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ABSTRACT 
 This paper investigates the accuracy of a GPS device. The GPS accuracy is treated as a pattern recognition 
problem. Each location estimate is classified into a certain accuracy class. Various observation conditions provided by the 
GPS device are used as features relating a location estimate to an accuracy band. 
 In this paper we introduce an evidence-based classifier (EBC) in which three independent classifiers are used: 
namely, feed forward neural network, K-nearest neighbor and the support vector machine. The decisions of these 
classifiers are combined by a reasoning-based-engine using dempster-shafer (DS) evidence theory for decision fusion. The 
DS engine will produce the final classification decision. As proof of concept, a comprehensive experimental work 
including two use-cases is conducted in this paper. Experimental results are discussed at the end of this paper. 
 
Keywords: dempster-shafer, pattern recognition, accuracy classification, basic probability assignment. 
 
1. INTRODUCTION 

Global Positioning System (GPS) devices play 
major role in our daily life. They are widely used whether 
by individual in daily trips or by more sophisticated 
applications for threat assessment and collision avoidance 
purposes. However, GPS devices are error prone devices. 
There are several types of errors associated with them 
either caused by internal functionalities or by external 
effects. The error of the location estimate, depending on 
the GPS device, ranges from few centimeters to hundreds 
of meters. This wide range of error may become a source 
of confusion for applications that wish to rely on certain 
GPS estimate. An indication of accuracy, thus, became a 
major demand when processing GPS device’s location 
estimate. The accuracy represents the range of error to 
which a certain location estimate may belong. 

GPS devices use observation conditions to 
estimate the current location. These observation conditions 
span various parameters such as the number of satellites, 
the mean and variance of the signal to noise ratio (SNR) as 
well as the speed and the dilution of precision. These 
observation conditions can be treated as features and then 
used to classify each GPS location estimate so as it 
belongs to a single class of localization accuracy. The 
accuracy classes, which represent a range of errors, can be 
defined linguistically or numerically. Linguistic 
definitions such as Accurate and Non-accurate should 
represent a numerical range of errors. The definition of 
these ranges is an application related problem. Different 
approaches can be found in the literature to provide a 
solution for the GPS localization accuracy classification. 
For e.g., see [1] and [2]. 

We aim to design an Evidence Based Classifier 
(EBC) that maps each location estimate into an accuracy 
class that represents an error band. For the general case, 
we would have the following classes {High Accuracy, 
Mild Accuracy, Low Accuracy}. Several classifiers are 

used to classify each GPS estimate into certain class. 
Through combination a better result might converge. The 
combination, in our classifier, is to be achieved through an 
evidence reasoning combination approach. Dempster and 
Shafer (DS) theory is one of the most notable combination 
techniques. In this paper we use it at the core of our 
combination engine. 

Dempster and Shafer (DS) theory [3] is widely 
used in classification applications. In [4] Hegarat-Mascle 
et. al. have established that DS theory can be used 
successfully for unsupervised classification. This success 
is driven by the ability of DS to integrate the imprecision 
and uncertainty as part of the classification process. In [5] 
Bloch used DS’s subsets of more than one class to model 
the impression and uncertainty in the classification of 
multi-modality medical images. In [6] DS was used to 
enhance the performance and mitigate the drawback that 
may occur when using certain classifiers such as K-NN 
and neural network. In addition, in the context of 
combining classifiers, DS was used to fuse the outputs of 
multiple classifiers and produce a fused decision which 
may lead to a better overall performance for various 
applications; cf. [7] [8] [9]. 

Our developed EBC utilizes the confidence each 
classifier has in its decision. Through DS’s evidence 
fusion rule we can combine the decisions of all three 
classifiers. Furthermore, it’s possible, through an adequate 
representation of ignorance and belief, to control what 
types of misclassification error can be avoided. In general, 
it’s more crucial for the classifier to avoid misclassifying a 
non-accurate location estimate as an accurate than other 
types of misclassifications.  

