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ABSTRACT 

The article suggests a modeling method and shows relations of state of a polycrystalline body under severe plastic 
deformation in temperature range outside the sphere of phase transformations, where the body constitutes heterogeneous 
medium created by two interacting components - continual medium and grain boundaries structure imbedded into this 
medium. Evolution of grain boundaries, temperature and internal energy connected with changes of stress-strain state 
inside of and at grain boundaries are regarded from the point of view of regulations of thermodynamics of irreversible 
processes. 
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INTRODUCTION 

Mechanical properties of steel and alloys to a 
large extent depend on construction of their grain structure 
formed at a stage of workpieces plastic shaping in 
hammering and presswork and subsequent thermal 
treatment. In this regard, to optimize deformation 
technological parameters and to obtain required properties 
of workpieces, it is important to model their 
microstructure. Polycristalline material microstructure 
may be modelled directly, via dynamics of dislocation 
motion and crystals plasticity, and indirectly, via relations 
based on dislocation density. Models using dislocation 
density are developed in works of Bergström [1, 2, 3] and 
so on. Direct relations require extensive computing 
resources; therefore nowadays indirect models are the ones 
that are developed to the fullest extent. In the sphere of 
polycrystalline bodies evolution phenomenological 
modelling the most popular approach is the approach 
based on Avraami’s works [4]. We know a dynamical 
recrystallization model based on a mesoscale mechanism 
(MesoScaleUnitsmodel), which gives more precise results, 
in particular for processes with repeated straining impact 
[5, 6]. The advantage of MSU-models and the same-name 
method is a combination of phenomenological approach to 
the dynamical recrystallization process, which is based on 
Avraami’s models, and physical principles considering 
grain evolution process driving force connected with 
dislocation density, and that combined provides a method 
which is more universal than Avraami’s formulas 
complex. But MSU-models, let alone Avraami’s models 
consider grain boundaries evolution, temperature and 
internal energy connected with changes of stress strain 
state inside of and at graing boundaries from the viewpoint 
of regulations of thermodynamics of irreversible 
processes, which ties these processes into a unified system 
of equations. It is evident that this determines a 
disadvantage of the mentioned models. The approach 
given in this article is an attempt to obtain such equations 
system.        

What concerns internal energy; crystalline 
ordered structure inside of grain and non-ordered structure 
at its boundaries are heterogeneous substances. 
Thermomechanical interaction of heterogeneous 
substances during deforming is studied in heterogeneous 
media mechanics. In particular, in the work [7] deformed 
medium is regarded as a 2-components model consisting 
of springing frame saturated with liquid. Medium’s 
behaviour is defined by consolidation equations describing 
thermomechanical interaction of components which have 
permanent weight. In the same way, let’s regard 
polycrystalline body as a medium with two components of 
variable mass – a continual isotropic constituent inside of 
grain and a constituent of grain boundaries. Particular 
equations describing medium’s state were obtained in an 
early work [8]. Later we will give some relations from [8] 
which are necessary for presentation of further 
conclusions.             
 
Theoretical part 

Conditions of dynamic equilibrium of the system 
of continual medium and grain boundaries constituent will 
be written in formula (1).   
 

, , 0 ,

( , , )
, 0 ,

[(1 ) ( ) ] 0,

[( ) ] 0.
i

v w
ij j ij j i i t

w m n p
ij j i t

f v f w

f w F

 



   

   

        


     
,  (1) 

 

where 0  is change of local volume due to grain 

boundaries migration;  

i
F is force of interaction between two components of the 

deformed medium;   
  is deformed medium density (taken as an invariant 

one). From now on in subindex at a variable a  we accept 

designator of the operator , j
j

a
a

х





, so for components 
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of tensor ija in space 3D  taking into account Einstein 

notation for repeated indices is denoted as: 
3

,
ij

ij j
j j

a
a

х

 
    
 . 

