
 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1192

FORMAL SPECIFICATION APPROACH IN DESIGNING DATABASE
SYSTEM USING Z

Julaily Aida Jusoh1, Mohd Yazid Md Saman2 and Mustafa Man2

1Department of Information Technology, Faculty of Informatics & Computing, Tembila Campus, Universiti Sultan Zainal Abidin,
Besut, Terengganu, Malaysia

2Pusat Pengajian Informatik & Sains Gunaan, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
E-Mail: julaily@unisza.edu.my

ABSTRACT
 The requirements for a software system set out what the system should do and define constraints on its operation
and implementation. Traditionally, users express the requirement specification of system development by natural language.
Natural language is ambiguous, thus the requirement specification statement may result in different apprehension among
users, analysts and programmers. Anxieties have been raised by several relevant software developers about the weakness
use of natural languages in documenting system requirements. Hence, one of the solutions to solve the problem in
capturing user requirements is by using the formal specification approach. Formal specifications is an approach to solve the
vagueness and contradiction in natural language descriptions by providing an unambiguous and precise specification. This
approach can be validated and verified mathematically leading to the initial detection of specification errors. The use of a
formal specification will reduces ambiguity between programmer and end-user while eliminates an errors during software
development. If this is done, then we can carried out testing the system aligned to the user requirement specification. This
work will discuss on how to implement formal specification approach in designing database system.

Keywords: natural language, software requirement specification, formal specification.

INTRODUCTION
Software specification is the process that

beginning by defining the user requirement. User
requirement is a statement that expressed in natural
language plus diagrams, on what services are required
from the system and determine the constraints on the
system’s operation and development. While system
requirement is a guideline of what functions that the
system must provide. To reduce ambiguity, both
requirements may be written in a structured form of
natural language complemented by system models and
tables. The statement of the user requirements and a
detailed specification regarding the system requirements
usually documented in the software requirements
specification (SRS). There two cases in documenting user
requirement and system requirement either both
requirements are integrated into a single description or the
user requirements are defined in an introduction of the
system requirements specification. But, the detailed of
system requirements may be presented in a separate
document if there are a bundle of user requirements. In
any software process model, the first phase is the
requirement analysis. This phase describes on what the
system are required to do and the constraints in the
operation. At some stage in analysis, data are collected
through interviews, on-site observation and questionnaire
(Sommerville, 2011), (Pressman & Maxim, 2014).

In a software development process, traditionally,
a user may articulate the requirement specification of
system by natural language. Natural language description
is ideal for human communication, but it causes damage of
the quality of requirements (Saeki & Enomoto, 1989) and
ambiguous. Thus the requirement specification statement
may result in dissimilar perception among users, analysts

and programmers (Jochen, 2003). Concerns have been
raised by several relevant software developers about the
poor use of natural languages in traditional documenting
system requirements. One of the solutions to solve the
problem in capturing user requirements is by using the
formal specification approach (Mohd Saman et.al, 2006),
(Mohd Saman et.al, 2007).

Figure-1. The requirement specification process for
designing DNA database.

The system must be designed based on the

detailed analysis and the user requirements of a system.
Normally, informal specification is turned out at
requirement specification phase. Then this informal
specification generally applied on software requirement
specification (Sommerville, 2011), (Pressman & Maxim,
2014). Software requirement specification considered as a

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1193

complete informal description of system requirements and
dependencies at a particular point in time prior to any
actual design and development work. Figure-1 shows the
proposed process from requirement specification to
designing by implementing formal specification after
informal specification.

Formal specifications formally defined the
vocabulary, syntax and semantics in a mathematical
notation (Michael & Jeremy, 2014). Usually both the
system requirements and the system design are expressed
in detail and carefully analyzed and checked before starts
the implementation phase. Developing formal
specification of the software usually comes after the
system requirements have been specifying but before the
detailed systems are design (Jusoh et.al, 2009). One of the
main benefits of formal specification is its ability to
discover problems and ambiguities in the system
requirements. This work will analyse informal
specifications for traditional DNA sequence database
systems in order to identify the structure of the
requirements and transform into formal specifications
using Z language. The correctness of these specifications
will be verified and validated focuses on requirement
analysis of the system development.

