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ABSTRACT 

This paper compares two approaches in identifying outliers in multivariate datasets; Mahalanobis distance (MD) 
and robust distance (RD). MD has been known suffering from masking and swamping effects and RD is an approach that 
was developed to overcome problems that arise in MD. There are two purposes of this paper, first is to identify outliers 
using MD and RD and the second is to show that RD performs better than MD in identifying outliers. An observation is 
classified as an outlier if MD or RD is larger than a cut-off value. Outlier generating model is used to generate a set of 
data and MD and RD are computed from this set of data. The results showed that RD can identify outliers better than MD. 
However, in non-outliers data the performance for both approaches are similar. The results for RD also showed that RD 
can identify multivariate outliers much better when the number of dimension is large. 
 
Keywords: mahalanobis distance, robust distance, FMCD, cut-off value. 

 
INTRODUCTION 

Outliers are data points or observations that 
deviate markedly from other members of the observations 
or data points which are unusually large or small from the 
majority of the observations (Aguinis, Gottfredson, and 
Joo, 2013; Barnett and Lewis, 1984; Cousineau, 2010; P. 
J. Rousseeuw and Zomeren, 1990; Su and Tsai, 2011). 
They are also called the abnormal data behaviour (P 
Filzmoser, n.d.). Normally, outliers stem from 
measurement or recording error, natural variation of the 
underlying distribution, or a sudden alteration in the 
operating system (Su and Tsai, 2011). Outliers have a big 
effect whether it negative or positive effect. It may cause 
negative effect on data analyses such as ANOVA and 
regression or positive effect when outliers may provide 
useful information about the data (Seo, 2006). 

In some applications outliers can be helpful and 
informative although it always been highlighted as an 
abnormal observations and make modeling difficult (Su 
and Tsai, 2011). Application of identification of outliers 
have been used in fraud detection, health problems of a 
patient, public health, players’ performances in sport 
statistics (Kriegel, Kröger, and Zimek, 2010) and in 
geochemical exploration as an indication for mineral 
deposits (P Filzmoser, n.d.). Identification of outliers can 
be hard to detect when dimension of p exceeds two 
(multivariate data) (P. J. Rousseeuw and Zomeren, 1990).  
Mahalanobis distance (MD) has been used as a classical 
or basis method for multivariate outlier detection (P 
Filzmoser, n.d.). MD tell us how far the observations is 
from the center of the data, taking into account the shape 
of the data (P. J. Rousseeuw and Zomeren, 1990) and 
also used as a measure of similarity between the 
observations (Peter Filzmoser, Ruiz-Gazen, and Thomas-
Agnan, 2013). A large value of MD may mean that the 
observations is an outlier (Aguinis et al., 2013). Problems 

that always arise in using MDare the classical sample 
mean and covariance matrix. Classical sample mean and 
covariance matrix are affected by the masking and 
swamping effects (P. J. Rousseeuw and Zomeren, 1990). 

Due to these problems, robust estimators are 
been used and substituted in the distance formula which 
yield robust distance. Robust estimators such as M-
estimator, S-estimator, MM-estimator, MVE, MCD and 
Fast-MCD (FMCD) estimator have been proven to 
identify outliers better than classical estimator. Among 
the robust estimators, FMCD has been shown to be the 
best estimator compare to other robust estimators.  

There are two purposes of this paper. First is to 
identify outliers using MD and RD (FMCD) and the 
second is to show that RD can identify outliers better than 
MD. In literature review section, the robust estimators 
will be discussed. The related model or formulas will be 
explained in methodology section and the results of the 
simulation will be shown and discussed in the result and 
discussion section. Finally, the conclusion of the 
simulation study will end this paper. 
 
