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ABSTRACT 

The fundamental and important pre-processing stage in image processing is the image contrast enhancement 
technique. Histogram equalization is an effective contrast enhancement technique and thus in this paper, a histogram 
equalization based technique called Quadrant Dynamic with Automatic Plateau Limit Histogram Equalization 
(QDAPLHE) is introduced. In this method, a hybrid of dynamic and clipped histogram equalization methods are used to 
increase the brightness preservation and to reduce the over enhancement. Initially, the proposed QDAPLHE algorithm 
passes the input image through a Decision based modified median filter (DBMMF) to remove the noises present in the 
image. Then the histogram of the filtered image is divided into four sub histograms while maintaining second separated 
point as the mean brightness. Next, the clipping process is implemented by calculating automatically the plateau limit as 
the clipped level. The clipped portion of the histogram is modified to reduce the loss of image intensity value. Finally, the 
clipped portion is redistributed uniformly to the entire dynamic range and the conventional histogram equalization is 
executed in each sub-histogram independently. Hence, the contrast enhancement is improved and the noise amplifying 
artifacts are reduced. Based on the qualitative and the quantitative analysis, the QDAPLHE method outperforms compared 
to some existing methods in literature. 
 
Keywords: histogram equalization, image contrast enhancement, dynamic histogram equalization, clipped histogram equalization, 
median filter, decision based modified median filter. 
 
INTRODUCTION 

An important challenge in the field of digital 
image processing is contrast enhancement. Compared to 
the original image, contrast enhancement produces better 
image by changing the pixel intensities. Of the many 
techniques available for image contrast enhancement, 
Histogram equalization (HE) is a widely used technique. 
The fundamental idea of histogram equalization is to 
flatten the histogram and stretch the dynamic range of the 
gray levels by using the cumulative density function of the 
image. Nowadays, histogram equalization is applied in 
various applications such as medical image processing and 
radar image processing [1]. In histogram equalization, the 
brightness of an input image is significantly changed and 
causes undesirable artifacts. This is not suitable for some 
applications where brightness preservation is necessary. 
To overcome the aforementioned problem, several 
brightness preserving methods have been proposed [2]-[6]. 
Generally, these enhancement methods can be classified 
into two types: Partitioned histogram equalization (PHE) 
and Dynamic partitioned histogram equalization (DPHE). 

In these methods, the original histogram is 
divided into several sub histograms based on the 
histogram statistical information. The difference between 
the PHE and DPHE is that, in the DPHE each sub 
histogram is assigned to a new enhanced dynamic range 
instead of using the original dynamic range. One of the 
popular PHE based method is Mean brightness preserving 
Bi-Histogram equalization (BBHE). BBHE segments the 
original histogram into two portions by the mean of the 
input histogram. BBHE has been analyzed both 
experimentally and mathematically that this technique is 

capable to achieve the brightness preservation [1]. Later, 
Dualistic Sub -Image Histogram Equalization (DSIHE) 
has been proposed. This algorithm separates the input 
image’s histogram into two sub histograms based on 
median of the input image [2]. This technique has been 
claimed to outperform BBHE both in term of brightness 
preservation and also entropy (image content) 
preservation. BBHE and DSIHE methods can preserve the 
mean brightness of original image in some extent. In order 
to provide scalable brightness preservation, Recursive 
Mean-Separate Histogram Equalization (RMSHE) and 
Minimum Mean Brightness Error Bi-Histogram 
Equalization (MMBEBHE) has been proposed [3]. 

In RMSHE algorithm, the original image is 
recursively segmented into some sub-images based on 
their mean brightness and equalized them separately. The 
better mean brightness will be preserved when the 
recursive degrees have been increased. If the recursive 
levels tend to infinity, the output image will be equal to 
input image. 

