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ABSTRACT 

Naturally fractured reservoirs have received considerable attention in the recent decades since more than half of 
the world oil reserves are found in this type of deposits; then, it is becoming fundamental a good characterization of these 
reservoirs and their understanding for having a better success in their exploitation and management. Generally, as 
originally proposed by Warren and Root, naturally-fractured formations are represented by a two scale model: a fracture 
network and a matrix. This modeling assumes that the fracture network is equivalent to a homogeneous medium fixed into 
a Euclidean geometry. However, it has been shown that the fracture networks are fractal elements which must be seen as 
alternative views for reservoirs with multiple scales and a network of non-Euclidean fractures. Fractal geometry is a good 
candidate for representing such systems. Several models and solutions based on the transient-pressure behavior have been 
presented in the literature with which were found that the change in pressure is a function of a power-law relationship 
where the exponent is related to the fractal dimension. In this work, direct expressions were developed from observing 
characteristic features on the pressure derivative log-log plot, so fracture permeability, fractal dimension conductivity 
index, flow capacity and storativity ratio can be estimated. The equations were successfully tested with synthetic examples. 
 
Keywords: fractal dimension, conductivity index, interporosity flow parameter, storage coefficient, fractal reservoirs. 
 
INTRODUCTION 

The study and definition of the flow processes 
taking place in naturally-fractured formations is a big 
challenge since the fluid interaction modeling and the two 
forming sub-systems is a difficult milestone to achieve. 
Barenblatt and Zheltov (1960) were the first researchers 
who proposed radial flow in fractured formations. They 
took into account two porous media with different porosity 
and permeability. 

Later, Warren and Root (1963) assumed the 
system as an ortogonal distributed fracture network. They 
presented an approximated solution and characterized the 
reservoir into two well-known parameters: the 
interpososity flow parameter, , and the dimensiónless 
storativity coefficient 9flow capacity), . Recognizing the 
need for further scope modeling, Abdassah and Ershaghi 
(1986) presented a model for triple-porosity systems 
which considers an additional medium additional to matrix 
and fractures. Escobar et al. (2004), Escobar, Rojas and 
Rojas (2014) and Escobar, Camacho and Rojas (2014) 
have used several triple-porosity models to develop 
practical methodologies for well test interpretation in such 
formations. 

Throughout the time and collection of evidences 
researchers have found that fractures are fractal elements. 
In other words, they are geometrical objects which basic 
and irregular structured is repeated at different scales. 
These are characterized for having such properties as 
fractal dimension which provides a description of the 
space filled by a group of fractures. Reservoirs with such 
characteristics are named fractal reservoirs.   

Chang and Yortsos (1990) proposed a model to 
describe the transient-pressure behavior in reservoir with 
different scales, poor fracture conductivity and irregular 

space distribution which is defined as a system constituted 
by a fractal fracture network embedded in a Euclidian 
matrix. For this, they proposed a modified version of the 
diffusivity equation for a single fluid flow in a fractal 
object for systems with only participation of the fracture 
network and systems with participation of both matrix and 
fracture network. They considered the location and 
distribution of the fracture network in the reservoir by 
introducing parameter Df which allows such 
characterization and also the conductivity given among the 
fracture network with the conductivity index, .  

Camacho, Fuentes-Cruz and Vazquez (2008) also 
investigated the production-decline behavior in a 
naturally-fractured formations exhibiting single and 
double porosity with a fractal networks of fractures. They 
implemented previous versions of the fractal diffusivity 
equation with a more recent generalization of this equation 
to include a temporal fractional derivative. 
Researchers on fractal reservoirs are very common. 
Among several we can name the works presented by 
Acuña, Ershaghi and Yortsos (1995), Beier (1994) and 
Olarewaju (1996) 

Using the model proposed by Chang and Yortsos 
(1990), several expressions are presented in this paper 
based upon the behavior and characteristic features found 
in the pressure and pressure derivative versus time log-log 
plot by implementing the Direct Synthesis Technique 
(TDS), Tiab (1993), so the conductivity index, the fractal 
dimension, fracture bulk permeability and the Warren-and-
Root parameters can be estimated. The expressions were 
proof using synthetic examples. 
 
