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ABSTRACT 

In this paper free vibration an elastically restrained tapered beam is investigated. The governing ordinary non-
linear equation of motion has been solved using Hamiltonian approach. To assess the accuracy of solutions, we compare 
the results with the HBM and IPM methods. The obtained results are in excellent agreement with previous results. The 
results show that the present method can be easily extended to other nonlinear oscillations and it can be predicted that 
Hamiltonian approach can be found widely applicable in engineering and physics. 
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1. INTRODUCTION 

Many engineering structures, such as offshore 
structure piles, oil platform supports, oil-loading terminals, 
tower structures and moving arms, are modeled as tapered 
beams. Since these structures are usually subjected to 
various excitation loads, such as wind loads, wave loads 
and other excitations, the calculation of their nonlinear 
natural frequencies is required for their design 
recommendations [1]. The free vibration frequencies of 
beams have been addressed by many researchers. 
Timoshenko et al. [2] proposed the natural frequencies of 
a beam supported by elastic springs and Winkler 
foundations. The arbitrary number of spring damper 
masses located at intermediate abscissa has also been 
utilized to study the free and forced vibration of a 
cantilever beam. Most previous work concerned with the 
topic of tapered beams has studied the free vibration 
characteristics of tapered beams with linear and rotational 
restraints. The transverse vibrations of non-uniform beams 
with axial loads and elastically restrained ends have also 
been considered by Auciello [3]. The Euler-Bernoulli 
theory was employed by Attarnejad et al. [4] to obtain the 
exact solution for the free vibration of a tapered beam with 
elastic restraints. Therefore, the natural frequencies and 
mode shape details of an Euler- Bernoulli beam with ends 
on elastic supports have been derived. 

On the other hand, in the last decades, scientists 
have proposed and applied some analytical methods to 
nonlinear equations. For example; the vibrational behavior 
of quintic nonlinear in extensional beam on two-parameter 
elastic substrate based on the three mode assumptions is 
investigated by Sedighi [5]. He employed parameter 
expansion method to obtain the approximate expressions 
of nonlinear frequency-amplitude relationship for the first, 
second, and third modes of vibrations. Hamiltonian 
approach is applied to the analysis of the nonlinear free 
vibration of a tapered beam by Pakar and Bayat [6]. 
Ghaffarzadeh and Nikkar [7] applied a new analytical 
method called the variational iteration method-II (VIM-II) 

for the differential equation of the large deformation of a 
cantilever beam under point load at the free tip. Askari et 
al. [8] applied He’s energy balance method and He’s 
variational approach to frequency analysis of nonlinear 
oscillators with rational restoring force. Sedighi and 
Daneshmand [9] studied nonlinear transversely vibrating 
beams by the homotopy perturbation method with an 
auxiliary term. Barari et al. [10] studied non-linear 
vibration behavior of geometrically non-linear Euler-
Bernoulli beams using variational iteration method and 
parameter perturbation method. An efficient iterative 
method is applied to the analytic Treatment of Nonlinear 
Fifth-order Equations by Saravi and Nikkar [11]. Bagheri 
et al. [12] studied the nonlinear responses of clamped–
clamped buckled beam. They used two efficient 
mathematical techniques called He’s variational approach 
and Laplace iteration method in order to obtain the 
responses of the beam vibrations. Salehi et al. [13] applied 
two efficient methods to consider large deformation of 
cantilever beams under point load. Younesian et al. [14] 
studied free oscillations of beams on nonlinear elastic 
foundations by VIM. Askari et al. [15] applied higher 
order Hamilton approach to nonlinear vibrating systems, 
and many other problems solved by these methods [16-
19]. 

Recently, the energy balance method as well as 
the iteration perturbation method (IPM), was utilized to 
analyze the non-linear problem of an elastically restrained 
tapered cantilever beam by Karimpour et al. [20]. The 
main goal of this paper is to present an alternative 
approach, namely Hamiltonian approach, for constructing 
highly accurate analytical approximations to the nonlinear 
oscillation problem. 
 
2. MATHEMATICAL MODELLING 

A schematic of the beam under study is shown in 
Figure-1. The physical properties, modulus of elasticity E 
and density ρ, of the beam are constants. The beam’s 
thickness and width vary linearly along the beam axis. The 
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restrained end of the beam is modeled by a torsional 
spring kr in combination with translational spring kt. The 
cross-sectional area and moment of inertia at the large end 
are A1 and I1, respectively [1]. 

The thickness of the beam is assumed to be small 
compared to the length of the beam, so that the effects of 
rotary inertia and shear deformation can be ignored. The 
beam transverse vibration can be considered to be purely 
planar and the amplitude of vibration may reach large 
values. 