The remainder of this paper is organized as the 
following: Section I provides an introduction to the topic 
tackled in this paper. Section II describes the developed 
classifier with an emphasis on DS application in this paper 
and the basic probability assignment. Section III describes 
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the experimental work including description of the used 
dataset, experimental set up, use cases design, results and 
discussion. This paper concludes with conclusion and 
remarks on future work in Section IV. 

2. EVIDENCE BASED CLASSIFIER (EBC) 

The developed evidence based classifier consists 
of three basic classifiers: Feed Forward Neural Network 
(FFNN), K-Nearest Neighbor (K-NN) and Support Vector 
Machine (SVM). These classifiers will process a pattern 
simultaneously. Once the classification is concluded, the 
results will be communicated to the DS engine as in 
Figure-1. 
 

 
Figure-1. Generic description of the evidence based 

classifier. 

The input of EBC is the set of features that 
represent each estimate. The classification completion 
time may vary from one classifier to another. However, if 
two classifiers produced their classifications, the DS 
engine should start its fusion process. Next, we describe 
the design of the DS engine. 
 
A. DS engine 

Dempster-shafer theory revolves around 
combining evidences of observations from independent 
sources. Each source provides an observation and a mass 
function (basic probability) related to that observation. 
Then the DS engine fuses the collected observations based 
on their masses. 

In our developed classifier, we have three sources 
of information: FFNN, K-NN and SVM. Due to space 
limitation we will describe DS engine as it pertains to our 
application. We have  

  {c1,c2 ,c3}  
(1) 

Where   is the frame of discernment and C1, C2 and C3 
are the chosen accuracy classes. Let 

 (2) 
The power set. Now we have 
  {,c1,c2 ,c3,{c1,c2},{c1,c3},{c2 ,c3},{c1,c2 ,c3}} (3) 

Let’s define a mass function m, where 
m[0,1] (4) 

For independent evidence, focal point with non-zero mass 
function, we would have the following 
  

m(A)  1
A
  (5) 

 m(.) is referred to as basic probability. We have another 
condition for the subset   and that is    

m()  0  
(6) 

Now, the DS rule combines the evidences from L 
classifiers as the following  

1
L mi (A) 

1

1 k
m1(B1)

B1B2 ........BnA
 ....mn (Bn ) (7) 

Where K is the conflict in the provided evidences and can 
be calculated as the following 
    

K  m1(B1)
B1B2 ........Bn

 ....mn (Bn )  (8) 

A, B   (9) 
Since in our application we have the following: 
    

ĉi {c1,c2 ,c3} 
(10) 

The remaining subsets in   represent the ignorance 
factor in the observations.  

When dealing with systems that rely on DS 
theory there are few issues that must be resolved in order 
to get good results. One of the most important issues is to 
have independent sources of information. For our purpose 
in this paper, we assume that since our classifiers are of 
different types then they are independent. Another issue 
when dealing with DS theory is how to deal with bad 
sources that have a high confidence in their decision. 
Describing a classifier as being bad implicitly means that 
we have a priori knowledge of the classifier’s actual 
performance. This priori knowledge can be used to 
discount the confidence produced by the said classifier. A 
third issue with DS is the basic probability, m(.), 
assignment.  Given our classifiers, how can we compute 
the basic probability of each subset in . Next section 
discusses our approach for basic probability assignment. 
 
B. Basic probability assignment 

In this paper, our approach for basic probability 
assignment takes into consideration the discounting of our 
classifiers when computing mi(.). It, also, considers each 
classifier’s confidence, CC, regarding its classification 
decision. To discount any classifier, we need to have a 
priori knowledge of its performance. For each classifier, a 
confusion matrix computed during the training stage will 
be used to produce P(h(pk)|ci). This P(h(pk)|ci) is used as a 
discounting factor for each classifier. Each classifier 
produces the confidence index, CC, during the process of 
classifying the associate pattern. The process of computing 
CC differs from one classifier to another and will be 
discussed in the next section. In general, the basic 
probability, m(.), is computed as follows: 

for ci {c1,c2 ,c3}  
(11) 
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and for CC [0,1] (12) 

m(ci )  CC * P(h(pk ) / ci ) 
(13) 

Where h(.) is the chosen classifier and pk is the classified 
pattern.  The next section describes the FFNN classifier 
and how it is used to compute m1(ci ) . 