MATHEMATICAL BACKGROUND 

The model proposed by Chang and Yortsos 
(1990) was used in this study to generate dimensionless 
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pressure and pressure derivative versus dimensionless time 
log-log plots considering the variation the fractal 
dimensión, Df, the conductivity index, θ, the flow 
capacity, λ, the storativity ratio, ω and bulk-fracture 
permeability, kf. 

The objective was the observation of the different 
patterns and features found on the pressure and pressure 
derivative curves (see Figure-1) so expressions were 
obtained from an adequate treatment of such behaviors. 
The complete detail of the original work was presented by 
Lopez-Morales and Gomez (2014). The dimensionless 
quantities taken into account by Chang and Yortsos (1990) 
are given below: 
 
Dimensionless time: 
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Figure-1. Characteristic points found on the pressure and 
pressure derivative plot in heterogeneous fractal 

reservoirs. 
 
FRACTAL DIMENSION, Df 

Figures-2 and 3 display the effect of the fractal 
dimension on pressure and pressure derivative for a fractal 
heterogeneous reservoir with constant values of  =0.05, 
=1×10-9 and  =1×10-3. 

Basically, it can be observed in Figura-2 that the 
fractal dimension, Df, alters the slope values during radial 
flow regime. The slope increases as the fractal dimension 

decreases; therefore, the maximum slope value is obtained 
for Df=1 and the lowest slope value is given for Df=2. It is 
also observed that this fractal parameter influences the 
curves to be shifted upwards as the fractal dimension 
decreases. 
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Figure-2. Influence of the fractal dimension on the 
derivative response. 
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Figure-3.  Influence of the fractal dimension on the 
pressure response. 

 
Based upon these observations the following 

expression for the determination of the fractal dimension 
as a function of the pressure derivative slope during the 
second radial flow regime (after the trough) is given 
below: 
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                  (4) 

 
Where constants A, B, C, D, E and F are given for 
different sets as shown in Table-1. 

It can be observed in Figure-3 that the pressure 
behavior follows the power-law condition which can be 
the main indicator that a fractal reservoir is dealt with. The 
clear slope change is observed and a flat region is 
presented in the middle of the two radial flow regimes 
which represent the transition between heterogeneous and 
homogeneous behavior. 
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The fractal dimension is proportional to the 
fracture index or fracture intensity of a given area. It 

means the greater the fractal dimension the greater the 
existing fractures in the studied zone. 

 
Table-1. Coefficients for Equation (4). 

 

Set 
number 

1 2 3 4 5 

 0.05 0.25 0.45 0.65 0.8 

 1×10-9 1×10-7 1×10-6 1×10-5 1×10-4 

 1×10-3 1×10-2 5×10-2 1×10-1 3×10-1 

A 2.04942768 2.24975732 2.44983132 2.64993941 2.799850153 

B -3.33318545 -1.541209 -1.43189364 -1.34789006 -1.29644716 

C -8.79656412 -5.68356814 -5.93532474 -6.2192272 -6.42826815 

D 0.13847047 0.02454796 0.0140922 0.00164203 0.001461292 

E 6.74690488 3.43348909 3.48485751 3.56829279 3.626993927 

F -0.01223411 -0.00331232 -0.00254157 -0.00196032 -0.0031127 

 
Selecting criteria 

Since the correlation given by Equation 4 can be 
used with several set of constants (Table-1), it is necessary 
to establish which constant set is most appropriate. The 
pressure derivative slope of the second radial flow regime 
is used for this purpose. Refer to Table-2 to choose 
between two criteria: 
 

Table-2. Criteria to select the Df Equation as a function 
of the slope. 

