
 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1131

BRANCH COVERAGE BASED TEST CASE PRIORITIZATION

Arnaldo Marulitua Sinaga
Department of Informatics, Faculty of Electronics and Informatics Engineering, Institut Teknologi Del, District Toba Samosir (Tobasa),

North Sumatera, Indonesia
E-Mail: aldo@del.ac.id

ABSTRACT
 Software testing is aimed to detect existing faults in a software. The nature of software shows that modification is
unavoided. Testing of a modified software is a must to ensure that the software is still free of failures. This process is
named as regression testing. Regression testing can be very expensive if all test cases have to be re-tested. To reduce the
cost, it is important to prioritize the test case execution to enhance the capability of detecting failures. Test case
prioritization is intended to schedule and order the execution of test case based on the certain criteria. In this research, four
test case prioritization methods studied emperically are additional branch coverage prioritization, Manhattan distance-
based ART (Adaptive Random Testing), additional branch coverage-based with ART, and ART with additional branch
coverage-based. Random Testing, as the basic test selection method, is used as a benchmark of the performance of all
studied methods. The conducted experiments using two programs as under test program are Replace and Space programs.
The experiment results show that all studied methods improve the effectiveness of RT significantly for large program. The
used effectiveness measurement is F-measure, the number of test cases executed to detect the first failure. The additional
branch coverage-based with ART comes as the best method in terms of F-measure. This method combines the advantage of
the additional branch coverage method and the ART. It also reduces the complexity of the additional branch coverage.

Keywords: test case prioritization, adaptive random testing, regression testing, Manhattan distance.

INTRODUCTION
Software testing is a necessary activity in

software development. The quality of software can be
assured by software testing process. However the cost of
software testing can be very expensive. Proper and
effective testing is important to reduce the cost of software
[1]. Software testing also needs to be conducted when
software is modified. The modification may introduce new
faults which need to be revalidated. This process is called
as regression testing. In regression testing, retesting all test
cases will be very costly. Therefore, selecting effective
test cases is very important to reduce the cost of testing.
An effective test case is a set of test cases with high fault
detection capability [2]. The earlier failures detected, the
earlier the correspondent faults can be fixed, and hence
reduce the cost of software development and maintenance.

There are two approaches to conduct test case
selection: black-box and white-box testing [3]. Black box
testing is a method that examines the functionality of
software whereas the white box testing is a method that
examines the internal structure of software [1]. Coverage-
based testing is one of white box testing methods that
selects test cases based on the coverage of each test cases.
There are some criteria that have been used such as
statement coverage testing, branch or decision coverage
testing, condition coverage, decision or condition
coverage, modified condition/ decision coverage, and
multiple-condition coverage [4]. Branch or decision
coverage is one of the most used in test case prioritization
research [5,6,7]. Test case prioritization is a method to
order or schedule test cases so that the highest priority test
case will be executed earlier than lower one. In branch
coverage, the test cases are selected to maximize the

execution of branches in the source code of the program
under test.

 Rothermel et al. [5], found that Additional
branch coverage prioritization is an effective coverage-
based test case prioritization. Additional branch coverage
(known as additional in the remaining of this paper) is a
technique that orders test cases which comprise most
coverage of uncovered branch (by previously
selected/executed test cases) [5]. On the other hand, Chen
et al. introduced Adaptive Random Testing (ART) to
improve the fault-detection capability of Random Testing
(RT) to generate, select or prioritize test cases [3]. RT is
the most fundamental technique in software testing. All
test cases have uniform probability to be selected. ART is
proposed by Chen et al. [3] with the intuition that the
similar test cases are clustered in the same area of domain,
hence it is better to select test cases from different area to
maximize the coverage of test cases. Jaygarl et al. [8]
stated that ART is an effective method to generate test
cases. The difference or distance between test cases is one
of the main issues in ART. For numeric program (input
type is numeric), distance of test case t1 and t2 can be
calculated by t2 – t1. Euclidean distance has been used for
numeric program but difficult to be implemented for non-
numeric program. Zhou [6] proposed methods to measure
the distance between test cases for non-numeric program
by using Manhattan Distance and Jaccard distance. Zhou
[6] and Zhou et al. [7] found that ART with Manhattan
distance performed significantly better than RT.

