
                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
72

AN EFFICIENT SOFTWARE DEFECT PREDICTION MODEL USING 
OPTIMIZED TABU SEARCH BRANCH AND BOUND PROCEDURE 

 
Pandiyan G.1 and P. Krishnakumari2 

1RVS College of Arts and Science, Coimbatore, India 
2Department of MCA, RVS College of Arts and Science, Coimbatore, India 

E-Mail: ganeshanpandiyan@gmail.com  

 
ABSTRACT 

Software fault localization is considered to be one of the most tedious procedures that involves larger amount of 
time during the debugging of program. With this, there arises an increasing desire for software fault localization to be 
practiced with minimum amount of human intervention. This resulted with the design of several methods, each of which 
provides means to address the issues related to software fault localization to be more significant in its own notable and 
innovative manner. While the automatic structure based fault localization using genetic programming retains the program 
by avoiding a specific error, but failed to repair new types of bugs and programs. Most of the present software fault 
localization method overcomes the individual software failures and faults. However, an in-depth insight into the work 
reveals that, localization does not support several combinations of heuristics faults while performing software component 
testing. Finally, high automatic fault localization demand led to the proposal and development of software functionality on 
predicting the faults at an earlier stage with minimal prediction time. To overcome the defect on software fault localization, 
Tabu Search Fault Localization with Path Branch and Bound procedure on Software Engineering (TSFL-PBB) is proposed 
in this paper. TSFL-PBB divides the work into two phases. The first phase identifies (i.e.,) search doubtful software 
programming code which contain bugs (i.e.,) faults using Meta-heuristic Tabu search method. The mathematical 
operational based optimization checks with the immediate neighbors to handle different combinations of heuristics faults. 
The second phase of the TSFL-PBB software engineering model develops the Path Branch and Bound procedure. The 
branch and bound procedure in TSFL-PBB uses the travelling salesperson operation on localizing the faults at a faster 
prediction rate with higher readability and maintainability of software quality. Experiment is performed on factors such as 
fault prediction rate, processing time, repair cost.  
 
Keywords: tabu search fault localization, software engineering, path branch, bound procedure, travelling salesperson, meta-heuristic 
faults. 
 
1. INTRODUCTION 

With the increase in the size of the software 
program, the idea of software fault localization or the 
ability to detect bugs present in it has received widespread 
attention in the field of software engineering. Many 
researchers have contributed in the field of software fault 
localization and several methods and mechanisms have 
been developed. Generic method for Automatic Software 
Repair GenProg [1] used an enhanced form of genetic 
programming models that in a way highly sustained with 
the required functionality for user defined fitness function. 
GenProg effectively detected the repair. The key to the 
method that it did not introduced new vulnerabilities. 
Though, substantial amount of bugs were repaired, but 
there was no room for new bugs.  

Computer Software Configuration Items (CSCI) 
[2] not only analyzed the fault but also evaluated and 
measured different faults spread throughout the system. In 
addition, the method was proven to be advantage in terms 
of coding faults, requirement faults and finally the 
common fault types. However, an overall analysis of the 
work revealed that the faults measured in CSCI did not 
fully supported different combinations of heuristics faults 
during software component testing. 

Different types of distributed systems can be 
adopted using Service Oriented Architecture (SOA). A 
fault localization framework called as the Business 

Process Execution Language (BPEL) [3] was developed to 
effectively measure and locate the faults. The framework 
proved to be more efficient in terms of largest number of 
seeded faults. However, a fully automatic system to detect 
the faults was not identified and addressed. To address this 
problem several fault prediction metrics were addressed in 
[4] based on three stages namely, planning, conducting 
and reporting stage. But, influential metrics remained 
unaddressed. To address issues related to influential 
metrics, in the purview of fault prediction, multi linear 
regression map and stepwise linear regression was used in 
[5] to minimize the reduced set of influential terms. 
Though, fault prediction rate was improved, but left room 
for non linear regression model. 

