +  0.04𝑧 +  0.02 =  0 
 

𝐹2(𝑧)  =  𝑧3–  0.1𝑧2  +  0.14𝑧 +  0.04 =  0 
 

𝐹3(𝑧)  =  𝑧3–  0.2𝑧2  +  0.02𝑧 +  0.02 =  0 
 

Applying the results indicated by the equation 

(9), It is inferred that the first designed situation is 

relatively stable compares to the other two situations as 

indicated by 𝑓2(𝑍) and 𝑓3(𝑧). 

 

Example-3 

Let two all pole systems be 

𝐺1(𝑧) =
1

𝑧2 − 0.6𝑧 + 0.3
 

 

and 

𝐺2(𝑧) =
1

𝑧2 − 0.6𝑧 + 0.4
 

 

Applications of the result given by the equation 

(9) to the denominator polynomial of𝐺1(𝑧) and 𝐺2(𝑧), it is 

inferred that 𝐺1(𝑧) is relatively stable system compared to 

𝐺2(𝑧). 

 

Example-4 [11] 

For a given unstable two-dimensional digital filter 

 

𝐻(𝑧1, 𝑧2) =
1

1 − 0.95𝑧1 − 0.95𝑧2 − 0.5𝑧1𝑧2

 

The three designed situations for stabilization are given 

below: 

 

a) 𝐻1(𝑧1, 𝑧2) =
1

1−0.95𝑧1−0.55𝑧2+0.5𝑧1𝑧2
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b) 𝐻2(𝑧1, 𝑧2) =
1

1−0.55𝑧1−0.95𝑧2+0.5𝑧1𝑧2
 

c) 𝐻3(𝑧1, 𝑧2) =
1

1−0.55𝑧1−0.55𝑧2+0.5𝑧1𝑧2
 

 

 As shown in future chapter, the respective one-

dimensional equivalent systems are given below. 

 

𝐸1(𝑧) =
1

𝑧2 − 1.45𝑧 + 0.5
= 𝐸2(𝑧) 

 

𝐸3(𝑧) =
1

1 − 1.1𝑧 + 0.5
 

Application of the proposed results given in the 

equation (9), it is observed that 𝐸3(𝑧)is relatively stable 

compared to 𝐸1(𝑧) 𝑎𝑛𝑑 𝐸2(𝑧). 

 

RELATIVE STABLITY WITH NECESSARY 

CONDITION 

(a): In this section an another algebraic scheme is 

proposed for relative stability with the help of necessary 

conditions as shown in below. 

 

For the equations (7) and (8) with𝑧 = 1, 

 

𝐹1(1)  =  [1 −  𝑠1 + 𝑝1 −  𝑝2  +   𝑝3+ . . . . + 𝑝𝑛]  = 𝑇1 

 

𝐹2(1)  =  [1 −  𝑠2 +  𝑞1 − 𝑞2  +  𝑞3+ . . . . + 𝑞𝑛] = 𝑇2  

 
If, 𝑠1 < 𝑠2,  𝑝1 < 𝑞1,  𝑝2 < 𝑞2 . . . . 𝑝𝑛 < 𝑞𝑛 

 
then the value ,  𝑇1 > 𝑇2 

along with |𝑓1(−1)|  <  | 𝑓2(−1)|      (10) 

with 𝑝𝑛 < 𝑞𝑛 

 

The above results can be applied for the inference 

of relative stability in a given linear discrete system. 

 

(b): Suppose if 

 

𝑓1(𝑧) =  𝑧𝑛  +  𝑠1𝑧𝑛−1 +  𝑝1𝑧𝑛−2+. . . . + 𝑝0 =  0 

 

and 𝑓2(𝑧) =  𝑧𝑛  +  𝑠2𝑧𝑛−1 + 𝑞1𝑧𝑛−2+. . . . + 𝑞0 =  0 

                                    

𝑓1(1) = 𝑇1 

 

𝑓2(1) = 𝑇2 
then the conditions for relative stability are 

 

(i) 𝑇1 < 𝑇2 

(ii) |𝑓2(−1)|  >  | 𝑓1(−1)|                 (11) 

(iii) |𝑝𝑛|  <  |𝑞𝑛| 

 

 The results in the equations (10) and (11) are 

applied for the following illustrations. 

 

Illustrations 

 

Example-1 

 

Let 𝑓1(𝑧)  =  𝑧2–  0.4𝑧 +  0.2 =  0 

 

and 𝑓2(𝑧)  =  𝑧2–  0.6𝑧 +  0.3 =  0 

 

for 𝑧 =  1 and 𝑧 =  −1 

 

𝑓1(1) = 𝑇1 =  0.8  and  𝑓2(1) = 𝑇2  = 0.7 

 

𝑓1(−1) =  1.6 and  𝑓2(−1)  =  1.9  and 0.2 <  0.3 

 

The application of the equation (10) shows that 

𝑓1(𝑧) is relatively stable compared to the designed 

situation of the discrete system represented by𝑓2(𝑧). 

 

Example-2 

Let 𝑓1(𝑧)  =  𝑧2 + 0.4𝑧 +  0.06 =  0  

and 𝑓2(𝑧)  =  𝑧2–  0.7𝑧 +  0.12 =  0 

 

for 𝑧 = 1  and 𝑧 = −1 

 

𝑓1(1) =  1.56 = 𝑇1 and  𝑓2(1) =  1.82 = 𝑇2 

 

𝑓1(−1) =  0.56  and  𝑓2(−1)  =  1.82 and  0.06 <  0.12 

 

The application of the equation (11) shows that 

𝑓1(𝑍) is relatively stable compared to the designed 

situation of discrete system represented by 𝑓2(𝑧) = 0. 

 

CONCLUSIONS 

In this paper, the analysis of aperiodic stability of 

a given stable linear discrete system is presented with the 

help of Fuller’s equation and Routh’s table while the 

relative stability of a system under different designed 

situations is studied using proposed algebraic schemes 

which involve only inspection tests. The presented test 

procedures are simple in applications and are illustrated 

with the help of examples. 
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