Since the results of Rothermel [5], Zhou [6] and
Zhou et al. [7] show that additional and ART performed
well for test case selection, in this research the
combination of these two methods is investigated. Two
types of combination are proposed to produce two new

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1132

techniques in test case prioritization: additional branch
coverage-based with ART and ART with additional
branch coverage-based. The hypothesis is that these two
techniques will combine the advantages of each combined
method, namely additional and ART.

STUDIED METHODS
 In this research, there are five test case
prioritization methods being experimentally studied: RT,
additional, Manhattan distance-based ART, additional
with ART, and ART with additional. RT is a simple and
applicable technique. Test cases are selected randomly. As
the most fundamental technique, RT is implemented as a
benchmark for all studied methods.

Additional is a technique of test case
prioritization, that gives high priority to test case with the
most additional branch coverage of the uncover branch by
the previously executed test cases. As proposed by
Rothermel et al. [5], the algorithm of this technique is as
follows: (i) select a test case randomly from test suite, (ii)
all branches that have been covered are marked, (iii) count
the number of unmarked branches that touched/covered
(additional coverage) by each remaining test cases (test
cases that not yet selected), (iv) select test case with the
highest additional coverage, (v) mark all covered
branches, (vi) check the coverage, if all branches have
been covered then reset the branch coverage information
and go to step (i), otherwise go to step (iii).

ART method studied in this research is a method
proposed by Zhou [6]. This method adopts the Fixed-Size
Candidate Set (FSCS) ART with ten candidates (as
recommended by Chen et al. [3]). The distance between
test cases is calculated by using branch-coverage
Manhattan distance. The algorithm of this technique is as
follows: (i) the first test case is selected randomly, (ii) all
the executed test cases are stored in a set, (iii) the next test
case is selected by sampling a fixed size of candidate set
randomly, (iv) the minimum distance of each candidate
from the executed test cases is calculated, (v) the next test
case to be executed is candidate with the maximum
distance, (vi) the executed test case is added to the set of
executed test case and all other candidates are discarded,
(vi) if the stopping criterion is not satisfied, this process is
repeated. The distance measurement in this technique
applies Manhattan distance [6]. During the execution of a
test case, branch coverage is observed. In this technique if
a branch is executed/covered then its flag is set to 1,
otherwise is set to 0. The formula to calculate Manhattan
distance between test case x and y that is used for program
with n branches is as follows:

MD(x,y) =  
n

=i
ii |yx|

1

 (1)

where
xi = The flag of test case x for branch-i
yi = The flag of test case y for branch-i

For illustration, Table-1 lists branch-coverage
information of five test cases (Tc1 to Tc5), assume there
are four branches in the program under test.

Tabel-1. Branch-coverage information.

Branch-
Id

Tc1 Tc2 Tc3 Tc4 Tc5

1 1 1 1 1 0
2 1 0 0 1 1
3 0 0 1 0 0
4 1 1 1 0 1

By using coverage information in Table-1, the

coverage of Tc1 is {1,1,0,1} and Tc2 is {1,0,0,1}, the
distance between Tc1 and Tc2 is 1.

The Additional with ART combines the

additional and the ART technique. The first round of
additional is conducted, that is performed step (i) to (vi) of
additional algorithm until the first set of test cases that
covered all branches obtained. The remaining test cases
are prioritized by using ART method, that performed step
(i) to (vi) of ART algorithm until all test cases are ordered.

The ART with Additional combining the ART
and the additional All of the steps in ART are performed
in this technique, but different in distance measurement.
Instead of using Manhattan distance, in this technique the
distance between test cases is calculated by using
additional coverage. By using information in Table-1,
distance between Tc1 to Tc2 is 1 because there is
additional coverage by Tc2 to Tc1, that is for branch-2,
whereas distance between Tc1 and Tc2 is 0 because there
is no additional coverage of Tc1 to Tc2.