Over the last few decades, significant amount of 
fault-localization models have been introduced on the 
basis of statistical analysis of software program constructs. 
In [6], the enhancement of fault localization algorithms 
like, Tarantula, Ochiai, and Jaccard fault were studied in 
existence with web applications with the aid of source 
mapping. The method proved to be effective with respect 
to maximal fault-localization effectiveness. However, 
measures were not taken to address client side java script 
code for test driven model. 

In [7], Test Driven Development practice was 
introduced that in a way identified and located the bugs 
present in the software program at an earlier stage. 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
73

However, the accuracy with which the method was proven 
to be in relation with other statistical based algorithms 
remained unaddressed. To improve the level of accuracy, 
artificial neural network was introduced in [8] to locate 
and identify the defected codes. The method was proved to 
be not only accurate but also highly reliable in locating the 
faults at relatively lesser time period.  

To overcome the shortcomings of the above 
methods, this paper provides an insight into the design of 
an efficient model called as the Tabu Search Fault 
Localization with Path Branch and Bound procedure on 
Software Engineering (TSFL-PBB) to overcome the defect 
on software fault localization in software program. The 
contributions of the proposed model include the following: 
To overcome the defect on software fault localization 
using Tabu Search Fault Localization with Path Branch 
and Bound procedure on Software Engineering (TSFL-
PBB). To identify the bugs or faults present in software 
programming code using Meta-heuristic Tabu search 
method. To efficiently handle different combinations of 
heuristics faults using mathematical operational based 
optimization checks with the immediate neighbors. To 
localizes the faults at a faster predicted rate with higher 
readability and maintain the software quality using branch 
and bound procedure with the aid of travelling salesperson 
operation. The organization of the paper is as follows. 

Section 1 provides the framework for software 
fault localization based on the software program construct. 
Section 2 includes a detailed comparison with other state-
of-the-art methods. Section 3 details the Tabu Search Fault 
Localization with Path Branch and Bound procedure on 
Software Engineering (TSFL-PBB), Tabu based fault 
search and branch and bound procedure for fault 
localization with the help of a near architecture diagram 
and algorithmic description. Section 4 provides the 
experimental setups followed by Section 4 including the 
result analysis. Finally, Section 6 includes the concluding 
remarks. 
 
2. RELATED WORKS 

During the development of software projects, 
more like 50 percent of the project cost is spent during the 
software program testing and debugging. On the other 
hand, software fault localization hugely depends on two 
main factors namely, passed and failed runs. At the same 
time, the passed runs are highly prone to coincidental 
correctness whereas vast number of bug reports is 
produced during the failed runs.  

F Only [9] developed an effective model that in a 
way highly relied upon the failed runs to identify and 
locate the software faults. However, the consumption of 
resources increased with the increase in the size of the 
software program. To address this issue, Spectrum based 
Fault Localization (SFL) [10] was introduced that 
efficiently identified the bugs and was proved to be more 
feasible and effective. However, multiple types of faults 
remained unaddressed. Ordinary Least Squared (OLS) 
based prediction model was introduced in [11] to identify 
and detect various types of faults using K-Nearest 

Neighbor regression. Though software fault prediction rate 
was improved, with the increasing size of software 
program constructs, the rate at which the software fault 
was predicted was relatively less.  

Software defect prediction measures and locates 
the defective modules present in the software program 
construct. With the aid of software detect prediction 
quality of the software and the efficiency of testing can be 
improved in a significant manner. In [12], data mining 
models like clustering and classification were introduced 
for efficient detection and prediction of errors present in 
the software program construct. Though the methods were 
proved to be efficient in terms of detection rate, the means 
for improving the software quality was not addressed. To 
address the issues related to software reliability, statistical 
and machine learning methods were introduced in [13] to 
improve the software prediction rate using random forest 
and bagging. However, the product properties or the size 
of the software program construct was not taken into 
consideration.  