FORMAL SPECIFICATION

Formal methods have been used in computer
system development for decades. As mentioned in (Man
et.al, 2012), formal methods use the ideas and techniques
from mathematical and formal logic to increase the design
assurance and eliminate defects at the early stage to fulfill
user requirements. Formal methods developed complete,
consistent and unambiguous specification using set theory
and logic notation to create a clear statement of
requirements (Saaltink, 1997), (Diller, 1994). In safety-
critical systems, a failure rate may be high. Lives may be
lost or severe economic consequences can arise when
computer software fails. In such situations, it is crucial that
errors are exposed before software is put into operation
(Spivey, 1989), (Wordsworth, 1996). A formal method
radicall eliminate the specification errors and as a
consequence serves as the basis for software that has very
few errors once the customers begin using it. The primary
concepts in formal methods are (Diller, 1994):-
 Data invariant – a condition true throughout the

execution of the system that contains a collection of
data.

 State – the stored data that a system can access and
alters.

 Operation – an action of reads or writes data to a state.
An operation associated with two conditions: a pre-
condition and a post-condition.

 Some methods in formal methods are based on
set theory and first order predicate calculus while other
methods are based on temporal logic (Moller et.al, 2007).
Set theory and logic notation are used to create a complete,
consistent and unambiguous statement of formal

requirements. Nevertheless, its main benefit is in reducing
the number of errors in systems and the main applicable
area is critical systems. In this area, the use of formal
methods considered as cost effective because more errors
are detected before implementation phase (Sommerville,
2011). Formal methods includes formal specification,
specification analysis and proof, transformational
development and program verification.

In computer science, formal specification
approach declared as the specification of a program's
properties that defined by a mathematical description.
Most languages in this approach used to formally specify
programs associated with operational semantics to allow
execution of the specification and testing a program's
properties. Formal specification describes on what the
overall system should do and not how the system should
do. It is possible to use formal specification to assist
developer develop an accurate system with a few errors at
the end of the system development’s phase.

Formal specification usually reveals errors and
inconsistencies in the informal requirement's specification
(Man et.al, 2011). This error detection is probably the
most potent argument for developing a formal
specification. Fixing errors at this phase is inexpensive
compared to modifying a delivered system (Muhammad
et.al, 2008). Formal specification can assist in overcoming
the mismatch between users and programmers intention by
providing an conciseness unambiguous specification in
which the intentions of a design can be formulated (Saeki
& Enomoto, 1989). This reduces requirement errors as it
forces a detailed analysis of the requirements.

Formal specifications use mathematical notation
to describe in a precise way the system properties. Formal
specification languages consist of Vienna Development
Method (VDM), OBJ, Larch, Communicating Sequential
Processes (CSP), Lotos, Petri-Nets, Z and B. There are
two fundamental approaches in formal specification that
have been used to write detailed specifications for the
systems (Sommerville, 2011). These fundamental
approaches consist of algebraic approach and model-based
approach. The language for model-based approach such as
B (Wordsworth, 1996), Vienna Development Method
(Jones, 1986) and Z (Spivey, 1989) are currently used in a
variety of industrial case studies and supported by
commercial tools. Z, VDM and B are formal specification
language that implemented in different logic and rule.
Between that all those languages, Z is chosen as formal
specification language to specify DNA sequences database
system. This is because Z language has an available
support tool, and it becomes acceptable in a software
specification lesson and industry. However, the main
reason in choosing Z language is because its specification
is readable.

In software development lifecycle, formal
specification language implemented during requirements
analysis, system analysis and designing phase. Normally,
specification languages are not directly executed in a form
of high level programming language. But most high level
programming languages will executed formal specification

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1194

languages as a complement to develop a system. Formal
specification languages describe the system at much
higher level compared to a programming language.
Indeed, it is considered as errors if a requirement
specification is cluttered with unnecessary implementation
detail (Man, Mohd Rahim, Jusoh, & Zakaria, 2012).