Unknown variable of interaction 
i

F  in (1) will 

be defined using methods of thermodynamics of 
irreversible processes. Total entropy S in medium’s 
volume   limited by size of a grain (or several grains), 

with surface A , segregates into entropy lS , changed by 

the environment via this surface, and irretrievably 
increasing entropy Si. According to Clausius–Duhem 
inequality: 

0i lS S S      .       (2) 

 
Inequality (2) transformed into a local shape at 

grain boundaries leads to the following ineqaulity:    
 

,
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Omitting derivation of the energy balance 

equation, let’s put the first law of thermodynamics for 
local volume, solving it regarding internal energyU : 
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where{ | 0 when ,    1 when }ij ij iji j i j       

is a Kronecker symbol. 
From (4) it follows that change of internal energy 

is caused by the work of external forces (summand in first 
brackets), internal friction caused by grain boundaries 
moving (second summand), and also conducted and 
delivered heat (last summand). Second equation in (4) is 
connected with change of internal energy U , caused by 
heat transport during grain boundaries migrations and 

change of mass 0,t , located at grain boundaries. 

Let’s define 
locU

T


 in (4) via Helmholtz free 

energy:
loc locF U S T  , which will be represented in 

the form of a functional ( , , , )v w
ij ijF T f  , such one 

that there is a linear combination 

(1 ) ( , ) ( , )v v w w
ij ijF f F T f F T     . In this case 

change of free energy F will be equal to:  
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where ij ij ij        are components of rate-of-strain deviator, 
1

3 ij ij    . 

Taking into account (4), (5), the inequality (3) modified to the local shape will be as follows: 
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         (6) 

 
As far as, according to (6), the following defining relations 
are true 
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and inequality ,

1
[ ] 0l l lq c w T T

T
       leads to 

implementation of heat-transfer law 
 

,l l lq T c w T       ,      (7)  

 
then correspondence (10) is performed identically, if  
 

[ (1 ) ] 0
iD i iP F f w f v      ,     (8) 

 
where DP  is a power dissipation function connected with 

expenditure of energy for structure formation caused by 
relative (over the field of velocities iw ) movement of 

grain boundaries. 
Taking into account fulfillment of inequality (8), 

we can write expanding of 
i

F in series: 
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which, considering the first member of the line when n=1, 
it follows that: 
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Free energy F is a scalar value of the invariant of 

state of rate of deformation and temperature. After finding 
values of partial derivatives of F at thermodynamic 

equilibrium point (0,0,0,0, )T  as characteristics of the 

material properties, which is equivalent to Taylor’s serial 
expansion coefficients similar to (6), we will find defining 
relations for the deformed polycrystalline medium:   
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are moduli of volume elasticity for corresponding 

constituents of the medium; 2
w
ср is an invariant 

corresponding to the deformation rate intensity which is 
average for the deformation process.   
Coefficients ,v w

т тv v from (10), describing thermophysical 

properties of the deformed medium constituents are 
defined with the help of relations  
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Power dissipation, connected with 

thermophysical restructuring, is determined by internal 
forces capacity and change of heat flow inside of volume 
and passage of heat via its surface, which follows from the 
correspondence (4) for substantial derivative of the 

internal energy U : 
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The last correspondence together with (11) and 

heat-transfer law (7) lead to a generalized equation for 
heat transfer in a polycrystalline medium:     
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We can calculate the coefficient b from the 

polycrystalline medium motion law in the form (13) after 
analyzing (12) in stationary conditions of isothermic 
restraint at grain boundaries:      
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where n  defines average direction of grain size change 
under dynamical recrystallization  
( 0 - grain is increasing, 1 - grain is decreasing)n n  .  

Taking into account (13) and the fact that main 
volume of the deformed continuous medium falls on the 
continual constituent, and the structure formation 
coefficient f  is of quantum nature, heat-transfer 

equation equals to the system:   
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We will find the coefficient of heat migration of 

grain boundaries w
т  using the phenomenological 

approach and supposing that grain size is proportional to 
the function describing diffusion:    
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where Q is a self-diffusion activation energy, R  is a 

universal gas constant, 
нT , 1a  are constant coefficients. 

Let’s present the second equation in (14) in the 
differential form  
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replace differentials with  finite increments, and after 
transformations we will obtain the system of equations 
describing the process of dynamical recrystallization during 
grain size change in the direction of axis i from 0d  to id . 
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found experimentally with the help of dynamical 
recrystallization diagrams; ,Т Т  are current temperature 

and some reference temperature found experimentally.   
To define coefficients of connection between 

linkage parameters of movement of polycrystalline 
medium and its microstructure let’s state functional 
relations between field parameters describing grain 
boundaries migration and microstructure geometrical 
parameters which can be found by means of optical 
metallography. Let’s put 12 coefficients of connection 

with the form ( )i iw v   :   i
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Let’s introduce some functions ,i ij  , such that 
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If, for example, we put 0ij  , which is equal 

to 0ji  , then we will obtain: 
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Physical meaning of the value i  is illustrated 

by Figure-1, where 
ii

if  is deformation w
ii  rate step due 

to grain division after reaching critical value ( )w
ii кр .  