 
1) Forward neural network: Feed Forward Neural 
Network (FFNN) has a unique attribute related to its 
output, which is the activation function. Depending on the 
activation function, we can range the output between 

. One of the most common activation functions 
used in NN’s is the logistic sigmoid function. To estimate 
the mi(ci) we will be replacing CC in Equation (13) by  

and the output is used to compute the belief function m(.) 
for the primary FFNN classifier and the non-parametric 
fusion engine, as the following: 
 

(14) 

m(ci )  0 where j  i  
(15) 

m()  1 m1(ci ) 
(16) 

 
In Equation (16) the complement of the basic probability 
is assigned to the set  . However, this is not a must as it 
can be assigned to or distributed among other subsets, 

Ai’s. Where Ai   and Ai  2 . 

 
2) K- nearest neighbor: There are various approaches as 
to how does the K-NN perform its classification. In our 
application, K-NN classifies each pattern based on its 
location with respect to its K-closest neighbors.  For K-
NN the computation of m2(ci) is relatively easier than that 
of the FFNN. It is computed as the following: if K is the 
number of nearest neighbors to be considered and ζ is the 

number of votes for certain class then CC 

K

 and we 

have:  

m2 (ci ) 

K

*P(h(pk ) / ci ) where i {1,2,3} (17) 

m2 (ci )  0 where j  i  (18) 

m2 ()  1m2 (ci ) (19) 
 
3) Support vector machine: A non-linear support vector 
machine can be best described as the solution to the 
following quadratic equation: 

f (pk )   i * Kr(pki
* pk )

i
  b  (20) 

Classification decision = sign(f (pk )){1,1} (21) 
 

Where Kr is the kernel function, we used quadratic 
function.  

As we can see in Equation (20), the classification is 
made based on the distance between the examined pattern 

and the hyper-plane created by support vector machine. 
The smaller the distance, the more doubtful the result 
might be. In order to compute m3(ci )  we need to find a 

function  ( f (pk )) that represent f (pk ) in a way that 

satisfies Equation (12). An example of a function that can 

translate f (pk ) into a measure of CC is the sigmoid 
function. Consider the following equation: 

 ( f (pk )) 
1

1 e f ( pk )
 (12) 

The sigmoid function in Equation (22) is simple in a sense 
that as f (pk ) 0 ,  ( f (pk )) 0.5 which can 

translate in entropy as complete doubt. That is, pk could 

belong to either one of the two classes. However, for DS, 
we might seek different approach to compute  . In [10], 
Platt computes  ( f (pk )) as the following: 

PrA,B(y  1| pk ) 
1

1 eA* f ( pk )B ;  A  0  (23) 

There are various method presented in the 
literature to estimate A and B [10, 11, 12]. In our work, we 
define A  ciand B  0 multiplied with tuning factor 
  to compute the basic probability for the SVM classifier. 

0  1 (24) 

m3(ci ) 


1 eci f ( pk ) * P(h(pk ) / ci ) where i {1,2} (25) 

 
m3(ci )  0 where j  i  (26) 

 
m3()  1 m3(ci ) (27) 

 is empirically computed using the training data 

to produce an overall good measure of confidence of the 
SVM classification. We avoid using the term probabilistic 
to refer to CC as it may require us to adhere to the general 
axioms of probability, which might not be feasible at this 
stage. 
 
3. EXPERIMENTAL WORK 

A commercial GPS in a roving vehicle was used 
to collect the data set for this experiment. The GPS 
devices provide parameters that are related to how the 
location estimate is made and can be used as features for 
classification. Five parameters, in particular, were chosen 
to represent our classes: 1) Dilution of Precision (DOP), 2) 
Number of Satellites, 3) (SNR ) , 4)  (SNR ) , 5) Vehicle 

speed. The dataset used for our experimental work is 
thoroughly detailed in [13]. 