For DPHE, there are two methods existing in 
literature: Dynamic histogram Equalization (DHE) [7] and 
Brightness preserving Dynamic Histogram Equalization 
(BPDHE) [8]. The DHE partitions the histogram of input 
image based on local minimal and assigns a new dynamic 
range for each sub-histogram. To ensure many dominating 
portions, the DHE further segments the large sub-
histogram. To ensure many dominating portions, the DHE 
further segments the large sub-histogram through a 
repartitioning test. As the DHE does not consider the mean 
brightness preservation, it neglects the mean brightness 
preserving and tends to intensity saturation artifact.  
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To overcome the drawbacks of the DHE, 
brightness preserving dynamic histogram equalization 
(BPDHE) has been introduced [8]. The BPDHE uses the 
local maximal as the separating point rather than the local 
minimal. For this reason, Ibrahim and Kong [8] claim that 
the local maximals are better for mean brightness 
preservation. Finally in BPDHE, histogram equalization is 
implemented after assigning a new dynamic range for each 
sub histogram. In order to maintain the mean brightness, 
brightness normalization is applied to ensure that the 
enhanced image has similar mean brightness of the input 
image. 

Research by Praveen et al. [9] has done 
comparison between original image and image enhanced 
by Histogram Equalization and Contrast Limited Adaptive 
Histogram Equalization (CLAHE) for bone fracture crack 
detection using pixel value measurement. They concluded 
that CLAHE is better than Histogram Equalization. 
CLAHE had been claimed also to improve the contrast 
better in the application of automated segmentation of 
blood vessels in retinal images when compared to 
Histogram Equalization [10]. 

Kentaro Kokufuta et al. [11] described an 
approach for real time processing of the contrast limited 
adaptive histogram  equalization (CLAHE) using an 
FPGA. In this approach, a histogram is generated for each 
pixel in an image for remapping the pixel, and each 
histogram is speculatively distributed without iterations by 
feeding back the distribution result of its previous pixel. 
But the computational complexity of this approach is very 
high [9, 15]. 

Ooi and Kong et al. [12] proposed a bi-histogram 
equalization Plateau limit (BHEPL) as the hybrid of the 
BBHE and clipped histogram equalization. BHEPL 
divides the histogram of input image by the value of mean 
brightness of the input image. Both the sub histograms are 
clipped by each mean of histograms of the occupied 
intensity respectively. At last, conventional histogram 
equalization methods are able to control the enhancement 
rate. In addition, these methods can avoid over 
amplification of noise in the image. 

Recently, Wayalun, Pichet et al., [13] presented 
an enhancement algorithm for chromosome images based 
on histogram equalization (HE). Underwater imaging is 
quite a challenging in the area of photography especially 
for low resolution and ordinary digital camera. Mean 
values of the stretched histogram are used to improve the 
contrast of the image [14]. An advance multiband satellite 
colour contrast improvement technique of a poor-contrast 
satellite images is proposed based on Discrete Cosine 
Transform (DCT) in [15]. The retinal images are pre-
processed using Adaptive Histogram Equalization (AHE) 
and the blood vessels are enhanced by applying Top-hat 
and Bottom-hat transforms in [16]. Based on the 
inspiration of the local contrast range transform, a new 
general form of fast dynamic range compression with a 
local-contrast-preservation (FDRCLCP) algorithm is 
developed to resolve image enhancement problems 
directly in the spatial domain [17]. Although these 

methods perform well for image enhancement, the 
enhancement process requires high computational costs 
with a large memory requirement, usually leading to an 
inefficient algorithm and requiring hardware acceleration. 

In this paper, a novel method is proposed as the 
extension of the BHEPL and RMSHE, called Quadrant 
Dynamic with Automatic Plateau Limit Histogram 
Equalization (QDAPLHE). First, the input image is passed 
through a Decision based modified median filter 
(DBMMF) to remove the noises present in the image. 
Then the proposed method divides the histogram of the 
filtered image into four sub-histograms while maintaining 
second separated point as the mean brightness. Then the 
clipping process is implemented by automatically 
calculating the plateau limit as the clipped level. The 
clipped portion of the histogram is modified to reduce the 
loss of image intensity value. Finally, the clipped portion 
is redistributed uniformly to the entire dynamic range and 
the conventional histogram equalization is executed in 
each sub-histogram independently. Hence, the contrast 
enhancement is improved and the noise amplifying 
artifacts are reduced. The rest of this paper is organized as 
follows. In preceding chapter, the methodology of the 
proposed Quadrant Dynamic with Automatic Plateau 
Limit Histogram Equalization (QDAPLHE) is discussed in 
detail. Then, next chapter presents the qualitative and 
quantitative analysis of existing and proposed image 
enhancement methods. The Final chapter serves as the 
conclusion of this work. 
 
