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ABSTRACT 

This paper demonstrates the effect of convective cooling on a temperature dependent viscosity liquid flowing 
steadily through a cylindrical pipe. In this model, it is assumed that due to Newton’s cooling law heat is exchanged with 
the ambient and the viscosity model varies as an inverse linear function of temperature. The analytical expressions for fluid 
velocity and temperature are derived using Homotopy Analysis method and entropy generation rate, total entropy 
generated and the Bejan number for various parametric values are determined. Our results are compared with the previous 
work and found to be in good agreement. 
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1. INTRODUCTION  

There have been considerable interest in the 
studies related to viscous fluid with temperature dependent 
properties because of their application in industries like 
food processing, coating and polymer processing [1, 2]. 
The physiological fluid blood and fluids used in industries 
like polymer fluids have temperature dependent viscosity. 
Due to temperature changes these fluids alter their flow 
structure significantly [3-7]. Fluids with strong 
temperature dependence are subjected to significant 
changes due to viscous heating because of the coupling 
effect between the Navier-Stokes and energy equations. 
Costa and Macedonio [8] investigated the effects of 
viscous heat generation in fluids with temperature 
dependent viscosity model and concluded that these 
effects can play a vital role in the dynamics of magma 
flow. Elbashbeshy and Bazid [9] observed that the 
temperature dependent fluid viscosity model varies as an 
inverse linear function of temperature by studying the 
effects of temperature dependent viscosity model on heat 
transfer over a continuous moving surface. Makinde [10, 
11] investigated the flow of a liquid flim having variable 
viscosity along an inclined heated plate as well as the 
effects temperature dependent fluid viscosity on heat 
transfer due to reactive flow in a cylindrical pipe.   

According to second law of thermodynamics, all 
real processes are irreversible. Entropy generation and 
account of irreversibility are related in the real processes 
[12]. Entropy analysis can quantify thermodynamic 
irreversibility in a fluid flow process. Systems lose quality 
of energy and hence efficiency due to entropy generation 
[3-5, 13]. Through the books of Bejan [14, 15] studies on 
entropy generation in conductive and convective heat 
transfer processes developed significantly. Many other 

authors also proceeded remarkably in this study [6, 16, 
17]. Recently Tshehla et al. [18] performed second law 
analysis to study the entropy generation rate in a variable 
viscosity liquid. 

The objective of this paper is to study the effect 
of convective cooling on steady flow of a variable 
viscosity fluid through a cylindrical pipe and to investigate 
the entropy generation in its flow. The results are 
presented graphically and discussed quantitatively. 
 
2. MATHEMATICAL FORMULATION OF THE 
PROBLEM 

We consider the flow of a variable viscosity fluid 
which is in steady in the z -direction through a cylindrical 
pipe of radius a and length L under the action of a constant 
pressure gradient, viscous dissipation and convective 
cooling at the pipe surface [Figure-1]. The fluid is 
incompressible and the temperature dependent viscosity 

μ  can be expressed as [9]. 
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where 0μ  is the fluid dynamic viscosity at the ambient 

temperature aT                                      

The continuity, momentum and energy equations 
governing the problem in dimensionless form are given by 
[2, 10, 18] 
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We have to use the following dimensionless variables from the equations (2)-(6) 
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         Since the aspect ratio 0 <<<1, from the equations 
(2) – (6) we obtain the following   asymptotic 
simplification 
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where  αTμ  11                                                      (12) 

 
Now the eqns. (8) - (10) subject to the boundary 

conditions equations (11) and (12) can be combined and 
we obtain the dimensionless equations as follows:                                                                                                                                
 

 T
rG

dr

du



 1

2
                                             (13)  

 
and  

  01
4

23









αT
BrGr

dr

dT
r

dr

d

                                 (14) 
 
The corresponding boundary conditions are as follows: 
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is the constant axial pressure gradient. 
The entropy generation number [1] is given by  
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        The dimensionless form of the total entropy 
generated [18] is given by 
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 where 1N  and 2N  are given by 
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The Bejan number Be  is the ratio of the heat 

transfer entropy 1N to the overall entropy generation rate  
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3. SOLUTION OF THE PROBLEM USING 
HOMOTOPY ANALYSIS METHOD (HAM) 
         Homotopy analysis method is a non perturbative 
analytical method for obtaining series solutions to 
nonlinear equations and has been successfully applied to 
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numerous problems in science and engineering [19-32]. In 
comparison with other perturbative and non-perturbative 
analytical methods, HAM offers the ability to adjust and 
control the convergence of a solution via the so-called 
convergence-control parameter. Because of this, HAM has 
proved to be the most effective method for obtaining 
analytical solutions to highly nonlinear differential 
equations. Previous applications of HAM have mainly 
focused on nonlinear differential equations in which the 
non-linearity is a polynomial in terms of the unknown 
function and its derivatives.  