RESEARCH METHODS

The studied methods are experimentally
investigated. This empirical method uses two programs
under test, namely Replace and Space. These two
programs have been used in many research of software
testing. All the instruments of these two programs are
downloaded from Software-artifact Infrastructure
Repository (SIR) [9], a website that provides instruments
for the experiments in software testing.

Replace produced by Siemens Corporate
Research is applied to replace a pattern of regular
expression. Replace program consists of 564 lines of C
code with 180 branches and 21 functions. In Replace
package, it has 32 faulty versions, and 5,542 test cases.
The experiments only involve 28 versions. Four versions,
#13, #23, #26, and #32, are not stable when executed.
Their outputs are different in different execution. Thus, it
is impractical to find the failure causing input.

Space program read a file that consists of some
ADL (Array Definition Language), and check the
correctness and consistency of the ADL. Space Package is
also downloaded from SIR. In that package it has 38 faulty
versions. Each of the faulty versions has a fault found in

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1133

the development process. The program of Space consists
of 6,199 lines of C code with, 1.190 branches and 136
functions. The test suite of this program consists of 13,585
test cases [9]. In the experiments, faulty versions #1, #2,
#3, and #4 are not involved. The outputs of these versions
are the same as the output of the original version. It
indicates that all test cases in test suite can not detect any
failures in those faulty versions, hence are not included in
the experiments.

THE EXPERIMENTS

The pre-process of the experiments is the activity
to obtain all Failure Causing Input (FCI) of each faulty
version and coverage element of each test case. FCI is
obtained by comparing the output of a corresponding
faulty version with the output of the original version. If the
output of the faulty version is different from the output of
the original version then a failure is detected, and
consequently the test case being executed is an FCI.

Since the studied methods applying coverage
information and obtaining the coverage element of each
test case are very important issue, coverage element is
used to calculate the distance between test cases. It shows
which branch has been covered by a test case. Since the
under test programs are c-program, gcov is used to get the
coverage information. Information regarding
count_execution resulted by gcov is used and processed to
produce a text file containing the flag of 1 or 0. It means
the frequency of a branch being touched/executed is not
considered.

After the FCI and the coverage information are
obtained. The five studied methods are executed to the two
under test programs, Space and Replace. Test cases in
their test suites are prioritized by each of the studied
methods. The FCI is compared to the ordered test suite.
The first FCI found in the ordered test suite is known as
the F-measure. The F-measure is the number of selected or
executed test case until the first failure is detected.

To increase the validity of the result, each method
is executed for 100 trials. Therefore, there are 500 trials
for each of the under test program. The average of all trials
for each faulty versions is used to compare the
performance of studied methods.

RESULTS AND DISCUSSIONS

In this section, the findings for Replace and
Space program are explained.

Result of the experiments with replace program

The results of the experiments with Replace
program are presented in Table-2. The average of F-
measures of each studied method to each of faulty versions
is provided. The shaded cells indicate that the
corresponding method performed worse than RT for the
corresponding faulty version.

Tabel-2. Results with replace program.

V F-measure
RT Add ART Add

ART
ART
Add

1 80.1 5.9 39.3 45.9 73.1
2 165.6 5.9 83.4 73.7 215.4
3 42.8 16.1 10.3 5.9 46.4
4 40.5 15.9 9.6 5.9 42.0
5 25.9 13.8 15.9 20.4 18.3
6 59.7 4.1 60.0 3.9 46.3
7 60.1 120.6 21.5 80.2 66.2
8 90.8 136.5 45.7 114.1 95.3
9 154.4 231.9 174.0 220.0 206.6