QUADRANT DYNAMIC WITH AUTOMATIC 
PLATEAU LIMIT HISTOGRAM EQUALIZATION 
(QDAPLHE) 

The proposed QDAPLHE method uses the 
fundamental idea of the RMSHE. In RMSHE the number 
of decomposed sub-histograms increases in powers of two. 
Although it will produce better brightness preservation, it 
declines the effectiveness of the histogram equalization 
and yields an output image without a good enhancement 
i.e., the output will be same as the input. Thus in this 
work, the input histogram is divided into four sub-
histograms. The proposed QDAPLHE consists of four 
processes, namely filtering process, Histogram partitioning 
process, clipping process, redistribution process and 
histogram equalization. 
 
Filtering process 

During the process of sampling, transmission and 
receiving of the data, it is necessary to smooth the noisy 
signals while at the same time preserving the edge 
information. Digital images are corrupted often by impulse 
noise, due to faulty sensors in the camera, transmission of 
images through faulty channels. Two types of impulse 
noises are: 1) salt and pepper noise 2) random valued 
impulse noise. Various non-linear filtering techniques are 
formulated here. Salt and pepper noise is effectively 
removed by Standard Median Filters (SMF) by preserving 
the edges but flatters at high noise densities [18]. The 
above drawback is eliminated by an adaptive median filter 
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(AMF), but owing to its increasing the window size lead to 
blurring of images [19]. In recent years, some threshold 
based median and related impulse noise filters were 
proposed such as Detail preserving filter (DPF) [20], 
Pixel-wise MAD (PWMAD) [21] filter, Signal dependent 
rank order mean (SD-ROM) filter [22], Switched median 
filters [23], [24]. The above said filters do not have a 
strong decision or does not consider the local information. 
Hence, at heavy noise levels, they fail without preserving 
the original image details. To avoid the blemish, Decision 
based filter (DBA) [25] was proposed. This filter identifies 
the processed pixel as noisy, if the pixel value is either 0 
or 255; else, it will be considered as not noisy. Under High 
noisy environment, the Decision based filter replaces the 
noisy pixel with neighborhood pixel. In spite of repeated 
replacement of neighborhood pixel results in streaks in 
restored image. To avoid the streaks in images, a Decision 
based modified median filter (DBMMF) [36] is proposed.  
 

Algorithm of DBMMF: The Decision based 
modified median filter (DBMMF) initially detects impulse 
and corrects it subsequently. All the pixels of an image lie 
between the dynamic ranges [0, 255]. If the processed 
pixel holds minimum (0) or maximum (255), pixel is 
considered as noisy and processed by DBMMF else as not 
noisy and the pixel is unaltered. The brief illustration of 
the algorithm is as follows: 

Step 1: Choose the window (2-D) of size 3x3. 
Pixels present in the current window are assumed as A

xy
.  

Step 2: Check for the condition 0 < A
xy 

< 255, if 

the condition is true then consider the pixel as not noisy 
and left unaltered.  

Step 3: If the processed pixel A
xy 

holds 0 or 255 

i.e. (A
xy

=0 or A
xy 

=255) then pixel A
xy 

is considered as 

corrupted pixel. Convert 2-D array into 1-D array. Sort the 
1-D array which is assumed as D

xy
.  

Step 4: Initialize two counters, forward counter 
(FC) and reverse counter (RC) with 1 and 9 respectively. 
When a 0 or 255 are encountered inside the window FC is 
increased by 1 or RC is decremented by 1 respectively. 
When the pixel is noisy, there happens to be two possible 
cases.  

