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ABSTRACT 

System identification is a class of control system engineering that determines physical functionality of a plant and 
represents them in the form of mathematical expression by utilizing real experimental data. It is a process of acquiring, 
formatting, processing, and identifying mathematical models by considering raw data from the real-world system. Once the 
mathematical model is chosen, it can be characterized in terms of suitable descriptions such as transfer function that can be 
used for controller design. Most essential stages of model identification process can be summarized into four main stages. 
The first stage is collecting experimental data. Then, the model order and structure are chosen. The next stage is to estimate 
the parameters of the model and finally, the mathematical model is validated. Model order selection and parameter 
estimation are two significant aspects of determining the mathematical model for system identification. In this paper, an 
approach termed as Simultaneous Model Order and Parameter Estimation (SMOPE), which is basically based on 
Gravitational Search Algorithm (GSA), is proposed to combine these two parts into a simultaneous solution. In this 
technique, both the model order and the parameters of the system are computed simultaneously to obtain the best 
mathematical model of a system. According to heating system case study, it is proven that the proposed method is 
outstanding in comparison with some other approaches in literature. 
 
Keywords: gravitational search algorithm, system identification, model order selection, parameter estimation.  
 
INTRODUCTION 

Conventionally, least mean square (LMS) as well 
as other algorithms has been discovered for the 
identification of linear and static systems [1]. The goal of 
system identification is to adjust parameters of 
mathematical model in order to approximate actual 
parameters of an unidentified system from its inputs and 
outputs. This is implemented by varying the parameters of 
the developed model so that for a set of assigned inputs, its 
output match with actual system. In such cases, 
minimization of an objective function (generally the mean 
square error between actual output of unidentified system 
and predicted output) is usually followed by gradient 
based iterative search algorithms. 

However, in cases where the error surface 
(objective function) is multimodal, gradient-based 
approaches typically unable to succeed in converging to 
the global minimum. Therefore conventional approaches 
of parameter approximation are unsuccessful since they 
get trapped into local minimum and consequently unable 
to reach the global minimum [2]. In this situation, heuristic 
optimization techniques that require no gradient which 
enables them to attain a global optimal solution deliver 
significant capabilities in dealing with these particular 
challenging system identification problems. For that 
reason the problem of system identification can be 
considered as optimization problem. System identification 
implementing these heuristic algorithms is mentioned in 

some researches [3-6]. In spite of this, identification of 
systems without prior structural information is still 
challenging, hence new and innovative algorithms are 
increasingly being researched. 

A schematic of system identification problem 
utilizing the heuristic search algorithms is shown in 
Figure-1. The difference of the output from the actual 
system with the modeled system gives the error e(k). This 
error is used by the heuristic algorithm to adjust and tunes 
the parameters of the ARX model, which are the pole-zero 
coefficients and thus minimize the error in a number of 
iterations to effectively identify the actual system. 

Five years ago, a heuristic search algorithm, 
known as Gravitational Search Algorithm (GSA), has been 
introduced inspired by the gravitational law and laws of 
motion [7]. It is indicated as a simple idea that is both 
convenient to execute and computationally effective. GSA 
has a functional and well-balanced mechanism to improve 
exploration and exploitation capabilities. 

System identification can be categorized based on 
their technique such as parametric model identification 
and non-parametric model identification. Non parametric 
identification technique in comparison with parametric 
identification technique is relatively simple but less 
accurate. However, parametric model identification 
provides complete model description that truly describes 
the physical dynamics of a system. Examples of model 
structures for parametric identification are Auto-
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Regressive Model with Exogenous Inputs (ARX) [8], 
Auto-Regressive Moving Average with Exogenous Inputs 
(ARMAX) [9], and Box-Jenkins (BJ) model [10]. 
 

 
 

Figure-1. A schematic of system identification problem 
utilizing the heuristic search algorithms. 

 

 
 

Figure-2. ARX model structure 

 
ARX is the most basic model in linear black box 

identification. In dealing with the linear black box 
identification problem of the ARX model, the model order 
selection and parameter estimation part is solved with 
separated process. This separation may result the 
identified mathematical model not offer the best 
performance. The process needs to be repeated with the 
nearest model order to ensure that the best performance 
improvements are attained. Due to this fact, both of these 
parts should be merged into individual stage to obtain the 
ideal performance of the model. 