In this work, most concern is given to model-
based approach. Model-based approach modeled the
system using mathematical notation such as sets and
functions. It exposed the system state which simplifies
some types of behavioural specification. Therefore, the
system’s operations in a model-based specification are
defined by pre-conditions and post-conditions on the
system state.

Z SPECIFICATION FOR DNA DATABASE
SYSTEM

DNA is recognized as Deoxyribonucleic Acid. It
is string sequences consisting 4 letter alphabet of
nucleotides (bases): A (adenosine), C (cytosine), G
(guanine) and T (thymine) (Mohd Saman et.al, 2006).
DNA is a nucleic acid molecule that includes the genetic
information used in the development and functioning of all
living organisms. The DNA segments that hold this
genetic information are called genes (A Rahman et,al,
2007).

Over the past century there has been a dramatic
increase in the technology of databases. It incorporate both
"public" repositories of gene data such as GenBank or the
Protein DataBank (PDB), and “private” repositories which
used by the work-groups that concerned in gene mapping
projects held by biotech industries. These databases are
accessible via open online platform likes Web. It is very
significant since clients of bioinformatics data are
preferred use a range of computer platforms. DNA defined
as the proteins which we can trace the genetic information
about an organism in it. DNA macromolecules have a
fixed structure which can be analyzed by biologists assists
by bioinformatics tools and databases. A few acceptable
databases among biologists are GenBank from NCBI
(National Center for Biotechnology Information),
SwissProt from the Swiss Institute of Bioinformatics,
BLAST and PIR from the Protein Information Resource.
The motivation on utilizing DNA sequence files as a case
study is based on the increasing scientific and societal
need towards human genome data (Zhang et.al, 2011). In
the next few years, various fields including academia,
business, and public health will take advantage, of the
huge information stored in the DNA sequence database
system.

There are three general types of DNA database
consists of forensic, genetic genealogy and medical. Those
DNA databases determined data that are related with
computerized software designed which can be insert,
remove, update and retrieve components of the data stored
within the system. A simple database might be a single file
containing numerous records which includes the similar
set of information. For instance, a record regarding a
nucleotide sequence database normally contains

information such as contact name, a molecule of
sequences, type of the molecule description and the
scientific name of the source organism from which it was
isolated.

The DNA sequences have structural purposes that
involved in regulating the use of genetic information.
Genetic information and personal data are stored
indefinitely on DNA databases. The DNA database system
is a system that hold millions of DNA sequences. The
DNA database are designed to provide and encourage
access within the scientific community to the most up to
date and comprehensive DNA sequence information
(Jusoh et.al, 2009). Nevertheless, the development in
sequence databases and technology in solving a DNA
sequences similarity search becomes vital issues
nowadays.

This section review on specification of traditional
DNA database system. In order to develop a Z
specification for DNA database system, a few related data
set will determined. These data set are represented by id of
DNA, type of DNA, name of DNA and sequences of
DNA. The declaration of Z specification for DNA
database system are clarified as follows:-
 This specification makes use of the following given

sets:
 [ID, TYPE, NAME, SEQUENCES]
 Database of Data : DNA
 The type definition for the responses to the

operations is as follows: REPORT ::= successs |
alreadyKnown | notKnown

 Note : \Delta means there is a change in state
schema

 \Xi means there is no change in state schema

The first step in designing Z specification is describing the
state schema of the system as illustrated in Figure-2. It is
similar as most schemas which consists of declaration part
above the central dividing line and a predicate part below
the central line which gives a relationship between the
values of the variables.

Figure-2. State schema for DNA databases.