Two use-cases are deployed to prove the 
efficiency of the developed classifier. For the first use 
case, the three classifiers are behaving as binary classifiers 
for the first use-case. The first use case is tackling the 
problem of classifying our data into two classes, accurate, 
non-accurate. It gears towards certain applications that 
tolerate specific accuracy and can provide further 
processing to mitigate the classification error. Anything 
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beyond that is deemed as a Non-Accurate and not worthy 
of any further processing. For the second use case, three 
hierarchical classifiers are used: FFNN, K-NN and SVM. 
Then the results are introduced to the DS engine that 
produces a final classification. The second use case tackles 
the problem of classifying the accuracy into three classes: 
High accuracy, Mild Accuracy, Low Accuracy. Use-case-
2 is geared towards application that can accommodate 
different accuracy ranges. For instance, applications for 
message routing in Vehicular Ad-hoc Networks 
(VANETs), data dissemination and map localization 
consider the accuracy range of 10-20m, the Mild Accuracy 
class, acceptable for their implementation requirements 
[14]. 
 
A. Experimental setup 

For use-case-1, the training data was partitioned 
into two regions: region 1, R1, and region 2, R2, as defined 
in Table-I. The classification will decide to which region a 
pattern belongs and the classification will be concluded. 

 
Table-I. GPS accuracy classes. 

Classes R1 R2 
Error range 0-15m >20m 

 
For use-case 2, region 1, R1, contains the whole 

of c1, and region 2, R2 contains c2 and c3. All three classes 
are defined in Table-II. The first level of classification will 
determine to which region a pattern belongs. If it belongs 
to R1, then the classification process is concluded and we 
have our class. If a pattern belongs to R2 then we move on 
to the second level of classification. In this level, a pattern 
is classified either into c2 or c3. 

 
Table-2. GPS accuracy classes. 

Classes C1 C2 C3 
Error range 0-10m 10-20m >20m 

 
The dataset was divided into two parts. Out of 

6680 patterns, 65% is used for training and validation. The 
remaining is used for testing. The training set was divided 
into 10 folds. 9 folds were used for training and one fold 
was used to test the generalization of the trained classifier. 
Next, we discuss the set up of our three classifiers. 

 
1) Feed forward neural network: The neural network 
uses three layers: the input, the output and the hidden 
layer. The input layer had five nodes corresponding to the 
number of features. The hidden layer consisted of 10 
nodes. The number of nodes in the output layer was 
similar to the number of classes for each use case. A 
tangent sigmoid activation functions was used in all nodes. 
 
2) K-Nearest neighbor: The K-NN classifier used an odd 
K which was set to 3. To reach a decision about certain 
class a majority vote was used to determine to which class 
a test point would belong. To find the closest neighbors, 
the Euclidean distance was measured between the test 

point and the training points. 
 
3) Support vector machine: For the SVM, we used soft 
margin SVM to relax the optimization problem of finding 
the support vector. For the optimization function the Least 
Square (LS) was used to find the support vector. For the 
choice of the kernel function, it was found that the 
quadratic kernel function would produce the least error 
rate. 

B. Comparative results 

The goal is to classify a GPS location estimate 
into certain accuracy class. We will use several 
performance assessment measures to assess our proposed 
classifier. The first measurement is the class accuracy rate 
ACi which computed as the following: 

Aci


#  of correctly classified patterns ci

# of patterns ci

 (28) 

Also, we will be using the Receiver Operating 
Characteristic (ROC) figure from which we can find the 
precision and recall of each class. Furthermore, for use-
case 2, we will compare our results against results of other 
models using the same data set as reported in [13] as well 
as the performance of Ada-boost and forest tree classifiers 
to indicate how well the designed classifier fair against 
other well known ensemble of classifiers. Next, we discuss 
the experimental results for use-case-1. 

 
1) Experimental results for use-case-1: This use case 
investigates the EBC performance as a binary classifier. 

EBC’s decision ĉi  was made with respect to 1
3 m(c1) 

and 1
3m(c2 ) as the following: 

 

ĉi 
c1  if 1

3 m(c1)  1
3 m(c2 ),

c2                       otherwise.






 (29) 

FFNN, K-NN and SVM classifiers were tested 
individually to compare their performances with the 
performance of their fused results using the EBC. The 
accuracy rates shown in Table-III indicate the 
classification rate per class for each classifier. 
 