In this research project, we explore the possibility 
to perform model order selection and parameter estimation 
simultaneously. We found that the combination is possible 
considering the fact that the process of system 
identification can also be recognized as optimization 
problem. In mathematics and computer science, 
optimization is the problem of acquiring the best solution 
from all feasible solutions.  

In this paper, GSA is proposed to simultaneously 
identify model order and pole zero parameters of heating 

system without prior structural information. To validate 
the effectiveness of the proposed GSA, the performance of 
GSA is also compared with other existing techniques in 
literature. 

The rest of the paper is organized as follows. The 
proposed SMOPE-GSA is presented in the next section to 
give a proper background. This section is followed by 
experimental results and comparison with other methods 
in Section 3. Lastly, the paper is concluded in Section 4. 
 
SIMULTANEOUS COMPUTATION OF MODEL 
ORDER AND PARAMETER ESTIMATION 

In this part, an alternative approach for solving an 
ARX model will be highlighted. The technique is called 
the simultaneous model order and parameter estimation 
utilizing GSA as an optimizer (SMOPE-GSA). The 
strategy in SMOPE incorporates both solution of model 
order selection and parameter estimation in identification 
problem simultaneously by using GSA. 

The simplest form of time-domain system 
identification is ARX model, which has the following 
structure as shown in Figure-2.  The figure shows input 
and output variables, u(t) and y(t) respectively. ɛ(t) is a 
Gaussian white noise process. A(q) and B(q) are 
polynomials in the backward shift operator, q-1

. Based on 
the ARX model structure, the single-input single-output 
(SISO) ARX mathematical model can be defined as: 

 

                                            (1) 

 
A linear differential equation and transfer 

function can be derived from that model as follows: 
 

      (2)  
 

                    (3) 

 
where m and n are the number of numerator and 
denominator orders of the transfer function respectively 
and an and bm are the pole and zero parameters that will be 
tuned by GSA as well as model order. 

In SMOPE-GSA, maximum order of 9th is 
considered. To determine the parameter ‘a’ and ‘b’, the 
constraint n ≥ m is taken into account. This is based on the 
transfer function form which the order value of poles (n 
value) must be the same or more than the order of zeroes 
(m value).
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Figure-3. Flowchart of GSA for SMOPE. 
 

Table-1. Particle representation. 
 

Dimension 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Variable in 
ARX 

Order, 
n 

a1 a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 b3 b4 b5 b6 b7 b8 b9 

 
The function of GSA, which is presented in 

Figure-3, is to identify the best mathematical model. The 
combination of model order and parameter for ARX 
equation are viewed in particle representation, which is 
shown in Table-1 while Table-2 and Table-3 indicate 
which ARX parameters should be decided for any 
assigned number of order, n. Hence, a set of 45 
mathematical models are tested according to n value. 

As an example, if the model order is 2, therefore 
‘n’ value is 2 and all possible mathematical models are 
subjected to fitness calculation. In that case, the 
computations focus on two mathematical models, which 

are  and .  

Another example, if the model order is 3, then the 
computations involve three mathematical models, which 

are  and 

. Note that up to ninth order 

mathematical model of ARX is taken into account for the 
purpose of this research.  

In the beginning phase of GSA, certain 
parameters are initialized. The GSA parameter values used 
in this research is shown in Table-4. The GSA parameter 
includes the number of agents, initial value, G0, α, and the 
maximum number of iterations, k. The initial placement of 
agents is randomly positioned in a search space. After the 
initialization stage is complete, the fitness function is 
computed as follows: 
 

 (4) 

Evaluate the fitness for each 

Generate initial population

Check constraint

Update the G, best and worst of 
the population

Update velocity and position

Meeting end of 
criterion? 

Calculate M and a for each 

Return best solution
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Table-2. ARX parameters selected for the calculation of best fit (n=1, 2, 3, 4, 5, 6). 
 

