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ABSTRACT 

In this paper free vibration characteristics of laminated composite plates is considered. A model is developed for a 
composite layer based on the consideration of non-linear terms in Von-Karman’s non-linear deformation theory. The 
governing partial equation of motion is reduced to an ordinary non-linear equation and then solved using He’s variational 
approach method. The variation of frequency ratio of the Isotropic and composite plates is brought out considering 
parameters such as aspect ratio, fiber arrangements (orientation), number of layers and modal ratios. 
 
Keywords: laminated composite plate, nonlinear analytical analysis, nonlinear vibration, classical plate theory, he’s variational approach 
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1. INTRODUCTION 

Laminated composite plates due to their high 
specific strength and stiffness have been increasingly used 
in a wide range of civil, aerospace and mechanical 
applications. By tailoring the sequence of the stacks and 
the thickness of the layers, composite laminates’ 
characteristics can be matched to the structural 
requirements with no difficulty. To use composite 
laminates efficiently, an accurate knowledge of vibration 
characteristics is essential. Vibration not only creates 
excessive noise and wastes energy but also may result in 
catastrophic failures. These phenomena when the system 
operates around its natural frequencies would be even 
more disastrous. 

Many publications have dealt with the linear 
vibrations of laminated composites. In these cases the 
equation of motion is obtained easily and then by a 
reduction into a generalized eigenvalue problem, 
frequencies and mode shapes are determined. However in 
many working conditions, plates are subjected to large 
amplitudes and a nonlinear frequency analysis is required 
as a result. For the case of nonlinear free vibration of 
composite plates, obtaining an exact solution because of 
the complexity of the equation of motion has been found 
to be particularly difficult. The first approximate solution 
developed by Chu and Herman [1] in 1956 was the start 
point for so many other numerical methods introduced in 
the following years such as the finite element method 
(FEM) [2], the discrete singular convolution method 
(DSC), the strip element method, and the Ritz methods 
[3].  

Singh et al. [4] used direct numerical integration 
to study non-linear vibration of rectangular laminated 
composite plates in 1990. Using Kirchhoff hypothesizes 
and Von-Karman strain-stress relations, they derived 
governing equations. They also employed harmonic 
oscillating assumptions and investigated large amplitude 
vibrations for various arrangements. 

Although numerical approaches are applicable to 
a wide range of practical cases, approximate analytical 

methods provide highly accurate solutions and a deep 
physical insight. One of the main approximate analytical 
approaches on nonlinear vibration analysis is Perturbation 
Method. This method is effective just in solving weakly 
nonlinear differential equations. Because of the limited 
application of the perturbation methods, newer approaches 
have been developed during recent years which are more 
powerful. For example; the vibrational behavior of quintic 
nonlinear in extensional beam on two-parameter elastic 
substrate based on the three mode assumptions is 
investigated by Sedighi [5]. He employed parameter 
expansion method to obtain the approximate expressions 
of nonlinear frequency-amplitude relationship for the first, 
second, and third modes of vibrations. An efficient 
iterative method is applied to the analytic Treatment of 
Nonlinear Fifth-order Equations by Saravi and Nikkar [6]. 
Ghaffarzadeh and Nikkar [7] applied a new analytical 
method called the variational iteration method-II (VIM-II) 
for the differential equation of the large deformation of a 
cantilever beam under point load at the free tip. Askari et 
al. [8] applied He’s energy balance method and He’s 
variational approach to frequency analysis of nonlinear 
oscillators with rational restoring force. Sedighi and 
Daneshmand [9] studied nonlinear transversely vibrating 
beams by the homotopy perturbation method with an 
auxiliary term. Barari et al. [10] studied non-linear 
vibration behavior of geometrically non-linear Euler-
Bernoulli beams using variational iteration method and 
parameter perturbation method. He’s Variational 
Approach (VA) is used to obtain an analytical solution for 
the Bratu’s equation by Saravi et al. [11]. Bagheri et al. 
[12] studied the nonlinear responses of clamped-clamped 
buckled beam. They used two efficient mathematical 
techniques called He’s variational approach and Laplace 
iteration method in order to obtain the responses of the 
beam vibrations. Salehi et al. [13] applied two efficient 
methods to consider large deformation of cantilever beams 
under point load. Younesian et al. [14] studied free 
oscillations of beams on nonlinear elastic foundations by 
VIM. Askari et al. [15] applied higher order Hamilton 
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approach to nonlinear vibrating systems, and many other 
problems solved by these methods [16-19]. 