LITERATURE REVIEW 

Robust estimators of mean and covariance had 
been developed since the problem of outliers raised and 
the disadvantage of classical estimator in contaminated 
data. Since then most of the studies attempted to build 
estimators that have high breakdown point, affine 
equivariant and have better statistical efficiency. S-
estimator, M-estimator, MM-estimator, MVE-estimator, 
MCD-estimator and Fast-MCD estimator are among 
robust estimators that have been presented in the study.  
 Rousseeuw (1984) addressed that to construct a 
high breakdown estimator of multivariate location that is 
equivariant for affine transformations is a difficult 
problem. This is because high breakdown point alone is 
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not a sufficient condition for agood method. Following 
this, Rousseeuw (1985) studied whether it is at all 
possible to combine a high breakdown point with affine 
equivariance for multivariate estimation. It is found that 
Minimum Volume Ellipsoid estimator (MVE) and 
Minimum Covariance Determinant (MCD) estimator 
both are affine equivariant estimators with a high 
breakdown. The mean of MVE was defined as center of 
the minimal volume ellipsoid covering at least h points of 
X. While the mean of MCD was defined as mean of the h 
points of X for which the determinant of the covariance 
matrix is minimal. In addition, Rousseeuw (1985) also 
found that 50% breakdown estimators MVE and MCD 
have low asymptotic efficiencies. 
 Rousseeuw and Yohai (1984) also raised the 
same question as Rousseeuw (1984) which is to find 
robust regression with high breakdown point. However, 
the purpose of their study is to construct an estimator that 
have 50% breakdown, affine equivariant and more 
efficient. As a result, they developed S-estimators in 
order to produce robust regression techniques. S-
estimators are basically based on estimators of scale. It is 
found that S-estimators do not break down easily when 
the data are contaminated and clearly are affine 
equivariant. S-estimators also could be used for robust 
analysis of variance, even in the general linear model. 
However, the computations of S-estimators are 
complicated and belong to the highly computer-intensive 
part of statistics. 
 Rousseeuw and Bert C. van Zomeren (1990) 
proposed computation of distances based on very robust 
estimates oflocation and covariance. Minimum Volume 
Ellipsoid (MVE) estimator for mean and covariance are 
used to compute robust distance. They applied it to 
various data sets and found that robust distance can 
identify outliers more efficiently compared to MD and 
also found to be useful to identify outliers in multivariate 
data. They also used robust distance to identify leverage 
points in regression. The hat matrix which is often used 
to identify leverage points is actually related to MD 
which is fail to identify leverage points in the presence of 
outliers. By robust distance, the leverage points can be 
identified between good and bad ones. In addition, their 
study also proposed a new display in which the robust 
regression residuals are plotted versus the robust 
distances. 
 P. J. Rousseeuw and Katrien (1999)developed a 
new algorithm for MCD called Fast-MCD (FMCD). 
FMCD is developed due to the existing algorithms that is 
limited to a few hundred objects in few dimensions (P. J. 
Rousseeuw and Katrien, 1999). FMCD algorithm used 
selective iteration and nested extension techniques which 
is faster than existing algorithm (P. J. Rousseeuw and 
Katrien, 1999). As a result, FMCD give accurate results 
for large datasets and exact MCD for small datasets (P. J. 
Rousseeuw and Katrien, 1999). It is also concluded that 

MCD becomes a routine tool to analyze multivariate data 
due to FMCD (P. J. Rousseeuw and Katrien, 1999). 
 Herwindiati, Djauhari, and Mashuri (2007) 
found that MVE, MCD, modified MCD (MMCD) and 
FMCD may not computationally efficient for large data 
sets with high dimension. They proposed a new estimator 
called Minimum Vector Variance (MVV). All the robust 
estimators above used covariance determinant (CD) but 
MVV used vector variance (VV). The computation of 
VV is simple and efficient and  does not need to be 
positive definite (Herwindiati et al., 2007). Their study 
conclude that the use of VV as a measure dispersion is a 
promising approach (Herwindiati et al., 2007). 
 Djauhari (2011) claimed that multivariate 
dispersion received less attention in the literature. It is 
probably due to the fact that there is no strongly suitable 
measure that can explain the whole covariance structure 
(Djauhari, 2011). Multivariate dispersion is difficult to 
measure, and thus to manage, because of the complexity 
of covariance structure (Djauhari, 2011). There is no 
single measure that can properly represent the whole 
structure (Djauhari, 2011). Vector variance has good 
properties and can be used as an alternative to 
generalized variance (Djauhari, 2011). However, its 
geometric interpretation in terms of random sample is 
still vague (Djauhari, 2011).  