Order, n a1 a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 b3 b4 b5 b6 b7 b8 b9 

1 X         X         

2 X X        X         

2 X X        X X        

3 X X X       X         

3 X X X       X X        

3 X X X       X X X       

4 X X X X      X         

4 X X X X      X X        

4 X X X X      X X X       

4 X X X X      X X X X      

5 X X X X X     X         

5 X X X X X     X X        

5 X X X X X     X X X       

5 X X X X X     X X X X      

5 X X X X X     X X X X X     

6 X X X X X X    X         

6 X X X X X X    X X        

6 X X X X X X    X X X       

6 X X X X X X    X X X X      

6 X X X X X X    X X X X X     

6 X X X X X X    X X X X X X    

 
Note that the GSA assigns floating values to 

every dimension of an agent although the value of model 
order is discrete. Therefore, for the first dimension, the 
floating value is converted to discrete value by rounding 
its value. The search space at first dimension is limited 
between 0.5 and 9.4. We put this constrain for maintaining 
stability. 

In order to maximize the best fit, the fitness 
evolution is performed by evaluating the best and worst 
fitness for all agents at each of iteration. 
 

                                        (5) 
 

                                      (6) 
 
where represents the fitness value of the  agent 
at iteration t, best(t) and worst(t) represents the best and 
worst fitness at iteration t. Then, gravitational constant G 
is computed at iteration t. 
 

                                                             (7) 
 
where G0 and α are initialized at the beginning. T is the 
total number of iterations.  

After that, mass of each agent is calculated as 
follows: 
 

                                               (8) 

 

                                                         (9) 

 
To calculate acceleration of an agent, total forces 

from a set of heavier masses that apply on it should be 
considered based on law of gravity (Equation 10). 
 

 (10) 
 
where  is a uniform random variable in the interval 
[0,1],  is a small constant,  is the Euclidian distance 
between two agents i and j (Equation 11), and Kbest is the 
set of first K agents with the best fitness value and biggest 
mass. Kbest will decrease linearly with time and at the end 
there will be only one agent applying force to the others.  
 

                                           (11) 
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Based on the law of motion, the acceleration of 
the ith agent is computed by:  
 

                                                               (12) 

 

Finally, velocity and the position of the agents at 
next iteration (t+1) are computed based on the following 
equations: 
 

(t)                             (13) 
 

                                   (14) 
 

Table-3. ARX parameters selected for the calculation of best fit (n=7, 8, 9). 
 

Order, n a1 a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 b3 b4 b5 b6 b7 b8 b9 

7 X X X X X X X   X         

7 X X X X X X X   X X        

7 X X X X X X X   X X X       

7 X X X X X X X   X X X X      

7 X X X X X X X   X X X X X     

7 X X X X X X X   X X X X X X    

7 X X X X X X X   X X X X X X X   

8 X X X X X X X X  X         

8 X X X X X X X X  X X        

8 X X X X X X X X  X X X       

8 X X X X X X X X  X X X X      

8 X X X X X X X X  X X X X X     

8 X X X X X X X X  X X X X X X    

8 X X X X X X X X  X X X X X X X   

8 X X X X X X X X  X X X X X X X X  

9 X X X X X X X X X X         

9 X X X X X X X X X X X        

9 X X X X X X X X X X X X       

9 X X X X X X X X X X X X X      

9 X X X X X X X X X X X X X X     

9 X X X X X X X X X X X X X X X    

9 X X X X X X X X X X X X X X X X   

9 X X X X X X X X X X X X X X X X X  

9 X X X X X X X X X X X X X X X X X X 
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Figure-4. Input and output behavior of heating system. 
 
where  is a uniform random variable in the interval 
[0,1]. The purpose of this random number is to give 
stochastic characteristic to the search strategy. 
 
EXPERIMENT 
 
Heating system 

In heating system, the input drives a 300 Watt 
Halogen lamp, suspended several inches above a thin steel 
plate. The output is a thermocouple measurement taken 
from the back of the plate. The input and output of the 
experiment is shown in Figure-4, which is taken from 
http://www.esat.kuleuven.ac.be/sista/daisy. The data 
collect from the system is separated for training and 
testing. This training data is used to calculate the model 
order and parameter of the ARX while the testing data is 
used to validate the model. 

Table-4. GSA parameter values. 
 