In the present paper VA method is used to obtain 
approximate analytical solutions for nonlinear vibrations 
of a thin laminated composite plate. VA method is used to 
achieve nonlinear natural frequency and its excellent 
accuracy for the wide range of amplitude values is 
satisfied. A comparison with results in other articles has 
been done to validate the answers. 
 
2. MATHEMATICAL MODELLING 

Consider a thin laminated composite plate of 
length a, width b, and thickness h as shown in Figure-1. A 
positive set of coordinate system demonstrated in a way 
that reference surface is taken as the mid plane and its 
origin is considered at the corner of the plate. The plate is 
supposed to be simply supported along all its edges. In 
addition, no slip condition between the layers is assumed. 
 

 
 

Figure-1. Schematic of the laminated composite plate[20]. 
 

Assume u, v and w are the displacements of an 
arbitrary point of the plane in x, y and z axis, u0 and v0 to 
be the corresponding displacements of that point in the 

mid-plane and 
0   to be the mid-plain strain and mid-

plane curvature respectively, mechanical shear relation can 
be demonstrated as [20]: 
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Following Von-Karman’s strain-displacement assumptions 
the in plane strain, shear strain and plane curvatures can be

 

expressed as: 
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According to Classical Theory of Elasticity, the 

strain-stress relations for each layer can be derived as: 
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Where the numbers 1, 2, 6 referred to principal 

axis of each layer.   )6,2,1( iQ
kij  are the coefficients 

of the reduced stiffness matrix at the kth layer  and are 
defined as: 
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Below stress-strain relations are obtained from 

the axis transformation of the each layer stress-strain 
equations referred to global axes: 
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And   )6,2,1( iQ

kij  are plane stress-reduced 

stiffness coefficients. 
Constitutive equations which relate force and 

moment resultants to the strains through an appropriate 
integration along the thickness can be developed as: 
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Aij, Bij, and Dij are called extensional stiffnesses, 

bending-extensional coupling stiffnesses and bending 
stiffness respectively. The equations of motion are derived 
from Hamilton’s principle as follows [20]: 
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Where U, the potential energy of the plate and T, the 
kinematic energy of the plate are given by: 
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Substituting Eqs.(11) and (12) into the 

Hamilton’s equation of motion and with an appropriate 
integration along the thickness and then by 

equating 0u , 0v , and 0w coefficients to zero, one 

obtains the below relations: 
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By assuming simply supported boundary 

condition, the relations below are considered for 
displacement equations to satisfy the boundary conditions: 
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And U(t), V(t), and W(t) are the maximum 

displacements of plate center point along principal axes x, 

y, and z respectively. U(t) and V(t) can be expressed in 
terms of W(t) using first two equations of Equation (13) 
and then by employing Galerkin method and substituting 
U(t) and V(t) in terms of W(t) into Equation (13), the 
governing equation can be written as: 
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Supposing Wmax as the maximum vibration 
amplitude of the plate center, the initial conditions of the 
center of the plate can be expressed as:  
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3. BASIC CONCEPT OF THE PROPOSED  
    METHOD 

The variational approach method to nonlinear 
oscillators was first proposed by Chinese mathematician, 
Ji-Huan He [21]. We give a brief introduction of the 
method. To clarify the basic ideas of proposed method 
consider the following second order differential equation: 
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where )(uf  is a nonlinear function of u, u’ and 
u”. For simplicity, if function f depends on u 
only, its variational functional can be obtained 
as: 
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where F is the potential, f
du

dF
  and T is the period of the 

nonlinear oscillator. 

We assume that its approximate solution can be 
expressed as: 
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where A and ω are the amplitude and frequency of the 
oscillator, respectively. Substituting Equation (4) into 

Equation (3), and setting 0
dA

dJ , we can obtain an 

inexplicit amplitude-frequency relationship of Equation 
(1). 
 