Approximating (fitting) curve is defined by the relation: 
 

0
w v
ii i iif k   ,      (20) 

 
where 

ik  is a coefficient of grain boundaries structure 

sensitivity towards deformation intensity. Let’s define 
coefficients ik  in such a way that they could be found via 

grain size change in three projections.   
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Figure-1. Dependence of w
ii on v

ii
 
considering 

recrystallization: solid line - recrystallization true 
curve; dashed line - approximating relation. 
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ll pp llv v
mm ll mm pp

k k

k k k

k k

k k


 



 


 

 
 

  
 
 

  


 

 (21) 

 
For plane deformation state: 
 

 0 0 1 sgn( )w v v v
ii i ii ij iif k f k              (22) 

 

The condition of constancy of volume of the 

grain with sizes along the axes , ,i j kd d d : 3
ср i j kd d d d  

and dynamical recrystallization equation in the form (16) 
lead to the relation:   
 

32 2

, ,

1 1
1 1 1 1

w w

T Tw w
l i j kср ll

f f

f f f f
 

 

 


                           
 ,   (23) 

 

where 0( ) (1 ) ( )w w
T ср mf f Т Т         

In total we have 7 unknown values (6 coefficients 
m l
llk  and 1 coefficient 0f ). They are connected by 4 

relations: 3 equations (21) and sizes connection equation 
(23). Therefore, to define unknown coefficients we need 3 
orthogonal planes of microstructure shear, which pass 
through unit vectors i, j, k. 
 As a result, we found linear functional relations 

connecting deformation rates w
ii  of grain boundaries and 

v
ii  continual constituents of the deformed polycrystalline 

medium via coefficients m l
llk  , defined according to 

microstructure parameters.  

Let’s analyze 3 coefficients iif , obtained from 

the dynamical recrystallization equation, describing 

connection between , ,w
ij i iiw f    (correlations (18)-(22)) 

and also describing correlations (10). As a result, after 
substituting these relations into (3) we obtain 6 equations 
of deformed polycrystalline medium motion in the form 
(24):   

2
, , ,(1 ) 0,

i

v v v v
i i т ti i tv T F f v            �  

 

2
, , , , , 0 ,( ) (( ) ) ( ) 0

3 i

w
w w w w

ii i ii i i ii i i ij i i т ti ii i tf v f v f v T F f f v
      

           � ,  (24) 

 

where ,

( )i i
ii i ii

i

x
f f

v


  and according to (18), (20) 

0 1
v
ii

i i
ii i

f
k

f v


 
  
 


. 

With some approximation we can accept that 
average pressure is equal for both constituents of the 

medium , , ,
v w
i i i    , then (24) will have the following 

form: 
 

2
, , ,(1 ) 0,

i

v v v v
i i т ti i tv T F f v            �  

 

2
0 , , , 0 ,

1
( ) ( ) 0

3 i

w w w
ii i i i ij т ti i ii i tf v f k T F f f v         

          
 

�
  (25) 

 
Thus, 6 equations (25) connect 3 unknown 

constituents of the medium flow rate iv , 3 unknown 

values of hydrostatic pressure gradient ,i , 3 constituents 

of structure formation internal force 

,

2

( )
[ (1 )] ,  ( 1)

( )i

tn
i ii i i w

ii i

c c T
F b f f f v b

f f v


 





 
    


 

and, if ignoring heat passage from local volume for high 
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rates of deformation, law of transformation of plastic 

deformation energy into heat energy , 2
v v

t TT k  � . 