The applications of MD can be seen in Gaussian 
classifiers or discriminant function. MD is the distance 
that been used in Gaussian classifier. Due to the masking 
effect from MD, the computation of Gaussian classifier 
can be affected and lead to misclassification (Matthias 
and Ekenel, 2005). Matthias and Ekenel (2005) propose 
to weight the different features in the MD according to 
their distances after the variance normalization. The 
weighted MD then is plug in Gaussian classifier 
(Matthias and Ekenel, 2005). It is found in a series of 
experiments, the improved robustness for Gaussian 
classifiers is better than traditional approach. 
 
METHODOLOGY 

Most of the studies in identification of outliers 
used outlier generating model orcontamination model. 
Random data aregenerated from the following outlier 
generating model(Herwindiati et al., 2007). 
 

     1 21 , ,p p p pN I N I    
 

 

 

The proportion of  1  is represent non-

outliers data and  is represent the outliers data. 600 
random data are generated 
with 3,10p  , 0, 0.1, 0.25, 0.4  , 1 0 


, 2 5e 

 
and 

(1 1 1.....1)te 


. Squared MD and squared RD for each 

observation are computed as below: 
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   2 1 ,       1,2,....,
T

i i x iMD i n   x x C x x  

 

   2 1 ,       1,2,....,
T

i i MCD MCD i MCDRD i n   x x C x x  

 

x  and 1C are sample mean and inverse covariance 

matrix. Whereas MCDx  and 1
MCD
C are sample mean and 

covariance of MCD estimator. 
 In order to identify an outlier, the selected cut-off 
value is 2

0 ,0.975pD  . An outlier is then identified if and 

only if 2
0iMD D and 2

0iRD D  (Hubert and Van 

Driessen, 2004). The simulations are repeated 100 times 
using R.  
 
RESULTS AND DISCUSSIONS 

Table below showed the number and proportion 
(bracket) of outliers that MD and RD can identify.  As 
can be seen for clean datasets or no outliers, both 
approach showed similar performance for 3,10p  . For 

the values of 0.1,0.25,0.4  , it is shown that robust 
distance can identify outliers better than MD. However, 
forthe value 0.4  , RD identifies the outliers much 
better when p increases.  

 
Table-1. Number of outliers and % of outliers for p = 3 and p = 10. 

 

 % of outliers ( ) 

p 
0 0.1 0.25 0.4 

MD RD MD RD MD RD MD RD 

3 
15 

(0.025) 
22 

(0.037) 
28 

(0.047) 
76 

(0.127) 
12 

(0.020) 
158 

(0.263) 
10 

(0.017) 
167 

(0.278) 

10 
14 

(0.023) 
22 

(0.037) 
22 

(0.037) 
77 

(0.128) 
13 

(0.022) 
161 

(0.268) 
12 

(0.020) 
248 

(0.413) 
 

Graph below will provide a clear picture for the 
results above. Both graph showed the estimate value 
using MD decreases as the value of  (% of outliers - 
actual) increases. It is also shown that the value of 
estimate for MD is far from actual value. As for RD, the 

estimate value gets much better as  increases. Next, we 
look at the estimate value for RD only. The estimate 

3p   is far from the actual value. When p is increased to 
10p  , the value is close to the actual value. 

 

 

Figure-1. % of outliers for actual and estimate using MD and RD. 
 

Next, we plot MD and RD. The line in each plot 
is the cut-off value. Obviously RD can separate outliers 
more clear than MD for all cases. For MD cases, the 
separations of outliers and non-outliers data are still not 

clear. However, as for RD, the separation much clear as 
p and  increases. 