In the recent years, there has been an increasing 
interest and need for certain amount of precise method for 
measuring the software size and quality assurance related 
to medical technology devices. A framework was designed 
in [14] to measure the software quality related to medical 
technology and the analysis of quality. However, the 
method was proved to be a specific model designed 
effectively for medical practitioners. A fault detection 
model was introduced in [15] for radar system that 
analyzed the faults using command parameters. However, 
transient faults remained unaddressed. In order to address 
the transient faults, Software Error Detection using 
Software Redundancy (SEDSR) [16] was designed that 
effectively served as an alternative for hardware based 
models. The method not only detected control flow but 
also identified the data errors at relatively lesser interval of 
time.  

Based on the methods and models discussed 
above, we provide an insight into the tabu search software 
fault localization with path branch and bound procedure to 
localize the faults in software projects.  
 
3. TABU SEARCH SOFTWARE FAULT  
     LOCALIZATION WITH PATH BRANCH AND  
     BOUND PROCEDURE 

The goal of the proposed work is to localize the 
faults (i.e.,) bugs in software projects using Meta-heuristic 
Tabu Search optimization method. The objective behind 
the design of Meta-heuristic Tabu Search optimization 
method is to identify the bugs and localize the faulty 
statement at minimum time interval. TSFL-PBB software 
engineering model is based on localizing the faults on 
different software components. With this, the faults 
present in small and large size software components are 
identified. The Meta-heuristic Tabu based Fault Searching 
is illustrated in Figure-1. 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
74

 
 

Figure-1. Meta-heuristic tabu fault search optimization. 
 

As illustrated in Figure-1, TSFL-PBB software 
engineering model initially chooses the software 
programs. The chosen software program runs the code to 
identify the bug report and the bugs are identified with the 
aid of Tabu search method. Tabu based software fault 
searching method uses the neighborhood combinatorial 
search optimization procedure that efficiently handles 
several combination of heuristic faults on software 
projects. With this, the fault localization solution is 
determined by analyzing through the neighborhood 
software statements. The neighborhood software 
statements are iteratively checked out and finally improve 
the localization procedure at earlier stage of software 
project testing. 

The Tabu list in TSFL-PBB software engineering 
model contains the set of rules that efficiently filter out the 
faulted code statement from the software program. In the 
simplest form, Tabu list in TSFL-PBB software 
engineering model also includes the recent past visited 
program code information for easy identification of faulty 
statement at an earlier stage. The second phase of the work 
is to develop the Path Branch and Bound procedure. The 
Path Branch and Bound procedure of TSFL-PBB model 
uses the breadth first search based travelling salesperson 
operation.  
 

 
 

Figure-2. Branch and bound using travelling salesperson 
operation. 

 
As illustrated in Figure-2, the branch and bound 

using travelling salesman operation consists of a root 
software code, that are further divided into sub code. 
Followed by this, each sub code is further divided into sub 
set and so on. The Branch and bound method not only 
handle the single fault but also several combinational 
meta-heuristic fault problems with faster prediction rate.  

The branch in branch and bound method perform 
splitting procedure whereas the bounding operation 
evaluates both the upper and lower bound with minimum 
value range. The travelling salesperson operation with 
linear program bounds the faulted program code for faster 
prediction rate. The architecture diagram of Tabu Search 
Fault Localization with Path Branch and Bound procedure 
on Software Engineering (TSFL-PBB) model is depicted 
in Figure-3. 
 

 
 

Figure-3. Flow diagram of TSFL-PB software 
engineering model. 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
75

Fault Localization of software projects is clearly 
carried out in two phases of the proposed work. The initial 
phase of the work is to identify the faulty software 
program statement on several meta-heuristic 
combinations. The Tabu search carries the Tabu list in 
TSFL-PBB model, where the previously visited software 
component statement is used for easier prediction of faulty 
statement. The bugs in the software projects are clearly 
described using the branch and bound procedure. The 
branch and bound procedure with TSFL-PBB model uses 
the tree structure to identify the faults at faster rate. The 
larger the amount of software fault prediction improves 
the software repair rate. The forthcoming subsections 
discusses in detail about the two phases, the meta-heuristic 
tabu based fault search and branch and bound procedure 
for fault localization.  
 