10 247.6 268.0 189.6 239.0 230.3
11 154.4 231.9 174.0 220.0 206.6
12 17.5 12.3 16.6 18.1 17.7
14 94.0 371.0 17.3 89.5 99.9
15 60.1 120.6 21.5 80.2 66.2
16 201.8 302.5 195.2 191.7 235.3
17 24.4 34.0 21.0 30.3 25.0
18 1,490.5 422.0 594.4 1,279.6 1,232.1
19 211.7 303.6 217.7 202.7 244.9
20 1,524.9 2,540.0 800.8 1,576.5 1,483.6
21 1,524.9 2,540.0 800.8 1,576.5 1,483.6
22 281.4 249.2 281.1 288.3 256.2
24 18.6 60.1 8.7 24.5 21.0
25 1,479.3 990.5 762.1 1,393.0 1,506.2
27 19.5 11.7 7.0 5.2 18.3
28 24.4 34.0 21.0 30.3 25.0
29 74.4 39.6 27.5 113.7 85.4
30 19.5 11.7 6.9 5.2 18.4
31 24.4 34.0 21.0 30.3 25.0

Avg 293.3 326.0 168.0 284.4 285.7

In Table-2, column RT presents the F-measure of
RT calculated as the average of 100 trials. Column Add
describes the F-measure obtained from additional branch
method. Column Add ART shows the F-measure obtained
from the combination of additional branch and ART.
Column ART Add shows the F-measure obtained from the
combination of ART and additional branch. The F-
measure results show that the ART is the best, followed by
Add-ART and ART-Add.

From the F-measure result, ratio of the
improvement of the four investigated methods to RT is
calculated. The ratio for each faulty versions is presented
in Table-3.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1134

Tabel-3. Ratio of comparison to RT with replace (%).

V Add ART
Add
ART

ART
Add

1 7.32 49.13 57.37 91.27
2 3.55 50.35 44.51 130.06
3 37.46 24.11 13.66 108.22
4 39.19 23.74 14.44 103.53
5 53.08 61.22 78.76 70.39
6 6.93 100.49 6.60 77.54
7 200.78 35.85 133.47 110.29
8 150.32 50.29 125.66 104.99
9 150.17 112.69 142.45 133.76
10 108.21 76.55 96.51 92.99
11 150.17 112.69 142.45 133.76
12 70.27 94.80 103.72 101.43
14 394.86 18.42 95.22 106.38
15 200.78 35.85 133.47 110.29
16 149.91 96.74 94.97 116.59
17 139.31 85.91 124.08 102.33
18 28.31 39.88 85.85 82.67
19 143.44 102.84 95.75 115.69
20 166.57 52.52 103.38 97.29
21 166.57 52.52 103.38 97.29
22 88.56 99.89 102.47 91.05
24 323.41 46.56 132.08 112.81
25 66.96 51.52 94.16 101.82
27 59.75 35.84 26.68 93.45
28 139.31 85.91 124.08 102.33
29 53.24 36.91 152.76 114.71
30 59.75 35.43 26.68 94.01
31 139.31 85.91 124.08 102.33

Avg 117.77 62.66 92.10 103.55

Some findings from Table-3.

1. Additional performed better than RT 13 faulty
versions except for versions #7, #8, #9, #10, #11, #14,
#15, #16, #17, #19, #20, #21, #24, #28, #31. The best
performance of Additional is found from version #2,
the ratio is 3.55% which means that the Additional
improved the RT with the gained percentage is
96.45% (uses 96.45% less test cases than RT to detect
a failure). Overall the Additional performed worse
than RT, the ratio 117%, which means that Additional
uses more test cases than RT.

2. ART outperformed RT with most of the faulty
versions except for versions #6, #9, #11 and #19. The
differences between ART and RT for those four
versions are relatively small. The biggest saving of
ART is obtained from version #14 with the ratio of
18.42%, indicates that ART uses 81.58% test case less
than RT to detect failure. Overall the ratio of F-
measure for ART to RT is 62%.

3. The combination of Additional and ART
performed better than RT 14 faulty versions and
worse for version #7, #8, #9, #11, #12, #15, #17, #20,

#21, #24, #28, #29 and #31. The biggest saving is
obtained with version #6, that 93.40% less than RT.
Overall the ration of Additional with ART is 92%.

4. The combination of ART and Additional
performed better than RT only for 10 faulty versions:
#1, #5, #6, #10, #18, #20, #21, #22, #27 and #30. This
method mostly performed worse than RT. The best
performance obtained with version #5 with the saving
of 31.61% (ratio of 70.39 %). Overall the ratio of this
method compared to RT is 103%.