Table-3. Accuracy rate for the second use-case. 
Class AC1 AC2 
FFNN 76.2% 95.4% 
SVM 75.65 % 95.95% 
K-NN 99.9 % 74.32% 
EBC 89.13 % 96.13% 

 
For the use-case-1, we can see the EBC has 

achieved the best performance for c1 and c2 with the 
exception of K-NN’s classification of c1. Figure-2 shows 
that the performance of EBC is uniform for both classes 
with most of the patterns that are classified to c1 do indeed 
belong to c1. While for K-NN classifier, even though it 
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recognizes almost 100% of the patterns that belonged to 
c1, i.e., high recall rate, it has a less than ideal precision 
rate, less than 80% of what was classified as c1 is correct. 
The rest were misclassified patterns from c2. 

 
2) Experimental results for use-case-2: In this use case, 
a pattern is classified into one of three classes. First, we 

discuss the performance of hierarchical FFNN, 
hierarchical K-NN and hierarchical SVM. Then, we 
compare their results with the performance of the EBC. 
EBC’s classification was made with regard of 

1
3 m(c1),1

3m(c2 ) and 1
3m(c3)  as the following: 

 

 
(a) ROC for SVM for use case-1.  

  

 
 

(b) ROC for K-NN for use case-1 

 . 

(c) ROC for FFNN for use case-1. (d) ROC for EBC for use case-1. 

Figure-2.Comparison between a variety of ROCs using use-case-1. 

ĉi 

c1  if 1
3 m(c1) 1

3 m(c2 )&1
3 m(c3),

c2  if 1
3 m(c2 )  1

3 m(c1)&1
3 m(c3),

c3                                       otherwise.










 (1)

 As we can see from Table-4, all classifiers were 
able to detect good percentage of c1. However, their 
performance was different for c2 and c3. A good 
performance on one class results in a worse performance 
for the other class; with adaboostM1 being the worst-case 
scenario. EBC performed the best and most consistent. 

Table-4. Accuracy rate for multiple hierarchical 
classifiers. 

Class AC1 AC2 
RBF Network [13] 73.12% 45.99% 
Bayesian Network [13] 77.88% 43.5% 
Tree-J48 [13] 79.5% 61.2% 
HCCU [13] 80.37% 64.25% 
CBAC [13] 82.37% 67.37% 
AdaboostM1 74.24% 0% 
Random Forest 87.4% 28.2% 

FFNN 81.28% 38.40% 
SVM 81.1% 56.87% 
K-NN 99.89% 73.39% 
EBC 90.15% 76.31% 

 
Granted that EBC classifier should represent the 

fusion of the other classifiers’ decision, the assumption is 
that it should outperform them across all classes. Indeed, it 
outperformed them in c2 and c3, but not the same for c1. 
The explanation is that, as seen in Figure-3, EBC has a 
uniform performance across all three classes. The recall is 
below 0.1 across all classes; especially in c1, we can see 
that c1 has 96% of precision. 
 
4. CONCLUSIONS 

In this paper, several classifiers have been 
implemented for the GPS localization accuracy problem. 
This paper has presented an Evidence Based Classifier 
(EBC) that combines the decisions and evidences from the 
implemented classifiers into one classification decision 
using Dempster-Shafer fusion rule. A method to compute 
the basic probability assignment for each primary 
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classifier was devised for the purpose of DS engine. Two 
use cases, covering the two-class and the multi-class cases, 
were used to examine the performance of the various 
developed classifiers as well as the EBC. The results were 
plausible and further signified our proposed evidence 
based classifier. 

For future work, further investigation on how to 
the basic probability assignment might lead to improved 
results. Also, different training procedures may improve 
the performance of our chosen classifiers; as well as using 
other classifiers might yield to different results. 

 

(a) ROC for SVM for use case-2  (b) ROC for K-NN for use case-2  

 

(c) ROC for FFNN for use case-2  (d) ROC for EBC for use case-2  

Figure-3. Comparison between a variety of ROCs using use-case-2. 
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