 

Slope value Applied criterion 

m< 0.29 Least difference 

0.29 ≤ m < 0.44 Conjunto 3 

m ≥ 0.44 Least difference 

 
Table-3. Least difference criterion for the calculation 

of Df. 
 

Range 
Limits Set number 

High Medium Low 
Close 

medium 
Close 
high 

Close 
low 

1 0.52 0.58 0.64 4, 5  5 

2 0.37 0.455 0.54 4, 5 2 5 

3 0.27 0.365 0.46 4, 3 1 4 

4 0.17 0.28 0.39 2, 1 2 1 

5 0.02 0.125 0.23 1 1  

 
Least difference criterion 

Table-2 is used for the least difference criterion. 
Find there the value in which the slope value fits. Then, 
subtract the slope value from the limits given in Table-3 
(low, medium and high). Find the smallest subtracted 
value (absolute value) in which the slope value falls and 
use the smallest difference. Once the least difference is 

chosen, refer to Table-3 and read from the right value the 
recommended equation number. Notice that two sets of 
constants are given in some boxes in the fifth column of 
Table-3. In such case is better to use the first number 
given from left to right. Use this number in Table-1 to 
choose your set of constants and use them in Equation 4 to 
determine Df. 
 
Set 3 

Constants numbered with 3 must be used for this 
criterion. Then, the constants are replaced into Equation 4 
to find the value of the fractal dimension. 
 
CONDUCTIVITY INDEX, θ  

Figures 4 and 5 allow observing the conductivity 
index effect on the transient pressure behavior in a 
heterogeneous reservoir for Df=2,  =0.3 and   =1×10-4. 
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Figure-4. Influence of conductivity index, θ, on the 
pressure derivative response. 
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Figure-5. Influence of conductivity index, θ, on the 
pressure response. 

 
From observation of Figure-4 it follows that as 

for the case of the fractal dimension the conductivity index 
also affects the radial-flow pressure derivative slope. The 
slope value increases as the conductivity index increases, 

with a maximum slope value when θ = 0.8 and lowest 
value of m when θ = 0.05. As θ decreases in value the 
pressure and pressure derivative curves are shifted 
upwards.  

It can be seen in Figure-5 that the pressure 
derivative follows a power-law behavior. A clear pressure 
change is observed. The transition zone is hard to see since 
the ω value is too big.  
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Constants A, B, C, D and E given in Table-4 depend on the 
Df value estimated with Equation 4. 

Chang and Yortsos (1990) also proposed an 
expression using the radial-flow pressure-derivative slope 
from which the conductivity index was solved fo

 
Table-4. Coefficients for equation (5). 

 

 
Application ranges 

1 ≤ Df < 1.3 1.3 ≤  Df < 1.5 1.5≤ Df < 1.7 1.7 ≤ Df <1.9 1.9 ≤ Df < 2 

A -2.26550513 -1.96948721 -1.73492605 -1.52575789 -1.15248778 

B 1.18994348 1.02788916 0.89545061 0.77314003 0.580259 

C 1.8343446 1.48917423 1.28362582 1.24781779 0.99201051 

D 0.60219964 0.8765221 1.10187657 1.11562589 1.60822203 

E 0.0148759 -0.06519897 -0.11927866 -0.14988095 -0.21859737 

F -0.89998567 -0.74649258 -0.58980289 -0.47481201 -0.14162367 
 

Table-5. Coefficients for equation (8). 
 

 Application ranges 

 1 ≤ Df < 1.3 1.3 ≤  Df < 1.5 1.5≤ Df < 1.7 1.7 ≤ Df <1.9 1.9 ≤ Df < 2 

A 1.482110404 0.955542559 0.838392191 0.703963482 0.406726714 

B -0.82859549 -0.63253775 -0.48565012 -0.3736336 -0.25851864 

C 0.162089754 -0.34057856 -0.23702588 -0.18979038 -0.22748716 

D -0.96409836 -0.68836841 -0.50278852 -0.36858054 -0.26926113 

E -0.35837478 -0.64454501 -0.56378211 -0.52274181 -0.60824891 

F -0.70491282 -0.62924399 -0.53620842 -0.45732725 -0.31652 
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Where Df, the fractal dimension, and m is the radial-flow 
pressure-derivative slope. 
 