Let us assume a general tapered beam with a 
concentrated mass m on the right side, while a dashpot 
with damping factor c at an intermediate abscissa is 
placed. The left bearing is also constrained by elastic 
springs with two transverse and rotational stiffnesses of kt 
and kr respectively. The equation of motion by neglecting 
the kinetic energy of the masses is therefore suggested as 
[20,21]: 
 

   (1) 
 

The c values as the constants of the general 
solutions for Eq. (1) are then found using the boundary 
conditions below: 
 

    (2) 
 

In Eqs. (1) and (2), z is the abscissa, L is the span 
of the beam, zd is the variable location of the dashpot, ρ is 
the mass density, and β is a numerical exponent of the 
cross section. The coefficients within the above equation 
are defined as [20]: 
 

   (3) 
 

It is, however, suggested to assume the beam 
motion is dominated by a single active mode. Therefore, a 
single mode approach to discretize the continuous 
Lagrangian is employed. The assumption is based on the 
concept below, where φ (z) and q (t) are the normalized 
assumed mode shape of the beam and an unknown time 
modulation of the assumed deflection mode φi(z), 

respectively. The beam system is eventually defined with a 
Lagrangian expression as described herein [20]: 
 

                                                      (4) 
 

                                   (5) 
 

         (6) 
 

                                              (7) 
 

 
 

Figure-1. A schematic for the tapered beam [20]. 
 

Apply the Euler-Lagrangian relation to the 
system Lagrangian: 
 

                                                     (8) 
 

After implementing the Euler-Lagrangian 
relationship, the following nonlinear dimensionless uni-
modal equation of motion is obtained: 
 

                    (9) 
 

A dot is used to denote a derivative with respect 

to the non-dimensional time and t*= (β2β3/β1)0.5t, 1 =β2/ 

β1and 2 =2β4/ β3 are dimensionless coefficients. 

Eq. (57) models the nonlinear, planar, flexural 
free vibration of the inextensible tapered beam. Indeed, the 
kinetic energy which arises from the inextensibility 
condition causes inertial nonlinearities, shown by the 
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terms 2
1 qq  . These parameters also lead to a decrease in 

the natural frequency when the vibration amplitude 
increases. 

The third term, 3
2 q denoting the hardening 

static type, leads to an increase in the natural frequency 
when the vibration amplitude increases. As a result of the 
above illustrations, the behavior of the elastically 
restrained tapered beam analyzed through the present 
contribution is either hardening or softening depending on 

the ratio 2/1   [22]. 

 
3. BASIC CONCEPT OF THE PROPOSED METHOD 

The Previously, He [23] had introduced the 
energy balance method based on collocation and 
Hamiltonian. Recently, in 2010 it was developed into the 
Hamiltonian approach [24]. This approach is a kind of 
energy method with a vast application in conservative 
oscillatory systems. In order to clarify this approach, 
consider the following general oscillator: 
 

                            (10) 
With initial conditions: 
 

                         (11) 
 

Oscillatory systems contain two important 
physical parameters, i.e. the frequency ω and the 
amplitude of oscillation A. It is easy to establish a 
variational principle for Eq. (10), which reads; 
 

                     (12) 
 

Where T is period of the nonlinear oscillator and f
u

F



  

In the Eq. (12), 2/2u is kinetic energy and F(u) 
potential energy, so the Eq. (12) is the least Lagrangian 
action, from which we can immediately obtain its 
Hamiltonian, which reads: 
 

          (13) 
 
From Eq. (13), we have; 

                                                                        (14) 

Introducing a new function, )(uH , defined as: 

 

                 (15) 
 

Eq. (14) is, then, equivalent to the following one; 
 

                                                                 (16) 
 
Or 
 

                                                    (17) 
 

From Eq. (17) we can obtain approximate 
frequency-amplitude relationship of a nonlinear oscillator. 
 
4. APPLICATION OF THE PROPOSED METHOD 

Rewriting To illustrate the basic procedure of the 
present method, the Hamiltonian of Eq. (1) can be written 
in the form: 
 

             (18) 
 

Introducing a new function, )(qH . Integrating 

Eq. (18) with respect to t from 0 to t*, we obtain: 
 

          (19) 
 

Assuming that the solution can be expressed as 

)cos( *tAq  and substituting it into Eq. (19) yields: 

 

 (20) 
 
The stationary condition with respect to A leads to: 
 

 (21) 
 
Solving Eq.(21), according to ω, we have 
 

 (23) 

If we collocate 4/*  t at we obtain: 
 

                 (24) 
 

To demonstrate and verify the accuracy of this 
new approximate analytical approach, a comparison of the 
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time history oscillatory displacement responses with 
previous results are presented in Table-1. It can be 
observed from Table-1 that there is an excellent agreement 
between the results for different values of A and constant 

value 12    

 
Table-1. Comparison of frequencies corresponding to 

various parameters of a system for different values of A. 
 

12    A  

ωIPM ωHBM ωHA  

1.00124 1.00124 1.00124 0.1 

1.02740 1.02740 1.02740 0.5 

1.08012 1.08012 1.08012 1 

1.20953 1.20953 1.20953 5 

1.22073 1.22073 1.22073 10 

 
5. CONCLUSIONS 

In this paper, the main purpose was to illustrate 
the application of Hamiltonian approach in solving 
nonlinear oscillator arising in the elastically restrained 
tapered beam. Also, the capabilities and facile applications 
of this method have been demonstrated in comparison 
with the harmonic balance method and iteration 
pertrubation method. 
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