Figure 2 depicted a state schema in latex format. There are
the four variables declared in this schema. It represents
important annotations as follows:
 known is the set of ID with DNA recorded.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1195

 type is a molecule description which applied to
 certain ID, the system gives the DNA’s type
 associated with the ID.

 name is a organism scientific name, the system will
 gives the DNA’s name associated to the ID that
 applied by biologist.

 sequences is a DNA sequences, which once
 biologist key-in the ID, the system gives the DNA’s
 sequences associated with them.

 As presented in Figure 2, the predicate part of the
schema below the line gives a relationship which is true in
every related schemas of the system. In this case, it says
that the set known as the domain of the function type,
name and sequences - the set of ID to which it can be
validly applied. This relationship is a condition that can be
relied upon to be true during the execution of the system.
This condition also called as an invariant. In this state
schema, the invariant allows the value of the variable
known to be derived from the value of sequences. The
known is a derived component of the state which is
possible to specify the system without mentioning known
at all. However, ID helps the specifications more readable
because an abstract view of the state schema of the DNA
databases are described. It can be done without any
commitment to signify known explicitly in an
implementation. One possible state of the system is the
following:

known = {001, 002, 003}
sequences = {001  TTAGCCGAAAGGT,
 002  AAATGCCTATGCC,
 003  CAGTTTGCAAGGTT}

There are three ID’s known to the system. The sequences
function as associates a DNA sequence with related ID. In
the state schema, there is no limitation on the number of
DNA recorded into the database. The second steps in
designing Z specification is develop a formal specification
of related operations in the database system. An operation
schema represents the operation that the system will
perform. The first operation is inserting a new discovered
DNA data into the system. The Z specification schema for
this operation illustrates in a Figure-3.

Figure-3. AddDNA schema.

The declaration of \Delta DNA means that this schema
incorporates the state schema which permits as reference
to the state variables before and after of this operation.
Next, it is followed by the declarations of the four inputs
key-in into the operation. As depicted in Figure-3, the
names of inputs end with a question mark. AddDNA
schema introduces four new variables; known’, type’,
name’ and sequences’. These four variables are
observations of the state after the change. Each pair of
variables is unconditionally constrained to satisfy the
invariant in the predicate part of this schema. It hold both
condition before and after the operation. In predicate part,
a pre-condition for the operation is check the new id to be
added must not already be one of those known to the
system that presented as id? \notin known. If the pre-
condition is satisfied, the next three predicate shown that
those three functions are added by mapping the new data
related to the given new id.

Figure-4. DelDNA schema.

Figure-4 illustrated the delete operation to remove an
existing DNA data from the database. Predicate id? \in
known shows that given id? to be delete must already a
member of known in the system. If the pre-condition is
satisfied, hence, the next three predicates shown those
three functions automatically will be deleted from the
database. This situation also can be formulated as follows:

 The next operation in this database system is to
retrieve the data from the database system. Next operation
describes in a schema as depicted in a Figure-5.

Figure-5. FindDNA schema.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1196

 This schema declared two new notations. First
notation is \Xi DNA, which indicates that this operation
will not cause any changes in the state schema. The second
notation is the use of a name which end with an
exclamation mark for an output declaration. FindDNA
operation takes an id as input and yields the corresponding
type, name and sequences as output.

 The pre-condition for this operation is same as
previous operation which is presented as id? \in known. If
this is so, the output type!, name! and sequences! are the
data of the three functions at argument id? as presented by
last three predicates. The last operation this database
system is to update the current DNA. This operation is
described in a schema as provided in a Figure-6.

Figure-6. UpdateDNA sequence schema.

 As depicted in a Figure-6, there are four inputs
given in this system. The first input, id?, means that all
data associated with this id will be updated. The input id?
must already be one of those known to the system. If this
pre-condition is satisfied, the last three predicates will
updates to override the existed data associated to the given
id?