Case I: If the processing pixel is noisy and the 

current processed window contains few 0’
s 

and 255’
s. 

So 
check for 0 or 255 in sorted array D

xy
, simultaneously 

counters would propagate along the D
xy 

array thereby 

eliminating outliers retaining only the pixel that hold 
values other than 0 and 255. After checking all the pixels 
FC and RC would hold a particular value that indicates the 
number of outliers are eliminated on either sides. The 
noisy pixel is replaced by the midpoint of the sorted array. 

Case II: Every pixel that exists inside the kernel 
is the combination of 0 or 255. Even this condition is 
addressed by the case I operation, thereby making the 
algorithm simple. When all the pixel elements hold 0 or 

255 then the values are retained, assuming it as texture of 
the image.  

Step 5: Steps 1 to 4 is repeated until all pixels of 
the entire image is processed. 

The Quantitative performance of the DBMMF 
algorithm is evaluated based on Peak signal to noise ratio 
(PSNR) and Image Enhancement Factor (IEF) as in 
equations (1) to (3). 
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Here, ),( jiX and ),( jiY are the input and output 

images respectively,  ji,C  is the corrupted image, N is 

the total number of pixels in the input or output images 
and L is the number of intensity value. 
 

Table-1. PSNR for CT Chest image at different noise 
densities 

 

Noise in 
% 

PSNR in DB 

SMF AMF DPF DBA DBMMF

10 % 38.2 45.1 37.9 43.7 46.4 

20 % 34.5 42.7 31.2 40.1 43.1 

30 % 27.9 40.0 27.1 38.4 41.5 

40 % 23.4 35.4 23.5 36.7 40.7 

50 % 19.7 29.3 20.9 34.9 38.6 

60% 15.1 24.7 18.4 37.3 36.2 

70 % 13.0 20.6 17.8 35.1 34.9 

80 % 11.4 16.8 15.4 33.7 33.6 

90 % 9.8 12.4 11.4 31.3 31.7 
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Table-2. IEF for CT Chest image at different noise 
densities. 

 

Noise in 
% 

IEF 

SMF AMF DPF DBA DBMMF

10 % 93.7 257.2 75.1 246.2 540.3 

20 % 76.2 268.3 36.7 265.4 519.4 

30 % 62.3 235.3 19.6 279.1 465.8 

40 % 43.1 189.7 15.3 221.4 460.3 

50 % 25.8 93.1 13.4 203.4 435.7 

60% 14.5 39.0 10.7 182.3 402.9 

70 % 5.3 15.4 8.6 146.5 359.4 

80 % 3.9 9.3 7.3 119.2 295.7 

90 % 2.7 6.4 6.9 66.8 184.1 

 
From the Tables 1 and 2, it can be readily 

observed that the DBMMF algorithm has high PSNR and 
IEF when compared to other algorithms. The DBMMF 
algorithm gives excellent noise suppression capabilities in 
gray scale images corrupted by salt and pepper noise for 
high noise densities and also fairs well in preserving the 
global edge of the high detail images and outclasses other 
classical and existing recent algorithms. 
 
Histogram partitioning process 

Each image has different histogram, which 
depends on the brightness and darkness of the image 
(intensity value), and this histogram is partitioned to 
enhance the image. The proposed QDAPLHE method 
divides the histogram into four sub histograms based on 
mean value. The mean-based partition approach tends to 
segment the number of pixels equally in each sub 
histogram. Hence, each separating point can be calculated 
using the following equations: 
 

}{25.1 hw IIs           (4) 

 
}{5.2 hw IIs                 (5) 

 
}{75.3 hw IIs          (6) 

 
Where s1, s2 and s3 are intensities set to 0.25, 0.50 

and 0.75, respectively, for the total number of pixels in the 
histogram of the input image. Iw and Ih represent the width 
and height of the input image, respectively. 
 