 
Calculations and experimental part 

The most difficult task in finding invariables 
appearing in the motion equations (25) is to find a 

coefficient of shear modulus for grain boundaries
w . As 

an example let’s take hot deformation of titanium alloy 

BT9. Value 
w for BT9 is estimated on the basis of 

coefficients found according to the dynamical 
recrystallization model in the form (16) [9]. The 
dynamical recrystallization model according to (16) is 
visually presented in Figure-2. Models were obtained 

under a priori accepted values of coefficients n=1, 0a = 

0.001. Calculated coefficients and statistics corresponding 
to them are shown in Table-1.   
 

 
 

Figure-2. Dynamical recrystallization surface (mathematic 
model visualization) and experimentally obtained points 

for hot slump of titanium alloy BT9. 
 

Table-1. Design coefficients of the dynamical recrystallization mathematic model. 
 

Titanium alloy ВТ9. 3 1a  , 

5 30,9 10 ,  =38,7 10T

Q

R   
K, initial grain 

size - 0d =20 µm. The model’s confidence level - 90 % 

1a  0.141 0.00097 145.541 

2a  0.565 0.09272 6.095 

Т  1191.465 16.4696 55.767 

 

Value of shear modulus 
v  for the continual 

constituent can be found in reference data or in 
experimental data. In our case deformation proceeds under 
high temperatures T0=1223K, when yield limit is 
determined by temperature factor, in this case it is 

3
v s  =18.3MPa [10]. 

Using value of
v , and also Hall-Petch law [11-

13], let’s estimate the shear modulus 
w  for the grain 

boundaries constituent.   
Plastic deformation local power is estimated via 

expression 2 2 2 2(1 ) v v w wf f       , and usually during 

the process of deformation, under conditions of all-around 
non-uniform compression, grain is atomized. Even during 
large deformation, grain is atomized to a certain limit 
under permanent increase of plastic deformation power; 
therefore, for local volume at grain boundaries the 
following inequality is true:      
 

2 2 2 2(1 )w v v w w wf f        or 

2 2
2 2(1 ) ( ) ( )w v v w w wf f          , from which we 

obtain an upper estimate:   
 

2

2

2

1 ( )

( , )

w v
w v i

w w
i ii

f v

f v f




 
 

  
  

 




                 (24) 

 

Let’s estimate the ratio 2

2

v

w






 in (25). For this purpose, to 

simplify computations, let’s take a plastically deformed 

state for which 3 11 220,v      , and besides, according 

to (22) the following is performed:  
 

0
w v
ij i ijf k   ,      (25) 

 

where  1 21 ,  1k k k k      

Accordingly, for intensities of deformation rates 
of continual and grain boundaries constituents we have the 
following relations:  
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 1/22 2
2 11 12

2
( ) 2( )

3
v v v      ,    (26) 

 

 

 

1/22 2 2 2 2 2 2
2 0 1 2 11 1 2 11 1 2 12

1/2
2 2 2 2

0 11 11 12 0 2

2
2 ( ) 2( )( ) 6( )( )

3

2
4( ) 2(1 ) ( ) 6( ) 2  

3

w v v v

v v v v

f k k k k k k

f k f

        

   

     

      

   

   

 (27) 

 

Then the upper estimate (24) of shear modulus 
w in this case will be as follows: 

 

2
0

1

2 ( )

w
w v

w

f

f f




  


      (28) 

 
Sizes of an  -phase of a grain, obtained under 

high-speed extrusion of workpieces of blades made from 
titanium alloy BT9 [14] (Table-2):  

 
Table-2. Parameters of microstructure of titanium alloy ВТ9. 

 

Coefficient wf  Coefficient 0f  
Size of  -phase in 

initial grain, µm 

Size of  -phase in 
grain after 

deformation, µm 

0.92761 0.1377 4.2 2.85 

 
Using (28), we obtain the stiffness factor upper 

estimate  
 

2,058w v         (29) 

 
It is known that the classical Hall-Petch law 

describes relation between yield limit 
w
s and average size 

of grain d of polycrystalline material: 
 

1/2w
s st Kd    ,     (30) 

 
where st is a certain friction stress necessary for glide of 

dislocations in a monocrystal, and K is a material constant 
often called “a Hall-Petch coefficient”. This law is well-
fulfilled for polycrystals, grains of which are of size more 
than 1 µm, and this good correspondence usually 
preserves up to a very small grain of size nearly 100 
nanometers [13].     

Using known Tabor’s law [16] s CH  , which 

states proportional relations between microhardness H  

and yield limit s  with proportionality coefficient С 

(С=0.4…0.6), let’s estimate, in accordance with 
experimental data obtained for titanium in the work [17], 
value of Hall-Petch coefficient:  

1
2(5...7,8)  MPasK м � , where s�  is a 

microhardness increment according to the data of [17].  