4. APPLICATION OF THE PROPOSED METHOD 

Rewriting Equation (15) in the standard form of 
Equation (18) results in the following equation: 
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In this part, we solve Equation (15) via 

variational approach. We can, now, easily obtain the 
following variational formulation: 
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Assume that its approximate solution can be expressed as: 
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where ω is the frequency to be determined and A is the 
amplitude of oscillation. Substituting Equation (23) into 
Equation (22) results is 
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Making J stationary with respect to A, according 

to He’s method, we obtain:  
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Finally collocation at
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 t , the frequency can be 

approximated as: 
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and zero-order approximate solution is: 
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In order to verify the precision of the suggested 

method, current results were compared with other articles. 
Table-1 illustrates the frequency ratio of square and 
rectangular plates. It is observable that our results are in 
excellent agreement with the results provided by other 
references. It can be observed that the second 
displacement coefficient is zero for square plates.  
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Table-1. Frequency ratio of isotropic rectangular and square plates using various methods )3.0(  . 
 

)2/( ba  )1/( ba  hW /  

Ref [4] HAM VA Ref [4] HAM VA  

1.0254 1.0285 1.0285 1.0208 1.0252 1.0251 0.2 

1.0982 1.1091 1.1091 1.0809 1.0967 1.0967 0.4 

1.2097 1.2306 1.2307 1.1743 1.2056 1.2056 0.6 

1.3505 1.3818 1.3819 1.2937 1.3422 1.3423 0.8 

1.5124 1.5537 1.5541 1.4327 1.4988 1.4991 1 

--- 1.7404 1.741 --- 1.6698 1.6703 1.2 

1.877 1.9376 1.9384 1.7503 1.8512 1.852 1.4 

--- 2.1425 2.1435 --- 2.0404 2.0412 1.6 

--- 2.353 2.3543 --- 2.2353 2.2364 1.8 

2.4798 2.5679 2.5694 2.2828 2.4347 2.436 2 

 
In Table-2 the Variation of frequency ratios 

versus non-dimensional amplitude ratio for symmetrical 
and non-symmetrical square plate arrangements are 

shown. The symmetrical arrangement plates have the same 
frequency ratios values.  

 
Table-2. Frequency ratio of composite square plate with different arrangements using 

various methods )25.0,5.0/,40/( 1221221  EGEE . 
 

[90/0/0/90] [0/90/90/0] [0/90/0/90] hW /  

Ref [4] HAM VA Ref [4] HAM VA Ref [4] HAM VA  

1.0535 1.0509 1.0509 1.0535 1.0509 1.0509 1.0634 1.0575 1.0575 0.25 

1.2038 1.1891 1.1892 1.2038 1.1891 1.1892 1.2388 1.212 1.2121 0.5 

1.4172 1.3872 1.3874 1.4172 1.3872 1.3874 1.4832 1.4305 1.4308 0.75 

1.6691 1.6227 1.6232 1.6691 1.6227 1.6232 1.7679 1.6881 1.6886 1 

--- 1.8819 1.8827 --- 1.8819 1.8827 --- 1.9694 1.9703 1.25 

2.2355 2.1563 2.1574 2.2355 2.1563 2.1574 2.4000 2.2659 2.2671 1.5 

--- 2.4408 2.4422 --- 2.4408 2.4422 --- 2.5724 2.5739 1.75 

2.8439 2.7325 2.7342 2.8439 2.7325 2.7342 3.0729 2.8857 2.8876 2 

 
5. CONCLUSIONS 

In this study, a composite laminated plate model 
is established to verify the vibrational behaviors of 
composite plate. Von-Karman’s assumption and efficient 
approximate method (VAM) are employed to derive the 
nonlinear governing equation of motion. Analytical 
expressions are presented for nonlinear natural vibration 
analysis of composite laminated plate. Comparing with 
other Results, it is shown that the approximate analytical 
solutions are in very good agreement with the 
corresponding solutions. 
 
 
 
 
 
 

REFERENCES 
 
[1] Chu H.N. and Herrmann G. 1956. Plate Influence of 

large amplitudes on free flexural vibrations of 
rectangular plates. ASME J. Appl Mech. 23: 532-540. 
 

[2] Singha M.K. and Daripa R. 2007. Nonlinear vibration 
of symmetrically laminated composite skew plates by 
finite element method. International Journal of Non-
Linear Mechanics. 42: 1144-1152. 
 

[3] Raju I.S., Rao G.V. and Raju K.K. 1976. Effect of 
longitudinal or inplane deformation and inertia on the 
large amplitude flexural vibrations of slender beams 
and thin plates. Journal of Sound and Vibration. 49: 
415-422. 