Clipping process 

Histogram equalization stretches the high contrast 
region of the histogram, and compresses the low contrast 
region of the histogram [27]. As a consequence, when the 
object of interest in an image occupies only a small 
portion of the image, then the object will not be 
successfully enhanced by histogram equalization. 

 Histogram equalization method causes level 
saturation effects as it extremely pushes the intensities 
towards the right or the left side of the histogram. 

A clipped histogram equalization method tends to 
overcome these problems by restricting the enhancement 
rate. It is known that the enhancement from histogram 
equalization is heavily dependent on the cumulative 
density function [c(x)]. Therefore, the enhancement rate is 
proportional to the rate of c(x). The rate of c(x) is given by 
the following equation 
 

)()( xpxc
dx
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by  
 

N

xh
xp

)(
)(                       (8) 

 
where )(xh  is the histogram for intensity value ‘x’ and 

‘N’ is the total number of pixels in the image. The 
enhancement rate is limited by limiting the value of p(x), 
or h(x) [28]. 

Therefore, the clipped histogram equalization 
modifies the shape of input histogram by decreasing or 
increasing the value in the histogram’s bins based on a 
threshold limit before the equalization takes place. This 
threshold limit is also known as the clipping limit, or 
clipping threshold (Tc) or the plateau level of the 
histogram and based on this threshold value, the 
histograms will be clipped.  

To avoid the intensity saturation and over 
enhancement problem, the proposed QDAPLHE method 
adopts the Clipped Histogram Equalization (CHE) to 
control the enhancement rate by defining a plateau limits 
automatically to each sub histogram. Here, the plateau 
limit (or Tc) is determined automatically by calculating the 
average occupied intensity in each sub- histogram. 
Each plateau limit is identified as  
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where )( kXh  is the histogram at the intensity level ‘k’. 

Clipping process is applied after finding the 
plateau limit. The clipped portion can be determined as  
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where  kci Xh  is the clipped histogram at intensity level 

‘k’. 
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While using the clipping process, all the values 
above the plateau limit (Tc) are removed, which may lead 
to loss on original intensity value of the image. Hence, the 
histogram in the clipped portion is adjusted using the 
equation (11). 
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where  kmci Xh  is the modified clipped histogram at 

intensity level ‘k’. 
This type of clipping process has the effect of the 

contrast enhancement and reduces the noise amplifying 
artifacts. 
  
Redistribution process 

Because of this clipping process, the sub 
histograms may not ensure the balance space in each sub-
histogram for sufficient contrast enhancement. When the 
side of the sub-histogram is narrow, contrast enhancement 
obtained in narrow stretching space is less significant and 
wide stretching space introduces redundant contrast 
enhancement. Consequently, the processed image tends to 
suffer from loss of image details and intensity saturation 
artifact. To overcome these drawbacks, the clipped portion 
is redistributed over the entire dynamic range.  For this, 
the proposed QDAPLHE method maintains the point s2 as 
the brightness preserving. The separating points of s1, s2 
and s3 are reassigned to a new grey level represented as t1, 
t2, and t3 respectively. 
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Where s0 and s4 are assigned to the minimum and 
maximum output intensity value. (ie., s0 = 0 and s4 = L-1 
(255)). The new dynamic ranges are determined for all the 
quadrant sub-histograms. 
 
Histogram equalization 

The final step in the proposed QDAPLHE 
method is to equalize each new quadrant sub-histogram 
independently. The output of histogram equalization, Y(X) 
of this sub-histogram can be determined by using the 
equation (15). 
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The total of the clipped histogram at i-th sub-

histogram Mi is given by 
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EXPERIMENTAL RESULTS AND DISCUSSIONS 

The performance of the proposed QDAPLHE 
method is tested on numerous images. The images like 
Einstein, girl, House and couple are taken from data base 
(http://decsai.ugr.es/cvg/dbimagenes/) and CT abdomen 
images were obtained from Kanyakumari Government 
medical college, Asaripallam, Tamil Nadu, India with the 
help of Dr. J. Ravindran. CT abdomen image of size 
256x256 pixels is taken to evaluate the capability of the 
proposed method. The proposed QDAPLHE method is 
qualitatively and quantitatively analyzed. 
 
