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ABSTRACT 
 In recording the EEG signals are often contaminated by a large of signals called artifacts such that the brain 
activity (source) difficult to estimate. There are different kinds of artifacts such as power line noise, electromyogram, 
electrocardiogram and electrooculogram. In this research, an adaptive recurrent neural network (ARNN) for estimation of 
source and reduction of noise from recorded EEG signals is proposed. In the experiment, the EEG signals are recorded on 
three conditions, which is normal conditions, closed eyes, and blinked eyes. After processing, the dominant frequency of 
the EEG signal is obtained in the range of 12-14 Hz either on normal conditions, closed eyes, and blinked eyes. The 
experimental results show that the ARNN method was effectively estimated the brain activity according to the given 
stimulus and remove the artifacts from all subjects. 
 
Keywords: EEG, adaptive, neural network, estimation, reduction. 
 

INTRODUCTION 
Electrical impulses raised by firing of neuron 

within the brain diffuse through the head and can be 
measured by placing the sensors (electrodes) on the scalp, 
is known as electroencephalogram (EEG) (first measured 
in humans by Hans Berger in 1929). The EEG signals 
contain information about the neural activity and has been 
non-invasively used for clinical or research application 
such as brain computer interface (BCI). A BCI has been 
defined as a communication system that does not depend 
on the brain's normal output pathways of peripheral nerves 
and muscles (Wolpaw et al., 2000). To increase the 
effectiveness of BCI systems it is necessary to find 
methods of increasing the signal-to-noise ratio (SNR) of 
the observed EEG signals. In the context of EEG driven 
BCIs, the signal is endogenous brain activity measured as 
voltage changes at the scalp while noise is any voltage 
change generated by other sources. These noise, or 
artifact, sources include: line noise from the power grid, 
eye blinks, eye movements, heart beat, breathing, and 
other muscle activity. Some artifacts, such as eye blinks, 
produce much higher amplitude of voltage changes than 
raised by brain activity. In this situation the data must be 
discarded unless the noise or artifact can be removed from 
the data. 

There are two general methods for removing 
artifact from the EEG record. The simplest approach is to 
discard a fixed length segment, perhaps one second, from 
the time an artifact is detected. Discarding segments of 
EEG data with artifacts can greatly decrease the amount of 
data available for analysis. Regression using the EOG 
channel was attempted in the time and frequency domain 
(Gratton, Coles, & Donchin, 1983; Woestenburg, 
Verbaten, & Slangen, 1983). This method is fast, easy to 

implement, reliable, and still in use by modern researchers. 
Although this method can result in losing of certain 
information from the recorded data, it can be mitigated by 
doing the recording for a longer periods or larger numbers 
of trials. However, this method of artifact removable is not 
acceptable for many experiments and also is not practical 
in online or real-time application. However, as a reliable 
means of removing artifact from the EEG record and 
leaving clean data would be of tremendous value, there 
has been an ample amount of research toward this goal 
(Babiloni et al., 2011; Escudero et al., 2011; Turnip, Hong, 
& Jeong, 2011; Turnip & Hong, 2012). Many of these 
newer approaches involve techniques including 
independent component analysis, neural networks, 
Kohonen maps, and other methods which were either 
unavailable or much less well known during the early days 
of EEG signal processing. Techniques for removal of EEG 
artifact without rejecting other data are now prevalent in 
EEG processing software. 

During the experiment, the electrodes is located 
in some significant distances away from the neural 
activity. Therefore, the EEG signal collected at any point 
on a person’s scalp is a nonlinear mixture of the activities 
generated over a large brain area. The analysis of EEG 
data and the extraction of information from this data is a 
difficult problem. This problem is exacerbated by the 
introduction of extraneous biologically generated and 
externally generated signals into the EEG. In this paper, an 
adaptive recurrent neural network (ARNN) for estimation 
of brain activity sources and simultaneously reduce the 
additive noise from collected EEG signals is proposed. 
This problem can also be solved by optimisation 
algorithms such as ELPSO (Jordehi, 2015). 
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The rest of this chapter is organized as follows. 
Section 2 presents the adaptive recurrent neural networks. 
Section 3 explains the experiment method. Results are 
discussed in Section 4, and conclusions are drawn in 
Section 5. 
 