This research was analysed by using statistical

analysis, that is by conducting one way ANOVA and
paired sample test. The ANOVA test is used to analyse
whether the compared methods are significantly different.
The p-value resulted from ANOVA test is 0.00 (less than
0.05), which indicates that the studied methods are
significantly different. To analyse the difference of each
studied methods, the paired sample test is conducted. The
results of paired sample are presented in Table-4.

Table-4. Paired sample t-test for replace.

No. Pair p-value
1 RT-ART 0.02
2 RT-ADD 0.64
3 RT-ADDART 0.40
4 RT-ARTADD 0.68

Table-4 indicates as follows:

1. The p-value resulted by paired-sample t-test
between RT and ART is 0.02. This indicates that ART
is significantly outperformed RT.

2. The paired-sample t-test between RT and
Additional return a p-value of 0.64 (larger than 0.05).
This indicates that the two techniques are not
significantly different.

3. The paired-sample t-test between RT and
Additional with ART return a p-value of 0.40 (larger
than 0.05). This indicates that the two techniques are
not significantly different.

4. The paired-sample t-test between RT and ART
with Additional return a p-value of 0.68 (larger than
0.05). This indicates that the two techniques are not
significantly different.

Result of the experiments with space program
 The experiments results for Space program are
presented in Table-5.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1135

Tabel 5. Results with space program.

V
F-measure

RT Add ART
Add
ART

ART
Add

5 21.2 22.9 19.5 24.6 39.6
6 1.7 1.1 1.1 1.1 1.1
7 3.2 2.4 2.8 2.3 3.3
8 1.0 1.0 1.1 1.1 1.1
9 83.3 8.6 21.3 7.9 70.4

10 132.4 19.1 42.2 17.7 119.5
11 2.9 2.0 2.4 1.8 3.5
12 9.9 4.4 6.5 4.1 9.9
13 11.9 5.5 8.8 6.0 9.2
14 419.2 29.3 156.0 30.4 369.6
15 18.0 3.0 8.9 3.0 15.1
16 7.3 2.3 4.2 2.3 8.4
17 4.6 1.8 2.6 1.8 4.2
18 25.7 2.9 7.2 2.7 20.8
19 61.7 97.7 74.5 107.3 57.7
20 419.2 29.3 156.0 30.4 369.6
21 9.5 3.5 9.9 3.5 10.6
22 59.3 79.0 20.3 78.9 56.0
23 59.3 79.0 20.3 78.9 56.0
24 189.1 11.7 54.0 13.1 65.5
25 51.4 23.3 17.3 22.5 41.2
26 19.8 2.9 6.3 2.8 11.9
27 2.9 1.8 2.4 1.9 3.7
28 9.5 2.3 4.2 2.4 12.1
29 374.1 25.2 91.9 23.3 336.1
30 1.9 1.7 1.7 1.6 2.1
31 19.6 8.1 9.4 9.0 17.7
32 1.2 1.2 1.2 1.2 1.3
33 8.4 2.8 5.8 2.8 8.5
34 378.4 473.3 279.3 568.5 178.3
35 59.0 58.6 18.5 56.7 53.6
36 126.3 9.1 123.6 9.3 127.0
37 160.2 3.8 39.6 3.6 103.1
38 378.5 2.0 87.2 21.2 300.8

Avg 92.1 30.7 38.5 33.7 73.2

 Results on Table-5 shows that all studied
methods outperformed the RT. It also indicates that the
performance of all studied methods with Space is better
than performance with Replace. The Additional performed
the best with the lowest F-measure, followed by the
combination of Additional and ART, ART and the
combination of ART and Additional comes as the worst.
 As the basic strategy, RT is used as the
benchmark for all methods. The ratio of comparison
between each of studied methods to RT is presented in
Table-6.

Table 6. Ratio of comparison to RT with space (%).