Therefore, if we know the estimation of 

0 0|w
s d d    under grain size 0d , then we have:  

 
1/2 1/2

0 0( )w
s K d d       

 

Because
w
s , given due to Hall-Petch correlation, 

determines lower value leading to yield, then the 

estimation of 
w  below is valid: 

 

1/2 1/2
0 0

1
( ( ))

3
w K d d   
       (31) 

 
On the basis of (29) and (31), we obtain 

boundaries for estimation of 
w  

 

(1,522...1,814) 2,058

3

v w v

v s

  


  



 


                      (32) 

 

Values of coefficients 
vv  and 

wv  can be 

calculated using known data (Table-3).  

   
Table-3. Thermophysical data for titanium alloy ВТ9 ([18]). 

 

pC , J/kg K 
т , K-1 

Q/R, К Ta  

[Aut.] 
T0,K 

 , 

kg/m3 
am  

g/mole 

vv , 

MPa/К 
(11) 

wv  

MPa/К 
(11) 

T= 
273K 

T= 
1223K 

T= 
273K 

T= 
1223K 

530.8 633.9 8E-6 1E-5 3.87E+4 0.141 1223 4.5E+3 47.88 13.9 2.49 
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According to the Table data, increment of internal stress in 
grain border area due to deformation thermal effect will be 
correspondingly 13.9 and 2.49 Mpa for each 1 K of 
temperature increment.    
 
CONCLUSIONS 
a) We suggested a modelling method and obtained 

relations of state of a polycrystalline body under 
severe plastic deformation in the temperature range 
outside the phase changes area, where a body is a 
heterogeneous medium consisting of two interacting 
constituents - a continual medium and a structure of 
grains boundaries imbedded into this medium. 

b) Equations of medium state, expressed via medium’s 
flow rate and grain boundaries migration rate, include 
per-unit force of interaction of continual medium and 
grain boundaries, which is proportional to the rate of 
relative displacement of grain boundaries, and this 
force is determined by invariables which can be found 
in the dynamical recrystallization diagram. 

c) On the basis of microstructure change during 
dynamical recrystallization (change of size of a grain 
or a subgrain) we can estimate parameters of the 
stress-strain state if we know a 2-level model 
including: 

 
 defining relations between stress fields and 

deformations (deformation rates) and, 
correspondingly, the deformation hardening law;      

 dependence of parameters of microstructure (size of a 
grain or a subgrain) on the specified field functions.    
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Symbols 
 

lv  - continual medium motion speed,  , ,l i j k ; 

lw�  - speed of relative motion (migration) of 

polycrystalline medium grain boundaries; 
t  - current time; 

A  - surface area; 

 - volume; 

f  - volume coefficient of grain boundaries structure 

amount;    
wf  - value of f  in local domain at grain boundaries; 

[ ]i
jjk  - matrix of coefficients of sensitivity of deformed 

medium grain boundaries constituent’s deformation to the 
stress-strain state form;   

,

,

i j
ij

i j

w
f

v
 

�
- relative variation of speed of grain 

boundaries migration in j axis direction;    
v
т  - line expansion coefficient; 
w
т  - coefficient of thermal migration of grain 

boundaries;   
v
ij ,

w
ij  - components of tensor of strain of continual and 

grain boundaries constituents of deformed medium;   
v
ij ,

w
ij  - components of tensor of rate of strain of 

continual and grain boundaries constituents of deformed 
medium; 

v
ij ,

w
ij  - components of tensor of stress of continual and 

grain boundaries constituents of deformed medium; 

2 2,v w   - strain rate intensity for continual and grain 

boundaries constituents; 

F - per-unit-volume power used for changing size and 

shape of grain;   
U - internal energy; 
F - Helmholtz free energy; 
S - entropy; 
c -  thermal capacity; 

c  - isochoric thermal capacity;  

c  - thermal capacity at constant pressure; 

 – thermal conductivity; 

iq [J/m2c] – coordinates of heat flow vector; 
v
Tk [К] - coefficient of plastic deformation energy 

conversion into heat energy; 

T [К] - temperature; 

0T [К] - forging temperature 

 