Liao [19-27] proposed this powerful analytical 
method for nonlinear problems, namely the Homotopy 
analysis method.  This method offers an analytical solution 
in terms of an infinite power series.  Nevertheless, on that 
point is a pragmatic need to value this solution and to 
obtain numerical values from the infinite power series. In 
order to investigate the accuracy of the Homotopy analysis 
method (HAM) solution in a finite number of terms, the 
system of differential equations was solved. The 
Homotopy analysis method is a good technique comparing 
to other perturbation methods. 

Homotopy perturbation method is a special 
instance of the Homotopy analysis method. Different from 
all reported perturbation and non-perturbative techniques, 
the Homotopy analysis method itself provides us with a 
convenient means to hold and adjust the convergence 
region and rate of approximation series, when necessary. 
Briefly speaking, the Homotopy analysis method has the 
following advantages. It is valid even if a given nonlinear 
problem does not hold in any small/large parameter at all 
it can be used to efficiently approximate a non-linear 
problem by selecting different sets of basis functions. The 
Homotopy analysis method contains the auxiliary 
parameter, which provides us with a simple means to 

adjust and hold the overlap area of the solution series. The 
approximate analytical expressions of the velocity field 
and the temperature field using the Homotopy analysis 
method from equations (13) and (14) with the boundary 
conditions (15) and (16) are as follows: 
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3.1. Previous work 

The analytical expressions of the velocity field 
and the temperature field [1] from the equations (13) and 
(14) with the boundary conditions equations (15) and (16) 
are as follows: 
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4. RESULTS AND DISCUSSIONS 

In this section we discuss the effect of the 
velocity  ru , temperature  rT , the entropy generation 

rate SN , total entropy generation TN , and the Bejan 

number Be  with respect to the changing values of the 
parameters Bi,Br,  and the pressure gradient .G  

Figures 2 (a)-(d) represent the dimensionless 
velocity profile for dimensionless radial distance r  for 
different parameters. From these Figures we observe that 
the velocity increases with  , increases with Br , 
increases with G and increases with decreasing values of 
Bi . From the Figures 3 (a)-(d) we infer that the 
temperature with respect to the radial distance increases 
with  , increases with Br , increases with G  and 
increases with the decreasing values of the Biot number 
Bi . Figures 4 (a)-(c) reveal that the entropy generation 
rate SN  for the radial distance r increases with  , 

increases with Br and increases with decreasing values of 
Bi . Figures 5 (a)-(c) indicate that the total entropy 
generation TN  with respect to the Brinkman number Br  

increases with  , increases with the pressure gradient G  
and increases with the decreasing values of Bi . Figures 6 
(a)-(c) represent the Bejan number Be versus the radial 
distance r . From these Figures we observe that the Bejan 
number increases with , increases with Br and increases 
with the decreasing values of Bi . The convective cooling 
in the flow system enhances when Bi  increases. From the 
above results, we note that all the values 
    TS N,N,rT,ru and Be  increase when the Biot 

number Bi  decreases. 
 

 
Figure-1. Schematic diagram of the problem. 

 
 

Figure-2(a). The dimensionless velocities are computed 
with respect to the radial distances using the equation (22) 
for the given fixed values of Bi,Br,G and different 

values of , where ..h 1160  
 

 
 

Figure-2(b). The dimensionless velocities are computed 
with respect to the radial distances using the equation (22) 
for the given fixed values of ,Br,G and different values 

of ,Bi  where ..h 1160  
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Figure-2(c). The dimensionless velocities are computed 
with respect to the radial distances using the equation (22) 
for the given fixed values of ,Br,Bi  and different 

values of  ,G  where ..h 1160  
 

 
 

Figure-2(d). The dimensionless velocities are computed 
with respect to the radial distances using the equation (22)  
for the given fixed values of ,Bi,G and different values 

of ,Br  where ..h 1160  
 

 
 

Figure-3(a). The dimensionless temperatures are 
computed with respect to the radial distances using the 
equation (23) for the given fixed values of Bi,Br,G  and 

different values of ,  where ..h 1160  

 

 
 