3.1. Meta-heuristic tabu based fault search 

The first phase measures and searches the faults 
in the software program using meta-heuristic tabu based 
fault search. The Tabu based Fault search generates tests 
on the input software programs to identify the faults. Let 
us assume ‘ ’ to be the vector for the given software 

program statement, then the set of values for program 
statement  is measured in order to search the fault rate. 

Tabu search performs the search by iterating with the sub 
codes of the software program statement. Tabu based fault 
search also uses the branch and bound procedure to 
exactly localize the fault rate. As a result, branch and 
bound process, regenerate the search to several larger 
software components and finally reaches the feasible fault 
prediction solution. The Tabu based fault searching 
procedure is described as,  
 
//Tabu based Software Fault Search 
Begin 
Step-1: Initialize set of software programmable code 
Step-2: Assume Tabu list T = (1, 2, 3,….,n), where T is 
the previous visited program statement 
Step-3: Repeat for each software Component 
Step-4: Find the Neighborhood Combinational Search in 
distant software component zones 
Step-5: If  =0 

Step-6: Then no faults on the software program statement 
Step-7: Else 
Step-8:  1 
Step-9: End If 
Step-10: While (Neighborhood Combinations ‘P’) = High 
Quality  
Step-11: P= Arbitrary neighborhood with Better Quality 
of software 
Step-12: End While 
End 
 

The Tabu based fault search depends on the 
neighborhood program statements to produce optimized 
fault localization solution in TSFL-PBB software 

engineering model. Tabu based fault search uses the if-else 
procedure to identify whether the code is faulty or not. 
Secondly, the while procedure used on satisfying the 
neighborhood combination condition (i.e., Step 10) attain 
better software repair rate.  The neighborhood 
combinational condition is expressed as, 

  
If (||S-S||< Ө  f(S) then feasible region                            (1) 
 

The feasible region is measured through (1), 
where the software program statement ‘S’ is compared 
with the predefined statement ‘ ’. The faulty condition 

produces the result as,  
 

If  f(S*)<  f(S) then faulty region          (2) 
  

                         
Mathematical operational as described above is 

used in TSFL-PBB software engineering model to attain 
the best optimized software maintenance by predicting the 
bugs on software projects or programs. Once the faults are 
efficiently searched, the fault localization is performed 
which is discussed in detail in the forthcoming 
subsections. 
 
3.2. Branch and bound procedure for fault localization 

Upon successful fault searching in software 
program, fault localization is performed using branch and 
bound procedure. Branch and bound in the proposed work 
uses the breadth first search with pruning concept to easily 
predict the faults on software components and uses the 
Tabu list data structure information. The child nodes or the 
software sub code is analyzed to localize the fault paths on 
the software projects.  

Branch and Bound procedure divides the problem 
into sub problem and localize the exact fault occurrence on 
the software component. The branching is based on 
different programmable software component with linear 
program code for faster prediction rate. The branch as 
described in (2) is called lower branch of inequality. The 
higher branch of inequality is  
 
  f(S*) >  f                                                                           (3) 
 

The higher branch of splitting improves the tree 
count by ‘1’. The lower branch tracks the faulted software 
component and localizes the accurate faulty condition. The 
lower bound reaches the upper branch in TSFL-PBB 
software engineering model with minimal processing time. 
The minimal time on processing reaches the faster fault 
prediction. 
 
3.2.1 Bounding operation 

Travelling salesperson operation is applied in 
TSFL-PBB software engineering model to perform 
prioritized based Tabu list data structure information. The 
prioritization increases the localization at faster rate. The 
initial bound of the branch and bound tree sums up the 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
76

outgoing edge programmable sub code to reduce the 
processing time. 
 
Bounding Operation = Subcode S(set1, 2+ S set 2(2, 1) +…)     
                                                                             (4) 
 

The bounding operation in TSFL-PB software 
engineering model is performed in (4) using the 
information in Figure-2. The fault code statement on the 
software from root to the leaf of the tree structure is 
analyzed and identifies the faulty software components. 
The defects in the software projects are identified 
effectively through the TSFL-PBB software engineering 
model. 
 