V Add ART
Add
ART

ART
Add

5 108.06 91.70 115.75 186.66
6 99.06 100.00 103.77 104.72
7 75.00 87.03 73.42 103.80
8 100.00 100.96 102.88 104.81
9 10.35 25.53 9.50 84.56

10 14.41 31.88 13.33 90.24
11 69.90 84.43 63.32 120.76
12 44.61 65.86 41.39 100.00
13 46.34 74.18 50.55 76.96
14 6.99 37.21 7.24 88.17
15 16.42 49.36 16.81 83.69
16 32.00 57.66 31.72 115.86
17 38.65 56.55 40.17 91.92
18 11.30 27.89 10.56 81.18
19 158.47 120.87 173.96 93.55
20 6.99 37.21 7.24 88.17
21 37.00 104.55 36.68 111.52
22 133.24 34.27 133.07 94.53
23 133.24 34.27 133.07 94.53
24 6.17 28.53 6.91 34.62
25 45.27 33.60 43.65 80.03
26 14.41 31.90 14.36 60.06
27 63.01 81.85 65.75 125.68
28 24.05 43.70 25.21 126.79
29 6.73 24.56 6.22 89.86
30 87.83 88.36 83.60 110.58
31 41.38 48.11 45.66 90.20
32 103.48 103.48 100.87 116.52
33 33.18 68.72 32.58 100.95
34 125.08 73.83 150.24 47.12
35 99.25 31.40 96.03 90.85
36 7.23 97.84 7.32 100.51
37 2.36 24.71 2.26 64.38
38 5.81 23.04 5.59 79.47

Avg 53.16 59.56 54.43 95.10

Table-6. indicates as follows.

1. The Additional performed better than RT except

for versions #5, #8, #19, #22, #23, #32 and #34. The
biggest saving is obtained from version #37 with the
ratio of 2.36%. It means that the Additional executes
97.64% test case less than RT to detect the first
failure.

2. ART outperformed RT for most of the faulty
versions except for versions #21, #19, #8 and #6,
however the difference between ART and RT for
those five versions are very small (almost similar).
The biggest saving is obtained from the version #38
with the ratio of 23.04%.

3. The combination of the Additional and ART
performed better than RT with most of the faulty
versions, except for the versions of #5, #6, #8, #19,
#22, #23, and #32. The best performance of this

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1136

method is obtained from version #37. It reduces the
number of test cases execution to 97.74 % of RT.

4. The combination of ART and Additional
performed better than RT for faulty versions #5, #6,
#7, #8, #11, #12, #16, #21, #27, #28, #30, #32, and
#33. The biggest saving of this method is for version
#24 with the ratio of 34.62%, which means executed
65.38% test cases less than RT to detect the first
failure.

As conducted for Replace program, the one way

ANOVA test and the paired-sample test are also
conducted for Space program for statistical analysis. The
one way ANOVA test result shows that all studied
methods are significantly different (the p-value is 0.00).
The paired-sample test results are presented in Table-7.

Table-7. Paired sample t-test for space.

No. Pair p-value
1 RT-ART 0.01
2 RT-ADD 0.00
3 RT-ADDART 0.01
4 RT-ARTADD 0.01

The results on Table-7 indicates all studied

methods outperformed the RT significantly. The p-value
for all pairs with RT is less than 0.05.

The experiments with the two programs under
tests, Replace and Space program show that there is
different performance of the studied methods when
applied to different type of program. The results with
Space show that the studied methods performed better
when applied to larger program with larger test suite.

The results also indicate that the Additional
performed extremely well for some faulty versions such as
versions #37, #38, #24, #29, #13, #20, #36 of Space
program and versions #1, #2, #6 of Replace program (all
with ratio of less than 10%). On the other hand, the
Additional can be very bad such for faulty versions #19 of
Space and versions #14 and #24 of Replace program.
From the investigation, it is found that the Additional
performed very well when the FCI is included in the first
round of Additional algorithm.