Figure-3(b). The dimensionless temperatures are 
computed with respect to the radial distances using the 
equation (23) for the given fixed values of ,Br,G  and 

different values of ,Bi  where ..h 0781  
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Figure-3(c). The dimensionless temperatures are 
computed with respect to the radial distances using the 
equation (23) for the given fixed values of ,Bi,G  and 

different values of ,Br  where ..h 0781  
 

 
 

Figure-3(d). The dimensionless temperatures are 
computed with respect to the radial distances using the 
equation (23) for the given fixed values of ,Br,Bi  and 

different values of ,G   where ..h 0781  
 

 
 

Figure-4(a). The entropy generation rates are computed 
with respect to the radial distances using the equation (18), 
(22) and (23) for the given fixed values of Bi,Br,G   and 

different values of ,  where ..h 1020  
 

 
 

Figure-4(b). The entropy generation rates are computed 
with respect to the radial distances using the equation (18), 
(22) and (23) for the given fixed values of ,Br,G   and 

different values of ,Bi  where ..h 1020  
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Figure-4(c). The entropy generation rates are computed 
with respect to the radial distances using the equation (18), 
(22) and (23) for the given fixed values of ,Bi,G  and 

different values of ,Br where ..h 1020  
 

 
 

Figure-5(a). The total entropy generations TN  are 

computed with respect to the Brinkman number Br  using 
the equation (18), (22) and (23) for the given fixed values 
of ,G  and different values of ,Bi  where ..h 0920  
 

 
 

Figure-5(b). The total entropy generations TN  are 

computed with respect to the Brinkman number Br  using 
the equation (19), (22) and (23) for the given fixed values 
of Bi,G  and different values of ,  where ..h 0920  
 

 
 

Figure-5(c). The total entropy generations TN  are 

computed with respect to the Brinkman number Br  using 
the equation (19), (22) and (23) for the given fixed values 
of ,Bi  and different values of ,G  where ..h 0920  
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Figure-6 (a). The Bejan numbers Be  are computed with 
respect to the dimensionless radial distance r using the 
equation (21)-(23) for the given fixed values of 

Bi,Br,G and different values of , where ..h 1230  
 

 
 

Figure-6(b). The Bejan numbers Be  are computed with 
respect to the dimensionless radial distance r  using the 
equation (21)-(23) for the given fixed values of 

,Br,G and different values of ,Bi  where ..h 1230  
 

 
 

Figure-6(c). The Bejan numbers Be are computed with 
respect to the dimensionless radial i distance r  using the 
equation (21)-(23) for the given fixed values of ,Bi,G  

and different values of ,Br  where ..h 1230  
 
5.  CONCLUSIONS  

In this paper the effect of convective cooling on a 
temperature dependent viscosity liquid flowing steadily 
through a cylindrical pipe was investigated. The velocity 
and temperature profiles were obtained by the Homotopy 
analysis method and using them the entropy generations 
rate, the total entropy generation and the Bejan number 
was determined. The results were compared with the 
previous work and found to be in good agreement. The 
Homotopy analysis method is a simple and promising 
method to solve various strongly non-linear differential 
equations in the areas of physical, chemical and biological 
sciences.  
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Appendix-A 
 
Basic concept of the Homotopy analysis method 

Consider the following differential equations  
 

0)]t(u[N                                             (A.1) 

 
where N is a nonlinear operator, t  denotes an 
independent variable, )(tu is an unknown function. For 

simplicity, we ignore all boundary or initial conditions, 
which can be treated in the similar way. By means of 
generalizing the conventional Homotopy method, Liao 
[19-27] constructed the so-called zero-order deformation 
equation as: 
 

)]p;t([N)t(phH)]t(u)p;t([L)p(   01
        

(A.2)                                   

 
where   10,p  is the embedding parameter, 0h  is a 

nonzero auxiliary parameter,  0)t(H is an auxiliary 

function, L  an auxiliary linear operator, )t(u0   is an 

initial guess of   )t(u  , )p:t(  is an unknown function. 