4. EXPERIMENTAL EVALUATION  

To localize the faults, Tabu Search Fault 
Localization with Path Branch and Bound procedure on 
Software Engineering (TSFL-PBB) is proposed and 
performs the experimental evaluation using JAVA 
platform. Software Engineering model based fault 
localization takes the software programs of size 50 MB 
which includes two datasets, Arcene Data Set and Lung 
cancer dataset from UCI repository. Arcene data and Lung 
cancer data interrelated and then the software fault are 
localized while running the program code.  

Arcene contains the 7000 real variables, with 
3000 probes which totally of 10000 variables. Lung cancer 
dataset demonstrate the power of the most favorable 
discriminate plane with 3 kinds of pathological lung 
cancer. The information on the individual variables clearly 
describes about the attribute information, taking on integer 
values 0-3. The program code with bugs is identified at 
initial stage using TSFL-PB software engineering model. 
Proposed TSFL-PB model is compared against existing 
Generic method for Automatic Software Repair (GenProg) 
[1] and Computer Software Configuration Items (CSCI) 
[2] to predict faults. The experiment is conducted on the 
factors such as fault prediction rate, software repair rate, 
processing time, repair cost time and so on. 

The fault prediction rate is obtained by 
comparing the software statement  and with the 

predefined statement ‘ ’   

 
 
Upon satisfaction of the first if statement, the fault 
prediction rate is set to zero whereas by meeting the 

second condition, the fault prediction rate gets 
incremented by one. The fault prediction rate is measured 
in terms of percentage (%). 
The software repair rate of a software program is defined 
as the probability that the software program or a module 
experiences the first repair or has repair has occurred one 
or more time during the time interval . The software 

repair rate is measured in terms of MB.  
 
SRR= Srepair                                                                      (6) 
 
Repair cost time in TSFL-PBB software engineering 
model refers to the time taken to perform the repair 
operation using breadth first search. The repair cost time is 
measured in terms of milliseconds. The Processing time 
involved in the processing of the entire software fault 
localization using TSFL-PBB software engineering model 
refers to the time complexity involved during the branch 
and bound process given as  
Processingtime  =Time Complexity(Bounding Operation)  (7)
                   
 
5. RESULTS ANALYSIS OF TSFL-PBB 

The result analysis of Tabu Search Fault 
Localization with Path Branch and Bound procedure on 
Software Engineering (TSFL-PBB) model using software 
programs with Arcene and Lung cancer dataset extracted 
from UCI repository is compared with existing Generic 
method for Automatic Software Repair (GenProg) [1] and 
Computer Software Configuration Items (CSCI) [2] to 
predict faults. The fault prediction rate obtained using 
JAVA and comparison is made with two other methods, 
namely GenProg [1] and CSCI [2].  
 

 
 

Figure-4. Comparison diagram showing the fault 
prediction rate over TSFL-PBB, GenProg and CSCI. 

 
Figure-4 shows that the proposed TSFL-PBB 

model provides higher fault prediction rate when 
compared to GenProg [1] and CSCI [2]. This is because of 
the application of Meta-heuristic Tabu search method 
based on the neighborhood software statements that are 
iteratively checked that finally improves the rate of fault 
prediction at earlier stage and therefore improving it by 16 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
77

- 25 % compared to GenProg. Moreover, the Tabu based 
software fault searching utilizes the neighborhood 
combinatorial search optimization for efficient handling of 
several combination of heuristic faults on software 
projects by improving fault prediction rate by 23 - 38 % 
compared to CSCI.  

The comparison of software repair rate is 
presented with respect to different file sizes of range 5 - 35 
MB. With increase in the number of images, the software 
repair rate also gets increased, but at certain point the 
repair rate is not observed to be linear. It is because of the 
errors present in the software program differs and is not 
linear.  
 

 
 

Figure-5. Line chart showing the software repair rate with 
respect to different file sizes. 