ADAPTIVE RECURRENT NEURAL NETWORKS 
Let M be the number of measured EEG signals 

and N be the number of unknown input sources. Then, the 
measured signal at channel i, )(kxi , can be represented as 

a linear combination of N unknown mutually statistically 
independent source signals )(ks j , Nj ,,2,1  , as 

follows (typically NM  ) (Choi & Cichocki, 2000; 
Cichocki, & Amari, 2002). 
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When )(kx is noisy such that )()(ˆ)( kvkxkx  , 

where )()(ˆ kAskx  and )(ˆ)()(ˆ kxkWky  are the 

noiseless estimates of the input and output vectors 
respectively. It is easy to show that the additive noise 

)(kv within )(kx introduces a bias in the estimated 

decorrelation matrix W. In general, the problem of noise 
cancellation is diffcult or even impossible to handle, 
because we have (m+n) unknown source signals (m 
sources and n noise signals), but only m available or 
measured sensor signals. However, in many practical 
situations, the unbiased separating matrices can be 
estimated and the noise can be reduce or cancel (if some 
information about the noise is available). In this research, 
the additive noise in the i–th sensor is modeled as 
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where 1z  is the unit delay operator. In this model, a 
reference noise which is added to each sensor (mixture of 
sources) with different unknown time delays and various 

unknown coefficients )(khip  representing attenuation 

coefficients is assummed. Therefore, the unknown mixing 
can be described in matrix form as 
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estimate of the source s(t). To compute )(ˆ ty , consider the 

minimum entropy (ME) cost function 
 

       
m

iii tepEteJE
1

)(log)( , (7) 
 

where )( ii ep  is the true pdf of the additive noise 

)(tvi and expressed as 

  














i

i

i

iii

i
ii

r
e

rrr

r
ep



1
exp

/12
)( . (8) 

Stochastic gradient descent of the ME function 
yields stochastic independence of the error components as 
well as the minimization of their magnitude in an optimal 
way. The resulting system of differential equations is 
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or in a discrete-time algorithm as 
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filters that perform filtering and nonlinear noise shaping in 
every channel such that  
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where the parameters of filters { ipb } and nonlinearities 

)( ii e are suitably chosen depends on the noise 
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distributions. In this paper, any value of ir  ≥1 is selected, 

in which case the locally-optimal nonlinear activation 
functions are of the form 

]|||/[|)(
2  
 ir

i
ir

iiii eee where   is a small 

positive constant to avoid the singularity of the function 

at 0ie . The proposed algorithm can be considered as a 

form of nonlinear post-processing that effectively reduces 
the additive noise component in the estimated source 
signals. 
 
EXPERIMENT METHODS 

EEG is most commonly recorded according to the 
international 10-20 electrode placement system (Jasper, 
1958). The 10-20 system was developed to standardize the 
collection of EEG and facilitate the comparison of studies 
performed at different laboratories. When only a few 
channels of EEG are collected the electrodes are placed at 
a subset of the sites. The EEG data were collected from 
eight healthy adult subjects (all men, ranging in age 
between 20-22 years old). Five subjects have slight hair 
and the rest are thick hair. All subjects were asked to 
complete the standard task by following three stimuli 
contition which are baseline (normal), closed, and blink 
eyes.  

During the experiment, the participant were 
sitting in a comfortable chair in front of 14” monitor at a 
distance of about 1 m. Continuous EEG signals were 
recorded (sampling frequency about 128 Hz) from 6 
electrodes placed on the scalp using Emotiv wireless EEG. 
The desired brain activity is focused in the F7, F8, T7, T8, 
O1 and O2 channels which represent the visual of human 
brain. The the OpenVibe software is used to perform the 
data acquisition, stimulus visualization, and EEG 
recording with the built in function block. The experiment 
consists of two sessions with period of 130 second (two 
stimuli: normal and closed eyes condition) and period of 
66 second (two stimuli: normal and blink eyes condition). 
The stimuli arrangement is built based on a scenario in 
Table-I. The picture of all subject during the experiment 
are shown in Figure-1.  

The first sessions is started with baseline (no 
movement) condition for 30 seconds. At the 31-32th 
second, OpenVibe will show the ‘+’ sign indicating the 
preparation for first movement. Then, the arrow is shown 
at the 33-63th second to indicate the subject to do closed 
eyes. These stimuli are repeated for twice. The second 
scenario is started with baseline (no movement) condition 
for 18 seconds. At the 19-20th second, OpenVibe will 
show the ‘+’ sign indicating the preparation for second 
movement. Then, the arrow is shown at the 21-23th 
second to indicate the subject to do blink eyes. Two-
second interval is added to finish the current movement. 
These continue until the 10th stimulus appeared. 