 
 
 

BULK FRACTURE PERMEABILITY 
The correlation for the estimation of the fracture 

permeability was obtained from the power-law behavior 
during the late radial flow regime (pressure derivative),  
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Where b is defined by: 
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The set of constants for Equation 8 apply 

according the obtained Df value.  
 
DIMENSIONLESS STORATIVITY RATIO,  

The effect of the storativity coefficient on the 
pressure derivative and pressure is seen in Figures 6 and 7, 
respectively. These plots are given for values of Df=1.5,  
=1×10-6 and  =0.45. Notice in Figure-6 that the minimum 
point given at the trough diminishes as the dimensionless 
storativity ratio increases until a point which is no longer 
seen. This corresponds to the homogeneous reservoir case. 
As far as the slope of the late radial flow regime is 
concerned no effect caused by the storativity ratio is seen 
since they converge into the same radial flow line. Then, 
the taken correlative criterion was the ratio between the 
trough and the maximum value of the pressure derivative 
just before the transition period starts. The following 
correlation was obtained: 
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Constants A, B, C, D and E are reported in Table-6. 

It is observable in Figure-7 that when the 
storativity coefficient decreases, the pressure slope 
changes. They are better identified as a consequence of the 
typical transitions generated by the influence of different 
media affecting fluid flow in fractal naturally-fractured 
formations. 
 

Table-6. Coefficients for Equation (9). 
 

Universal application range 

A -0.20610179 

B -1.45839236 

C -0.03408232 

D -0.55369927 

E 0.000151803 

F 0.002876531 

 
FLOW CAPACITY PARAMETER, λ 

Figures 8 and 9 illustrate the effect of the 
interporosity flow parameter on the transient behavior of a 
fractal natural-fractured reservoir under constant values of 
Df=1.3, θ=0.25 and ω=1×10-2. Its effect is mainly 
reflected in the rapidity at which fluid transfers from 
matrix to fractures occurs.  
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Figure-6. Effect of the dimensionless storativity ratio, ω, 
on the dimensionless pressure behavior. 
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Figure-7. Effect of the dimensionless storativity ratio, ω, 
on the dimensionless pressure derivative behavior. 

 
As for the case of conventional naturally-

fractured occurring formations, as seen in Figure-8, 
maximum and minimum points are affected by the value 
of . Also, the time at which the second radial flow regime 
shows up of is affected by the flow capacity value. In 
other words, the flow capacity affects the occurrence of 
the transition period. 

In general terms, as the  value decreases the 
appearance of the transition zone is delayed. The 
maximum and minimum pressure derivative values and 
their occurrence times also increase. 

It can be seen in Figure-9 that as λ diminishes the 
better the identification of the transition zone. Besides, 
several variations in the transient behavior are observed as 
a consequence of the acting of the two different media on 
the fluid flow.  Additionally, it was found that the start of 
second or late radial flow regime converges on the same 
set of points for different  values. In other words, the 
length of the straight line of the radial flow regime 
changes but its location remains invariable (it does not 
shift along the time axis). Therefore, the used expression 
for the flow capacity estimation is not a function any time 
value on the radial flow regime. Then, an expression 
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presented by Tiab and Escobar (2003) based upon the time 
at the trough (minimum) is used here: 
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Figure-8. Flow capacity effect on pressure derivative 
response. 

 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11 1.E+12


1x10
5x10
1x10
5x10
1x10
5x10
1x10
5x10
1x10
5x10
1x10

-6

-5

-7

-9

-9

-8

-8

-7

-6

-5

-4

t D

P D

 
 

Figure-9. Flow capacity effect on the pressure response. 
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Figure-10. Effect of negative skin factor on the transient- 
pressure behavior of a fractal naturally-fractured reservoir. 
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SKIN FACTOR, s 

The effect of positive skin factors in not seen in 
the simulated pressure behavior. Only negative skin 
factors have an influence on the pressure curve at very 

early times. This is because naturally-fractured formations 
are self-stimulated.  Figure-10 is given for negative skin 
factors keeping constant the values of Df=1.7, θ=0.35. 
ω=2×10-2   and λ=4.6×10-6. 