 
To measure and evaluate the performance of the 

software repair rate, comparison is made with two other 
existing works Generic method for Automatic Software 
Repair (GenProg) [1] and Computer Software 
Configuration Items (CSCI) [2] to predict faults. In 
Figure-5, the file size is varied between 5 and 35 MB. 
From the Figure it is illustrative that the software repair 
rate is higher or increased using the proposed TSFL-PBB 
model when compared to the two other existing works. 
This is because with the application of Path branch and 
bound procedure that uses the breadth first search based 
travelling salesperson operation to handle both the single 
fault and combinational meta-heuristic fault problems 
improving the software repair rate by 6 - 9 % compared to 
GenProg. Furthermore, using prioritized based Tabu list 
data structure information, prioritization increases the 
localization at faster rate increasing the software repair 
rate by 12 - 16 % than when compared to CSCI. 

The repair cost time efficiency for TSFL-PBB 
model is elaborated in Table-3. We consider the method 
with software components of size 2 to 14 for experimental 
purpose using JAVA platform.    
 

 
 

Figure-6. Line chart representing the rate of repair cost 
time with respect to software components. 

 
In Figure-6, we depict the repair cost time 

attained using different software components of size 2 to 
14 for experimental purposes. From the Figure, the value 
of repair cost time achieved using the proposed TSFL-
PBB model is lower when compared to two other existing 
works Generic method for Automatic Software Repair 
(GenProg) [1] and Computer Software Configuration 
Items (CSCI) [2] to predict faults. Besides we can also 
observe that by increasing the size of the software 
components, the time taken to perform the repair cost gets 
decreases using all the methods. But comparatively, it is 
lower using the TSFL-PBB model because with the 
application of branch and bound procedure by improving 
the time taken for repair cost by 1 - 3 % compared to 
GenProg. With the aid of breadth first search the branch 
and bound effectively prunes and easily predict the faults 
on software components, thus minimizing the software 
repair cost and therefore the repair cost time by 3 - 9 % 
compared to CSCI.  

 
 

Figure-7. Line chart representing the processing time for 
software fault localization with respect to software 

components. 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
78

Figure-7 illustrate the processing time involved 
during software feature localization versus the number of 
software components in the range of 2 50 14 for 
experimental purpose conducted using JAVA. From the 
Figure we can note that the processing time attains 8.45 % 
improved for the software component of size 8 when 
compared to GenProg [1] and 24.45 % improved when 
compared to CSCI [2] which shows that there is a 
significant improvement using the proposed TSFL-PBB 
model. This is because the Tabu list in TSFL-PBB 
software engineering model includes the set of rules to 
filter out the faulted code statement from the software 
program. With this, the Tabu list in TSFL-PBB software 
engineering model includes recent past visited program 
code information for easy identification of faulty statement 
at an earlier stage improving the processing time by 7 - 9 
% compared to GenProg. In addition, with the application 
of travelling salesman operation, the initial bound of the 
branch and bound tree sums up with the outgoing edge 
programmable sub code to reduce the processing time by 
21 - 26 % when compared to CSCI. 
 
6. CONCLUSIONS 

Software fault detection and localization has 
become the key for debugging software programs to 
increase the fault prediction rate and improve the amount 
of software repair cost at relatively less amount of time.  

In this work, the performance measure and effects 
of software fault detection and localization model is 
presented and analyzed to identify and overcome the 
individual software failures and faults. For this, a model 
called Tabu Search Fault Localization with Path Branch 
and Bound procedure on Software Engineering (TSFL-
PBB) is structured based on the software program. This 
improves the prediction rate and identifies the errors 
present in the software program and greatly localizes the 
faults (i.e.,) bugs in software projects. First, we study the 
use of Tabu based fault search to identify the faults with 
the aid of branch and bound process and localize the fault 
rate in an exact manner. Second, we design branch and 
bound procedure for different programmable software 
component with the aid of breadth first search to improve 
the prediction rate. The branch and bound tree is finally 
integrated with the outgoing edge programmable sub code 
to reduce the processing time in an efficient manner using 
the software program of size 50 MB which includes two 
datasets, Arcene Data Set and Lung cancer dataset from 
UCI repository. The experiment conducted using the data 
set shows that the DIARETDB1shows that the TSFL-PBB 
achieves up to 16 percent improvement on software repair 
rate compared to the state-of-the-art methods.   
 