Qualitative analysis 

The qualitative analysis involves performance 
comparison with existing brightness preserving methods, 
namely HE, BBHE, DSIHE, MMBEBHE, RMSHE, 
BPDHE and BHEPL. Figure-1 shows the output images 
produced by these HE methods for the CT abdomen 
image. 

From the experimental results, the enhancement 
produced by existing methods and proposed method are 
shown in Figures 1(a) to 1(i) for input images. In general, 
the conventional histogram equalization algorithms are 
prone to missing luminance levels due to the mapping 
function calculation and this will lead to cause the lack of 
information in case of a gradation background. To 
overcome these shortcomings, clipping based method 
(QDAPLHE) is developed and the output result is shown 
in Figure-1(i). 

Based on Figure-1(b), it is clear that the 
histogram equalization method enhances the images, but it 
also amplifies the noise level of the images. From the 
Figures 1c and 1f (BBHE, RMSHE), the drawback of 
these methods is obviously seen that they preserves the 
mean brightness of the images without emphasizing on the 
image details significantly, that is, the problem of intensity 
saturation occurs in some regions of the image even this 
methods improve the contrast of the image. 
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(a) Original Image         (b) HE              (c) BBHE 

 

         
(d) DSIHE     (e) MMBEBHE          (f) RMSHE 

 

         
(g) BPDHE            (h) BHEPL (i) Proposed DAPLHE 
 

Figure-1. Results for CT abdomen image. 
 

Figure-1(i) shows that the contrast of all the 
tested images is enhanced successfully using the proposed 
QDAPLHE method. In addition, this method preserves the 
image details successfully. Figures 1(g) and 1(h), shows 
that BPDHE and BHEPL methods produces acceptable 
and natural enhanced images. Compared to these BPDHE 
and BHEPL methods, the proposed QDAPLHE method 
reduces the intensity saturation problem and also it can 
significantly improve the performance. 
 
Quantitative analysis 

To prove the robustness of the proposed methods, 
three kinds of quantitative comparisons tests which are the 
absolute mean brightness error, Standard deviation and 
Peak signal to noise ratio have been evaluated and 
tabulated in Tables 3 to 5 respectively. 
 

Absolute mean brightness error (AMBE): The first test 
which is used as the performance measure is Absolute 
Mean Brightness error (AMBE). AMBE is used to 
evaluate the ability of the enhancement method to 
maintain the mean brightness.  
 

 mm YXAMBE                    (17) 

 
where, Xm is the mean of the input image and Ym is the 
mean of the output image  

The minimum value of AMBE results that the 
mean brightness of the input is successfully maintained in 
the output image. Table-3 shows the AMBE measure 
obtained for the sample images. The AMBE values 
calculated by the existing methods HE, BBHE, RMSHE 
are compared with the AMBE value of proposed method. 
From the Table-3, it can be readily observed that the 
proposed method QDAPLHE has 13.13% less AMBE 
average value when compared to BHEPL, the method with 
second minimum average value. 
 
Standard deviation (Image Contrast):  By measuring 
the standard deviation, the contrast of the image can be 
studied. Standard Deviation ‘σ’ is given by  
 







1

0

)()(
L

l

lpl                           (18) 

 

where Mean,  





1

0

)(
L

l

lpl and ‘ l ’ represents the pixel 

value in the image. 
From the Table-4, it is clear that the standard 

deviation value obtained for the proposed QDAPLHE 
method is less compared to all the existing methods for all 
the images. 
 
Peak signal to noise ratio (PSNR): Another quantitative 
test used to measure the richness of details and 
appropriateness is peak signal to noise ratio (PSNR). 
Based on mean squared errors (MSE), PSNR is defined as 
 

MSELPSNR /)1(log10 2
10                   (19) 

 
Table-3. Absolute Mean Brightness Error (AMPE). 