 



                                        VOL. 10, NO. 1, JANUARY 2015                                                                                                                ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
127

[4] Singh S., Raju K.K. and Rao G.V. 1990. Non-linear 
vibrations of simply supported rectangular cross-ply 
plates. Journal of Sound and Vibration. 142(2): 213-
226. 
 

[5] Sedighi Hamid. M. Nonlinear free vibrations of 
quintic inextensional beams lying on Winkler elastic 
substrate based on three-mode assumptions. 
Proceedings of the Institution of Mechanical 
Engineers, Part K: Journal of Multi-body Dynamics, 
DOI: 10.1177/1464419314522780. 
 

[6] Saravi M. and Nikkar A. 2014. Promising Technique 
for Analytic Treatment of Nonlinear Fifth-order 
Equations. World Journal of Modelling and 
Simulation. 10(1): 27-33. 
 

[7] Ghaffarzadeh H. and Nikkar A. 2013. Explicit 
solution to the large deformation of a cantilever beam 
under point load at the free tip using the variational 
iteration method-II. Journal of Mechanical Science 
and Technology. 27(11): 3433-3438. 
 

[8] Askari H., Yazdi M.K., Saadatnia Z. 2010. Frequency 
analysis of nonlinear oscillators with rational restoring 
force via He’s energy balance method and He’s 
variational approach. Nonlinear Science Letters A. 
1(4): 425-430. 
 

[9] Sedighi H. M., Daneshmand F. 2014. Nonlinear 
transversely vibrating beams by the homotopy 
perturbation method with an auxiliary term. Journal of 
Applied and Computational Mechanics. 1(1): 1-9. 
 

[10] Barari A., Kaliji H. D., Ghadimi M. and Domairry G. 
2011. Non-linear vibration of Euler-Bernoulli 
beams. Latin American Journal of Solids and 
Structures. 8(2): 139-148. 

 
[11] Saravi M., Hermann M., and Kaiser D. 2013. Solution 

of Bratu’s Equation by He’s Variational Iteration 
Method. American Journal of Computational and 
Applied Mathematics. 3(1): 46-48. 
 

[12] Bagheri S., Nikkar A. and Ghaffarzadeh H. 2014. 
Study of nonlinear vibration of Euler-Bernoulli beams 
by using analytical approximate techniques. Latin 
American Journal of Solids and Structures. 11: 157-
168. 
 

[13] Salehi P., Yaghoobi H. and Torabi M. 2012. 
Application of the differential transformation method 
and variational iteration method to large deformation 
of cantilever beams under point load. Journal of 
mechanical science and technology. 26(9): 2879-2887. 
 

[14] Younesian D., Saadatnia Z. and Askari H. 2012. 
Analytical solutions for free oscillations of beams on 
nonlinear elastic foundations using the Variational 

Iteration Method. Journal of Theoretical and Applied 
Mechanics. 50(2): 639-652. 
 

[15] Askari H., Nia Z. S., Yildirim A., Yazdi M. K. and 
Khan Y. 2013. Application of higher order Hamilton 
approach to nonlinear vibrating systems. Journal of 
Theoretical and Applied Mechanics. 51(2): 287-296. 
 

[16] Hashemi M.H. and Nikkar A. 2014. On the 
approximate analytical solution for parametrically 
nonlinear excited oscillators. Geomechanics and 
Geoengineering. 9(4). 
DOI:10.1080/17486025.2014.969787. 

 
[17] Khan Y., Taghipour R., Falahian M. and Nikkar A. 

2013. A new approach to modify regularized long 
wave equation, Neural Computing and Applications. 
23: 1335-1341. 
 

[18] Nikkar A., Bagheri S. and Saravi M. 2014. Study of 
nonlinear vibration of Euler-Bernoulli beams by using 
analytical approximate techniques. Latin American 
Journal of Solids and Structures. 11: 320-329. 
 

[19] Taghipor R., Akhlaghi T. and Nikkar A. 2014. 
Explicit solution of the large amplitude transverse 
vibrations of a flexible string under constant tension. 
Latin American Journal of Solids and Structures. 11: 
545-555. 
 

[20] Rafieipour H., Lotfavar A., Masroori A. and 
Mahmoodi E. 2013. Application of Laplace Iteration 
method to Study of Nonlinear Vibration of laminated 
composite plates. Latin American Journal of Solids 
and Structures. 10(4): 781-795. 
 

[21] He J.H. 2007. Variational approach for nonlinear 
oscillators. Chaos Solitons and Fractals. 34: 1430-
1439. 