Generally ART performed better than RT, but
when it is compared to the Additional, overall the
Additional is better. However in some cases such as for
faulty versions #14 and #24 of Replace program and #22
amd #23 of Space program, there are conditions when the
ART performed better than the Additional. This is in line
with the intuition of this research. The combination of
Additional and ART can combine the advantages of the
two methods. The performance Additional with ART
performed very well when the Additional performed well
(see versions V37, #38, #36, #29, # 4, #20 and #13 of
Space and version #6 of Replace), whereas it can improve
the performance Additional when the Additional
performed very bad (see versions #14 and #24 of Replace
and versions #22 and #23 of Space). However the

combination of ART with Additional can not improve the
original ART or Additional.

CONCLUSIONS AND SUGGESTIONS
 Five test case prioritization methods investigated
experimentally in this research are RT, Additional, ART,
additional with ART and ART with Additional. All the
coverage based methods apply the branch coverage
information. Empirically, it is found that for large program
with large test suite (Space program), all four test case
prioritization methods outperformed RT significantly in
terms of F-measure. The four methods apply fewer test
cases than RT to detect the first failure in the faulty
versions. Different results are found for Replace, a smaller
program with smaller test suite. Three studied methods,
Additional, Additional with ART and ART with
Additional, are not better than RT. The ART is the only
branch-coverage technique that outperformed RT
significantly. In conclusion, the effectiveness of branch-
coverage methods is influenced by the size of the under
test program and the test suite.

The results also indicate that the combination of
Additional and ART can improve the Additional and ART
by combining the advantages of these two methods. The
performance of the combination of Additional and ART is
more stable than the Additional and is better than ART.
This method is suggested to be applied for test case
prioritization of a large test suite of a large program. On
the other hand, the combination of the ART and
Additional is not suggested to be used since it does not
perform any improvement.

However the validity of this experiment needs to
be enhanced in the next research. The number of program
under tests with vary types of program (size, test suite,
language) need to be applied. It is also suggested to use
real faulty versions obtained from the real development
process of the program under test. Beside the F-measure, it
is also important to measure the time complexity and
space consumed by the proposed methods.

REFERENCES

[1] S. Pressman Roger. ”Software Engineering a

practitioner’s approach”, McGraw-Hill Higher
Education, 2001.

[2] G. J. Myers “The Art of Software Testing 2nd

Edition”, New York: John Wiley & Sons, 2004

[3] T.Y. Chen H. Leung I.K. Mak “Adaptive Random

Testing” M.J. Maher (Ed.): Springer-Verlag Berlin
Heidelberg ASIAN 2004, LNCS 3321, 2004, pp. 320–
329.

[4] G. Christophe and S. Dirk, ”Evaluating Coverage
Based Testing”, M. Broy et al. (Eds.): Model-Based
Testing of Reactive Systems, LNCS 3472, 2005, pp.
293-322.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1137

[5] G. Rothermel R. H. Untch C. Chu M. J. Harrold
”Prioritizing Test cases For Regression Testing”. IEEE
Transactions on Software Engineering, vol. 27, no. 10,
October, 2001, pp 929-948.

[6] Z.Q. Zhou “Using Coverage Information to Guide

Test case Selection in Adaptive Random Testing”,
2010. in Proceedings of the 34th Annual IEEE
Computer Software and Applications Conference
Workshops (COMPSAC 2010). IEEE Computer
Society, 2010, pp. 208-212.

[7] Z. Q. Zhou A. Sinaga. and W. Susilo “On the fault-

detection capabilities of adaptive random test case
prioritization: Case studies with large test suites,” in
Proceedings of the 2012 45th Hawaii International
Conference on System Sciences (HICCS-45). IEEE
Computer Society Press, 2012, pp. 5584–5593.

[8] H. Jaygarl C. K. Chang. and S. Kim “Practical
extensions of a randomized testing tool,” in
Proceedings of the 33rd Annual International
Computer Software and Applications Conference
(COMPSAC 2009). IEEE Computer Society Press,
2009, pp. 148-153.

[9] M. Hutchins H. Foster T. Goradia. and T. Ostrand,
“Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria,” in
Proceedings of the 16th International Conference on
Software Engineering (ICSE'94). IEEE Computer
Society Press, 1994, pp. 191–200.

[10] “Software-artifact Infrastructure Repository”,
http://sir.unl.edu, accessed on 3 December 2013.