CONCLUSIONS

Using formal specification in the software
development of an information system will eliminate all
ambiguity start from the interpretation of the need/
requirement (the model) and end by elaborating the system
which realizes the specification in successive stages. The
coherence of the model and the conformity of the final
program in relation to this model are guaranteed by
mathematical proofs. This work has described the

mathematical notation in the state schema of DNA
database system and the associated operations which can
be performed on it. The related data that used in the
system are described in terms of mathematical data types
such as sets and functions. One of our future works shall
deal with complete and precise specification for DNA
sequences pattern scanning.

REFERENCES

A Rahman, M., Mohd Saman, M., Ahmad, A., & M Tap,
A. (2007). Automaton Based Filtering in Optimal DNA
Sequence Similarity Search. 1st Regional Conference on
Computer Science & Technology. Malaysia.

Diller A. (1994). Z: An Introduction to Formal Methods.
John Wiley & Sons.

Jochen L. L. (2003). Current Issues in Software
Engineering for Natural Language Processing.
Proceedings of the HLT-NAACL Workshop on Software
Engineering and Architecture of Language Technology
Systems, ACM,vol. 8.

Jones C. B. (1986). Systematic Software Development
Using VDM. London: Prentice Hall.

Jusoh J., Mohd Saman M. AND Man M. (2009). Formal
Validation of DNA Database Using Theorem Proving
Technique. International Journal of Computer, the Internet
and Management, 21.1-21.5.

Man M., Jusoh J., Mohd Rahim M. and Zakaria M. (2011).
Formal Specification Validation For SIDIF Using
Theorem Proven. Journal Of Computing.

Man M., Mohd Rahim S., Jusoh J. and Zakaria M. (2012).
Mustafa Man, Mohd. Julaily Aida Jusoh, Mohammad
Zaidi Zakaria, Designing Multiple Types of Spatial and
Non Spatial Databases Integration Model Using Formal
Specification Approach. International Journal of Digital
Content Technology.

Mohd Saman M., Jusoh J. and Man M. (2006). A Study of
Z Formal Specification Language With a Case Study In
The Development of Database System. Computer Sciences
and Mathematics Symposium Terengganu. Malaysia:
UMT.

Mohd Saman M., A Rahman M., Ahmad A. and M Tap A.
(2006). A Minimum Cost Process in Searching for a Set of
Similar DNA Sequences. 5th WSEAS International
Conference on Telecommunications and Informatics, (pp.
348-353). Istanbul, Turkey.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1197

Mohd Saman M., Jusoh J., Ledru Y. and Man M. (2007).
On Transformation of Diagrams for DNA Database to Z
Specifications. National Conference on Software
Engineering & Computer Systems (NaCSES). Malaysia.

Moller M., Ernst-Rudiger Rasch H. and Wehrheim H.
(2007). Integrating a Formal Method into a Software
Engineering Process with UML and Java. Formal Aspects
of Computing.

Muhammad M., Mohd Saman M. Y., Jusoh J. A., Man M.,
and A Rahman M. N. (2008). Formal Specification of Aho
Corasick Algorithm. 4th Malaysian Software Engineering
Conference (MySec). Malaysia.

Pressman R. and Maxim B. (2014). Software Engineering:
A Practitioner's Approach. McGraw Hill.

Saaltink M. (1997). The Z/EVES System. ZUM (pp. 72-
85). LNCS.

Saeki H. H. and Enomoto H. (1989). Software
development process from natural language specification.
11th international conference on Software engineering
ACM, pp. 64-73.

Sommerville I. (2011). Software Engineering. UK:
Addison-Wesley.

Spivey J. M. (1989). An Introduction To Z And Formal
Specifications. Software Engineering Journal.

Wordsworth J. (1996). Software Engineering with B.
Wokingham: Addison-Wesley.

Michael J. B. and Jeremy L. J. (2014). On Integrating
Confidentiality and Functionality in a Formal Method.
Formal Aspects of Computing, Springer,
DOI10.1007/s00165-013-0285-4, 963-992.

Zhang J. R., Chiodini A. B. and Zhang G. (2011). The
impact of next-generation sequencing on genomics.
Journal of Genetics and Genomics, vol. 38, 95-109.