For the estimation of the skin factor, an 
expression presented by Flamenco and Camacho (2001) is 
used. After some manipulations of that equation, it was 
obtained: 
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t P
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                                             (11) 

 
Where α and ψ are given by Equations 12 and 13, 
respectively: 
 

 
2 1(2 )

(1 ) (1 )






  




  
                                             (12) 

 
1

2 2d Df


 



   

                                             (13) 

 
Table-7. Input parameters for examples. 

 

 Example 1 Example 2 

Parameter Value 

q, BPD 250 370 

C, bbl/psi 0 0 

h, ft 160 60 

cma, psi-1 1x10-6 2x10-6 

cf, psi-1 2x10-6 1.5x10-6 

ma, % 7 2 

f, % 30 17 

B, rb/STB 1.1 1.23 

, cp 1.2 1.35 

rw, ft 0.21 0.38 

σ 0.1 0.1 

 
EXAMPLES 

In their original work, Lopez-Morales and Gómez 
(2014) tested the developed equations with 43 synthetic 
examples. Only two of them are presented here for 
practical purposes. 
 
Synthetic Example 1 

Pressure test was run in a heterogeneous fractal 
reservoir using as input data the information provided in 
the second column of Table-7. Pressure and pressure 
derivative versus time data are provided in Figure-11. It is 
required to characterize this test. 
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Solution: The below information was read from 
Figure-11; 
 
[(t*ΔP’)r2]P1 = 10 psi (t*ΔP’)min= 0.07 psi 

(tr2)P1 = 200 hr (t*ΔP’)max= 1.7 psi 
[(t*ΔP’)r2]P2 = 40 tb2 = 10 hr 

(tr2)P2 = 40000 hr (t*ΔP’)b2= 4.5 psi 
tmin = 0.047 hr ΔPb2= 19 psi
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Figure-11. Pressure and pressure derivative vs. time 
log-log plot for example 1. 

 
The first step was the estimation of the slope, m, 

of the late radial flow regime on the pressure derivative 
curve which resulted to be 0.2616 (the Reading points 
were 200, 10 and 40000, 40).  Since this value is less than 
29 then, from Table-2, we use the least difference criterion 
(second row). Looking at Table-3 we observe that the 
slope value better fits on range 4. Subtracting the slope 
(absolute value) from limits high, medium and low will 
give: 
 
0.2616 0.17 0.0916   
0.28 0.2616 0.0184   
0.39 0.2616 0.1284   
 

As observed in Table-3, the nearest value to the 
slope is the medium limit, then, the chosen set is 2. 
Correlation given by Equation 4 is used to estimate the Df 
value which resulted to be 1.6674. Since it fulfills the 
limiting condition 1.5 ≤ Df < 1.7, then, the set of constants 
given in Table-4 are used. The resulting value of θ was 
0.262 estimated with equation  (5). Using the same 
criterion as for the conductivity index, the fourth column 
of Table-5 is used to estimate a value of b which resulted 
to be 0.8442. This value is then replaced into correlation 
given by Equation (7) to provide the bulk fracture 
permeability, kf, of 337.36 md. The minimum and 
maximum pressure derivatives are traduced into 
dimensionless quantities using Equation 3.  ω and λ are 
estimated with correlations given by Equation (10) and 
(11), respectively. All, the main results are given in the 
third column of Table-8. 
 
 

Table-8.  Results for worked examples. 
 