Parameters Value 

Population size 100 

Dimension 19 

Initial value, G0 100 

α 20 

Maximum iterations 2000 

Number of run 50 

 
Experimental setup for SMOPE-GSA 

In the SMOPE-GSA technique, each particle 
chooses a suitable model order and parameters of the ARX 
model from 1st order up to 9th order. The GSA parameter 
values used in this experiment is shown in Table-4. In 
each execution, the numbers of data points are divided 
equally into the proportions of 50% for training samples 
and 50% for testing samples from the entire dataset. The 
portion is described by Ljung (1999) in solving 
conventional ARX [8].  

To validate this SMOPE-GSA technique, 
Equation 4 is taken into consideration. The output from 
identified mathematical model will be compared with 
actual output based on testing samples. The best fit for 
validation must be in good range to make sure other 
response from the system will give similar results to the 
model built. High best fit in the range of 80-100% is 
considered a good model. 
 

 
Table-5. Result of Best fit using SMOPE-GSA technique in heating system identification. 

 

Data set 

Best fit 
(Training) 

(%) 

Average best fit
(Training) 

(%) 

STDEV 
(Training) 

Best fit 
(Testing) 

(%) 

Average best fit 
(Testing) 

(%) 

STDEV 
(Testing) 

Min Max Min Max 
Heating system 

 
96.68 99.26 98.85 0.55 95.83 98.40 97.31 0.78 

 

 
 

Figure-5. Convergence curve for the maximum best fit 
value of the heating system converge at 660th iteration. 

RESULT 
All the results are shown in Table-5. The 

minimum and maximum value of best fit obtained in 
training is 96.68% and 99.26%, respectively. Average 
value of best fit is 98.85%. In testing, the minimum, 
maximum, and average best fits are 95.83%, 98.40%, and 
97.31%, respectively.  

Based on 50 experiments, Equation (15), 
Equation (16) and Equation (17) are the best three 
mathematical equation selected by SMOPE-GSA. 
 

                                  (15) 
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where the model order value is 2 and parameter value, b1 = 
0.0005, b2 = 0.4587, a1 = -1.2100, and a2 = 0.2314. 
 

                              (16) 

 
where the model order value is 2 and parameter value, b1 = 
0.3490, b2 = 0.2277, a1 = -0.9936, and a2 = 0.2244. 
 

                                                (17) 

 
where the model order value is 1 and parameter value, b1 = 
0.5700 and  a1 = -0.9735. 

The convergence curve is shown in Figure-5. 
This convergence curve shows that all the GSA agents 
search and optimize the parameters in order to find the 
best combination of model order and pole zero parameters 
indicated by highest percentage of best fit value.  
 

Table-6. Performance of SMOPE-GSA against existing 
methods applied to the heating system dataset. 

 

Method Best fit (%) 

SMOPE-GSA 97.3 

NOINSTR [11] 84.9 

Nuclear norm [12] 84.7 

IVM [11] 84.4 

CVA [11] 84.3 

N4SID [11] 82.5 

MOESP [11] 82.5 

NONE [11] 81.9 

 
In this heating system experiment, the SMOPE-

GSA converges at 660th iteration when finding the best 
mathematical model of Equation 15. 

The performance of SMOPE-GSA against 
existing methods is shown in Table-6. The performance of 
SMOPE-GSA is 97.3%, which is the highest best fit in 
dataset. It followed by Hansson et al. with 84.9% using 
NOINSTR and Liu et al. with 84.7% using nuclear norm. 
Others are 84.4% by IVM, 84.3% by CVA, 82.5% by 
N4SID and MOESP, and 81.9% by NONE.  
 
CONCLUSIONS 

This paper presented to analyze the performances 
of mentioned SMOPE-GSA. The entire outcome is 
calculated based on best fit percentage taken over 50 run. 
From evaluation based on heating system data, the 
mentioned SMOPE-GSA offers the satisfactory results in 
comparison with others. For future work, more case 
studies shall be considered to further assess the 
effectiveness of the SMOPE-GSA. 
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APPENDIX 
 
Example of transfer function from 1st order up to 9th order ARX model 
 
1st order 

 
 
2nd order 

 
 

 
 
3rd order 
 

 
 

 
 

 
 
4th order 
 

 
 

 

 
 

 
 
5th order 
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6th order 
 

 
 

 
 

 
 

 
 

 

 
 
7th order 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
8th order 
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9th order 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 