REFERENCES 
 
[1] Claire Le Goues, ThanhVu Nguyen, Stephanie Forres 

and Westley Weimer. 2012. GenProg: A Generic 
Method for Automatic Software Repair. IEEE 
Transactions on Software Engineering. 38(1). 

[2] Maggie Hamill and Katerina Goseva-Popstojanova. 
2009. Common Trends in Software Fault and Failure 
Data. IEEE Transactions On Software Engineering. 
35(4). 
 

[3] Chang-ai Sun, Yi Meng Zhai, Yan Shang and Zhenyu 
Zhang. 2013. BPELDebugger: An effective BPEL-
specific fault localization framework. Information and 
Software Technology, Elsevier. 

 
[4] Danijel Radjenovic, Marjan Hericko, Richard Torkar 

and Ales Z ivkovic. 2013. Software fault prediction 
metrics: A systematic literature review. Information 
and Software Technology. 
 

[5] Rinkaj Goyal1, Pravin Chandra and Yogesh Singh. 
2013. Identifying influential metrics in the combined 
metrics approach of fault prediction. Springer plus. 

 
[6] Shay Artzi, Julian Dolby, Frank Tip and Marco 

Pistoia. 2012. Fault Localization for Dynamic Web 
Applications. IEEE Transactions On Software 
Engineering. 38(2). 
 

[7] Massimo Ficco, Roberto Pietrantuono and Stefano 
Russo. 2011. Bug Localization in Test-Driven 
Development. Hindawi Publishing Corporation 
Advances in Software Engineering Volume 2011. 
 

[8] Xiuhua Yuan, YiqiangWang and Yan Gu. 2013. 
Software Fault Location of CNC System Based on 
Similar Path Set and Artificial Neural Network. 
Hindawi Publishing Corporation Advances in 
Mechanical Engineering Volume 2013. 
 

[9] Zhenyu Zhang, W.K. Chan and T.H. Tse. 2012. Fault 
Localization Based Only on Failed Runs. IEEE 
Computer Society. 5(6). 

 
[10] Xiaoyuan Xie, W. Eric Wong, Tsong Yueh Chen and 

Baowen Xu. 2012. Metamorphic slice: An application 
in spectrum-based fault localization. Information and 
Software Technology, Elsevier. 
 

[11] Rinkaj Goyala, Pravin Chandraa and Yogesh Singha. 
2014. Suitability of KNN Regression in the 
Development of Interaction Based Software Fault 
Prediction Models. 2013 International Conference on 
Future Software Engineering and Multimedia 
Engineering, Elsevier. 
 

[12] Ms. Puneet Jai Kaur and Ms. Pallavi. 2013. Data 
Mining Models for Software Defect Prediction. 
International Journal of Software and Web Sciences 
(IJSWS). 
 

[13] Ruchika Malhotra and Ankita Jain. 2012. Fault 
Prediction Using Statistical and Machine Learning 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
79

Methods for Improving Software Quality. Journal of 
Information Processing Systems. 8(2). 
 

[14] Nizam Uddin Ahameda, Kenneth Sundaraja, R. 
Badlishah Ahmadb, Matiur Rahmanc and Asraf Alib. 
2012. A framework for the development of 
measurement and quality assurance in software-based 
medical rehabilitation systems. International 
Symposium on Robotics and Intelligent Sensors, 
Elsevier. 
 

[15] Zhu Jie-zhong, Yao Yong-lei and Chen Su-ting. 2012. 
Proposal for the Software Development of a Radar 
Power Fault Detection System. 2012 International 
Conference on Medical Physics and Biomedical 
Engineering, Elsevier. 

 
[16] Seyyed Amir Asghari, Atena Abdi, Hassan Taheri, 

Hossein Pedram and Saadat Pourmozaffari. 2012.  
SEDSR: Soft Error Detection Using Software 
Redundancy. Journal of Software Engineering and 
Applications. 