 Example 1 Example 2 
Parameter Equation Value 
Df 4 1.6674 1.4242 
θ 5 0.2620 0.8102 
kf, md 7 337.33 mD 148.9384 
 9 2.9528×10-3 9.523×10-2 

 10 2.4163×10-7 2.640×10-8 
s 11 -2.5525 -10.7414 

 
Synthetic Example 2 

Similar to example 1, a simulated test was 
performed with the data given in the third column of 
Table-7 and the pressure and pressure derivative versus 
time data are shown in Figure-12. It is required for this test 
to estimate the permeability, fractal and naturally-fractured 
parameters. 
 

Solution: The below information was read from 
Figure-12. 
 

[(t*ΔP’)r2]P1= 55000 psi (t*ΔP’)min= 1646 psi 
(tr2)P1= 10000 hr (t*ΔP’)max= 2630 hr 

[(t*ΔP’)r2]P2= 166000 psi tb2 = 420 hr 
(tr2)P2 94700 hr ΔPb2= 25650 psi 
tmin= 25 hr (t*ΔP’)b2= 10900 psi 

 
The procedure is the same as example 1 and 

results are reported in the fourth column of Table-8. For 
this case m = 0.4914 which is contained in range 2 of 
Table-3. The three differences are: 
 
Low: 0.37 0.4914 0.1214   

Medium:  0.455 0.4914 0.0364   

High:  0.54 0.4914 0.0486   

The medium difference suggests the use of 
constant set number 5. 
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Figure-12. Pressure and pressure derivative vs. time log-
log plot for example 2. 
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COMMENTS ON THE RESULTS 
The results obtained from the proposed 

methodology agreed closely with those used for the 
simulations. However, it is important to take into account 
that the procedure outlined for the determination of the set 
of constants for the estimation of Df from the slope must 
be followed. The remaining estimations are strongly based 
upon the fractal dimension parameter. Then, the accuracy 
is a function of the above-mention selection. 

The estimation of the conductivity index is very 
sensitive to the reading. Then, if possible use 5 decimal 
numbers. 
 
5. CONCLUSIONS  
 
a) Expressions for the determination of the fractal 

naturally-fractured reservoir parameters are introduced 
in this work and tested with synthetic examples. 

b) The pressure response in fracture naturally-fractured 
reservoirs for the radial flow regime obeys the power-
law relationship. This observation served as the 
starting point for the development of the developed 
expressions for reservoir characterization.  

c) It was also verified that the complexity of the fracture 
network depends directly upon the size of the fractal 
dimension. This is then an indicator of the space 
amount used by the fracture network in a given area.  

d) A dependency of the conductivity index on the fractal 
dimension was observed and used for the equation 
development. 

 
However, a precise relationship between these two 
parameters is unknown. 
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Nomenclature 

B Volume factor , rb/STB 

C Welbore storage coefficient, bbl/psi 

cf Fracture network compressibility, 1/psi 

cma Matrix compressibility, 1/psi 

ct Total compressibility, 1/psi 

d Euclidian dimension 

h Formation thickness, ft 

kf Fracture network permeability, md 

m 
Pressure derivative slope of late radial flow 
regime  

P Pressure, psi 

PD Dimensionless pressure 

q Flow rate, BPD 

rw Well radius. ft 

s Skin factor 

t Time,  hr 

tD Dimensionless time 

tD*PD’ Dimensionless pressure derivative 

t*P’ Pressure derivativ,. psi 

 
Greek 

α Variable defined by Equation (12) 

β Df-θ-1 

∆ Change, drop 

σ Matrix- fractures interaction index 

ψ Variable defined by Equation (13) 

f Fracture porosity 

ma Matrix porosity 

t Total porosity 

 Gamma function 

 Interporosity flow parameter 

θ Conductivity index 

µ Viscosity, cp 

 Dimensionless storativity ratio 

 
 
 
 
 
 
 
 
 
 
 

Suffixes 

b2 Start of second radial flow regime 

D Dimensionless 

min Minimum 

max Maximum  

f Fracture 

ma Matrix 

r2 Late radial 

P1 Initial point 

P2 Final point 

 