 
 



                                       VOL. 10, NO. 1, JANUARY 2015                                                                                                                 ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
329

  0 0.1 0.25 0.4 

MD 

   

RD 

 

 
  

 

Figure-2. Plot distance of MD and RD for p = 3. 

 
  0 0.1 0.25 0.4 

M
D 

  

 
 

R
D 

 
   

 

Figure-3. Plot distance of MD and RD for p = 10. 
 
CONCLUSIONS 

MD is recognized as having masking and 
swamping effects due to classical estimator of mean and 
covariance. In order to overcome this problem, robust 
estimators are been developed which is not influenced by 
outliers. In this study, we compare two approaches which 
are MD and RD in order to identify outliers in 

multivariate datasets. It is shown that RD and MD have 
shown no difference in non-outliers datasets. However, as 
the number of outliers increase, RD identifies outliers 
much better than MD. In addition, RD identifies outliers 
much better in datasets that have large number of 
dimensions.  
 



                                       VOL. 10, NO. 1, JANUARY 2015                                                                                                                 ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
330

REFERENCES 
 
Aguinis H., Gottfredson R. K. and Joo H. 2013. Best-
Practice Recommendations for Defining, Identifying, and 
Handling Outliers. Organizational Research Methods. 
270-301.  
 
Barnett V. and Lewis T. 1984. Outliers in Statistical Data 
(2nd Edition). John Wiley and Sons.  
 
Cousineau D. 2010. Outliers Detection and Treatment: A 
Review. International Journal of Psychological Research. 
3(1): 58–67. 
 
Djauhari M. A. 2011. Properties of Vector Variance. 
27(1): 51-57. 
 
Filzmoser P. (n.d.). A Multivariate Outlier Detection 
Method. 1-5. 
 
Filzmoser P., Ruiz-Gazen A. and Thomas-Agnan C. 
2013. Identification of Local Multivariate Outliers. 
Statistical Papers. 55(1): 29-47.  
 
Herwindiati D. E., Djauhar, M. a. and Mashuri, M. 2007. 
Robust Multivariate Outlier Labeling. Communications 
in Statistics - Simulation and Computation. 36(6): 1287-
1294.  
 
Hubert M. and Van Driessen K. 2004. Fast and robust 
discriminant analysis. Computational Statistics and Data 
Analysis. 45(2): 301-320.  
 
Kriegel H., Kröger P. and Zimek A. 2010. Outlier 
Detection Techniques. In The 2010 SIAM International 
Conference on Data Mining. 
 
Matthias W. and Ekenel H. K. (n.d.). Feature Weighted 
Mahalanobis Distance : Improved Robustness for 
Gaussian Classifiers. 
 
Rousseeuw P. 1984. Least Median of Squares 
Regression. Journal of the American Statistical 
Association. 79(388): 871–880.  
 
Rousseeuw P. 1985. Multivariate Estimation with High 
Breakdown Point. Mathematical Statistics and 
Applications, B. 283–297. 
 
Rousseeuw P. J. and Katrien V. D. 1999. A Fast 
Algorithm for the Minimum Covariance Determinant 
Estimator. Technometrics. 41(3): 212-223. 
 

Rousseeuw P. J. and Zomeren B. C. van. 1990. 
Unmasking Multivariate Outliers and Leverage Points. 
Journal of the American Statistical Association. 85(411): 
633-651. 
 
Rousseeuw P. and Yohai V. 1984. Robust Regression by 
Means of S-Estimators. In J. Franke, W. Härdle, & D. 
Martin (Eds.). Robust and Nonlinear Time Series 
Analysis SE. 15 (26): 256-272. Springer US.  
 
Seo S. 2006. A Review and Comparison of Methods for 
Detecting Outliers in Univariate Data Sets. University of 
Pittsburgh. 
 
Su X. and Tsai C.-L. 2011. Outlier Detection. Wiley 
Interdisciplinary Reviews: Data Mining and Knowledge 
Discovery. 1(3): 261-268.  