It is important, that one has great freedom to choose 
auxiliary unknowns in HAM. Obviously, when 0p  

and 1p , it holds: 

 
)t(u);t( 00   and  )t(u);t( 1                              (A.3) 

 
respectively. Thus, as p  increases from 0 to 1, the 

solution )p;t( varies from the initial guess )(0 tu  to the 

solution )t(u . Expanding )p;t(  in Taylor series with 

respect to p , we have: 

 







1

0
m

m
m p)t(u)t(u)p;t(                 (A.4)                        

 
where  

0
1





 pm

m

m
p

)p;t(

!m
)t(u


                (A.5)                    

 

If the auxiliary linear operator, the initial guess, 
the auxiliary parameter ,h and the auxiliary function are so 
properly chosen, the series eqn.(A.4) converges at 1p  
then we have: 
 







1

0
m

m )t(u)t(u)t(u .                              (A.6) 

 
Differentiating  

(A.2) for m times with respect to the embedding 
parameter p , and then setting 0p  and finally dividing 

them by m !, we will have the so-called thm   order 
deformation equation as: 
 

)u()t(hH]uu[L mmmmm 11 


                  (A.7) 

where  
 

1

1

1
1

1



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


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

m

m
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p

)]p;t([N
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)u(

                (A.8)                     

 
and 
 









 1  1,

,1  0

.m

m,
m                                (A.9)                     

 

Applying 1L  on both side of the equation (A.7), we get 
 

)]u()t(H[hL)t(u)t(u mmmmm






  1
1

1            (A.10)                     

 
In this way, it is easily to obtain mu  for ,m 1  at 

thM  order, we have 
 





M

m
m )t(u)t(u

0

                                                        (A.11)                     

 
When M , we get an accurate approximation of the 
original equation (A.1). For the convergence of the above 
method we refer the reader to Liao [13]. If the equation 
(A.1) admits unique solution, then this method will 
produce the unique solution. 
 
Appendix-B 
 
Analytical expressions of the equations (13) - (16) using 
the Homotopy analysis method 

In this appendix we derive the analytical 
expressions for  ru and  rT  using the HAM 

From equation (13) and (14) we get the 
following: 
 

  01
2

 T
rG

dr

du
                                                    (B.1)                     
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and  
 

01
4

1 22
2

2

 αT)(rG
Br

dr

dT

rdr

Td
                            (B.2) 

 
         We construct the Homotopy for the above equations 
as follows. 
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and 
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          The approximate solutions for (B.3) and (B.4) are 
given by 

...........uppuuu  2
2

10                                     (B.5)
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2

10                                        (B.6)

  
The initial approximations are as follows: 
 

    00000 
ju;u  and 
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Substituting the equation (B.5) into (B.3), we get 
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Substituting the equation (B.6) into (B.4), we get 
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   (B.10) 
          Comparing the coefficients of the like powers of 
p in (B.9), we get 
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Comparing the coefficients of like powers of 
p in (B.10) we get 
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        Solving eqns.(B.11)-(B14) using the boundary 
conditions equation (B.7) and (B.8) we obtain the 
following results:   
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(B.18)) 
 
From the HAM, we have 
 

  10
1

lim uuruu
p


                                           (B.19) 

 

  10
1

lim TTrTT
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Using the eqns. (B.15) and (B.16) in (B.19) and 

the equation (B.17) and (B.18) in the equation (B.20), we 
can obtain the solutions in the text (22) and (23). 
 
Appendix-C 
 

Determining the region of h for validity 
The analytical solutions represented by the 

equation (22) and (23) contain the auxiliary parameter h  
which determines the convergence region and rate of 
approximation for the Homotopy analysis method. The 
velocity and temperature profiles versus the radial distance 
in our discussion have the region of convergence: -0.129 
to -0.091 and -1.225 to -0.960, respectively. Also the 
region of convergence for the entropy generation rate SN  

is from -0.108 to -0.099 and the total entropy generation 

TN  versus the Brinkman number Br has the region of 

convergence: -0.101 to -0.080. For the Bejan number Be , 
it is from -0.174 to -0.096. 
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Appendix-D 
 

Nomenclature 
 

Symbol Meaning 
 r  Radial distance 

x  Distance measured in streamwise direction 

y  Distance measured in normal direction 
ρ  Fluid density 
L  Thermal conductivity 

T  Fluid temperature 

aT  Ambient temperature 

α  Viscosity variation parameter 

u  Axial velocity 

v  Normal velocity 

U  Velocity scale 

pc  Specific heat at constant pressure. 

P  Pressure 

h  Transfer coefficient 
K  Thermal conductivity 

μ  Temperature dependant viscosity 

0μ  Fluid dynamic viscosity 

Pr  Prandtl number 
Br  Brinkman number 
Bi  Biot number 
Re  Reynolds number 

mS  Entropy generation per unit volume 
TS  Total entropy generated in the pipe flow 

SN  Entropy generation number 

TN  Total entropy generated in dimensionless 
form 

Be  Bejan number 
Φ  Irreversibility distribution ratio 

 