 

 

Table-I. Scenario for EEG sample recording. 

Time (s) Activity Time (s) Activity 
Sessions-1 31-33 Blink eye 

0-30 Normal 34-35 + 
31-32 + 36-38 Blink eye
33-63 Closed eye 39-40 +
64-65 + 41-43 Blink eye 
66-96 Normal 44-45 + 
97-127 Closed eye 46-48 Blink eye 

128-130 End 49-50 + 
Sessions-2 51-53 Blink eye

0-18 Normal 54-55 +
19-20 + 56-58 Blink eye 
21-23 Blink eye 59-60 + 
24-25 + 61-63 Blink eye 
26-28 Blink eye 64-65 + 
29-30 + 66 End

 

 
Figure-1. Eight experiment participant. Participant 2 and 5 

showing blink eyes activity, and the rest are showing 
closing eyes activity. 

 
ANALYSIS RESULTS 
 The matrix equation x(k)=Hs(k)+v(k)  is used to 
create x(k), where each ν(k) is a Gaussian random noise 

with the covariance matrix IR vvv
2̂


  with 2ˆ v = 0.01. 

Twenty trials were run, in which W(0) were different 
random orthogonal matrices such that 

IWW t 25.0)0()0(  and ensemble averages were taken in 

each case. Figure-2 shows the evolution of the 
performance factor )(k defined as 
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where n = 6. ijg  is the (i,j)-element of the global system 

matrix WHG   and ijj
gmax represents the maximum 

value among the elements in the ith row vector of G. 

jij
gmax  is the maximum value among the elements in 
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the ith column vector of G. The value of )(k measures 

the average source signal crosstalk in the output signals 

 )(kyi  if no noise is present. Crosstalk is usually caused 

by interferece of undesired signal effect from channel to 
another. As can be seen, the original algorithm yields a 
biased estimate of )(kW , whereas the bias removal 

algorithm achieves an average crosstalk level that is about 
5 dB lower except for subjects 5 and 6. Also shown for 
comparison is the original algorithm with no measurement 
noise, showing that the performance of the described 
algorithm approaches this idealized case for small learning 
rates for all subjects. 
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Figure-2. Ensemble-averaged value of the performance 

index for uncorrelated measurement noise (subjects 1 – 4). 
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Figure-3. Ensemble-averaged value of the performance 

index for uncorrelated measurement noise (subjects 5 – 8). 
The raw EEG data (see Figure-4) were first pre-

processed using a band-pass filter with cut-off frequencies 
of 0.5 Hz (i.e., to remove the trend from low frequency 
bands) and 49 Hz (i.e., to remove unimportant information 
from high frequency bands), respectively (see Figure-5). 
Using only band pass filter, the signal amplitude has been 
highly reduce from about 5000 µ volts into about 60 µ 
volts. This result indicate that the raw data was 
cantaminated by a large of variety artifacts. Since the 
artifacts can randomly occur and are unexpected, they are 
difficult to identify. Thus, instead of detecting and 
removing artifacts, our approach is to extract the event-
related components based on a global pattern that 
encapsulates models for signals of interest.  

One way of gaining further insights into EEG 
signals is by applying ARNN techniques. In this 
algorithm, brain activity is estimated and the noise is 
simultaneously reduce. The signal after applied estimation 
and noise reduction techniques are shown in Figure-6. As 
shown that a view of brain activity is slightly reconizable 
in the each channels except channels 1 and 3 from the top 
(i.e., contaminated by noise or artifacts). These channels 
are predicted as accumulation of the noise or artifact after 
separation. Therefore, it can be concluded that the left 
channels can be used for the analysis or further 
application. It demonstrates that the proposed algorithm 
can effectively extract the brain activity from even when 
the background artifact or noise amplitude is very high in 
the original signals. 

 

 
Figure-4. Raw EEG data (subject 1). 

 

 
Figure-5. EEG data after band pass filtering with cut off 

frequency about 0.5 – 49 Hz (subject 1). 
 
CONCLUSIONS 

An adaptive recurrent neural network to estimate 
the brain activity according to the given stimuli and 
simultaneously reduce the noise from recorded EEG 
signals is proposed. The best noise reduction by 
minimizing the generalized energy of all its output signals 
under some constraints and simultaneously to enforce their 
mutual independence are achieved. The performance index 
of removal algorithm achieves an average crosstalk level 
that is about 5 dB lower. 
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Figure-6. Estimated brain activity with simultaneously 

noise reduction using ARNN method. 
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