 

Images HE BBHE DSIHE MMBEBHE RMSHE (r=2) BPDHE BHEPL QDAPLHE

Einstein 17.17 19.27 12.07 14.27 10.17 3.65 3.07 1.97 

girl 5.29 23.51 4.46 3.04 0.45 2.4 0.13 0.07 

House 58.81 25.09 31.92 25.06 8.07 5.43 3.57 2.54 

couple 96.42 33.17 43.81 18.45 10.28 3.56 2.78 1.72 

CT abdomen 59.34 24.73 31.35 13.08 3.71 2.19 1.25 0.97 

Average 47.4 25.15 24.72 14.78 6.54 3.45 2.16 1.45 
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Table-4. Standard Deviation (STD). 
 

Images HE BBHE DSIHE MMBEBHE RMSHE (r=2) BPDHE BHEPL QDAPLHE

Einstein 73.59 73.81 73.94 62.31 57.95 52.43 41.72 35.51 

girl 75.41 70.12 75.49 68.73 37.85 35.57 27.21 28.13 

House 73.65 75.13 75.51 55.43 56.79 50.72 49.27 38.54 

couple 71.86 74.15 79.61 48.41 53.29 41.49 35.38 32.17 

CT abdomen 82.34 76.35 79.56 69.13 50.37 48.29 45.84 29.74 

Average 75.37 73.91 67.82 60.80 51.25 45.7 39.88 32.82 

 
Table-5. Peak Signal to noise Ratio (PSNR). 

 

Images HE BBHE DSIHE MMBEBHE RMSHE (r=2) BPDHE BHEPL QDAPLHE

Einstein 15.27 15.19 15.53 18.97 19.52 27.52 30.57 32.59 

girl 13.05 13.3 13.04 14.25 27.98 33.74 34.92 35.37 

House 10.81 14.26 13.92 21.45 21.32 24.63 28.64 31.49 

couple 7.56 13.16 11.64 19.56 19.64 29.34 38.24 42.34 

CT abdomen 16.54 23.25 18.16 23.45 31.23 32.74 33.78 37.19 

Average 12.64 15.83 14.46 19.54 23.94 29.54 33.23 35.79 

 
Where 
 

N

jiYjiX
MSE i j 



2
),(),(

         (20) 

 
),( jiX and ),( jiY are the input and output 

images respectively, N is the total number of pixels in the 
input or output images, and L is the number of intensity 
values. 
The PSNR values for different images are tabulated in 
Table-5. The PSNR values of three methods BPDHE, 
BHEPL and QDAPLHE are ranked the first, second and 
third highest values respectively. From the Table-5, it can 
be observed that the images processed by proposed 
QDAPLHE method produces the best PSNR values, as 
they are within the range [31 dB to 42 dB]. From these 
values, it can be concluded that the proposed method 
performs image contrast enhancement and produce images 
with a natural looking with less noise amplifying.  
In Overall, Both Qualitative And The Quantitative Tests 
Favor The Proposed Method QDAPLHE As The Best 
Among All The Existing Methods. Thus, It Can Be Stated 
That The Proposed Algorithm Produces The Best Image 
Enhancement.  
 
CONCLUSIONS 

Although the histogram equalization is simple 
and effective algorithm for enhancement, it leads to over 
enhancement and intensity saturation problem. To 
overcome this effect, dynamic histogram equalization is 
powerful method for enhancing the low contrast images, 
also in some cases it leads to noise amplification and 
intensity saturation problems. To overcome the level 

saturation effects occurred in histogram equalization, 
clipped histogram equalization methods are developed by 
restricting the enhancement rate. Hence, a new method 
QDAPLHE is proposed as a hybrid of Dynamic histogram 
equalization method and Clipped histogram equalization 
method. The qualitative and the quantitative analysis are 
performed on the proposed method and the results are 
represented in the Figure-1 and in the Tables 3 to 5. From 
the experimental results, both qualitative and the 
quantitative tests favor the proposed method QDAPLHE 
as the best among all the existing methods. Also this 
technique is more suitable for consumer electronic 
products where preserving the original brightness is 
essential. 
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