
 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1198

MATRIX MULTIPLICATION PROGRAM: A CASE STUDY OF
METAMORPHIC TESTING

Arlinta Christy Barus

Del Institute of Technology, Jl. Sisingamangaraja Sitoluama, Laguboti, North Sumatera, Indonesia
E-Mail: arlinta@del.ac.id

ABSTRACT

Software testing is one of phases in software engineering process that has a very important role to determine the
quality of software under test. In software testing, after generating and selecting test cases, and executing them, the outputs
need to be checked against a test oracle to determine whether any failures detected or not.

Oracle problem is one of the biggest problems in Software testing. It is a condition where a test oracle can not be
obtained or too expensive to be used in testing. Metamorphic Testing is a new testing approach designed to alleviate oracle
problem. This approach makes use the crucial properties of software under testing, to determine some Metamorphic
Relations (MRs). MRs is used to generate follow-up test cases based on original test cases, known as source test cases. The
relations are also used to verify whether test passes or fails.

This paper presents a use of Metamorphic Testing in testing a program implementing a matrix multiplication. Five
Metamorphic Relations are identified and implemented to test five Mutant programs having intentionally bug inserted. All
Mutants have been successfully killed by test cases generated by the five Metamorphic Relations. It showed that the
generated MRs have been effective enough in conducting Metamorphic Testing for this case study.

Key words: oracle problem, metamorphic testing, multiplication matrix.

INTRODUCTION

Computer-based application has been widely
used all over the world. Hence, the roles of software
systems have been increased exponentially. This causes, at
the same time, the increasing reports of software faults.

To guarantee the quality of software used is
handled by software quality assurance process. It has
become one of the most important areas in the software
industry as well as in the academic sectors. Software
testing, an important approach in software quality
assurance, is widely reflected as a critical activity and now
is one of main research focus in software engineering
(Hailpern et al., 2002). One objective of software testing is
to detect as quickly as possible, as many software faults as
possible (Myers, 2004).

Software testing is one of phase in software
engineering process that has a very improtant role to
determine the quality of software under test. The general
steps in software testing is generating test cases, selecting
appropriate set of test cases based on certain criteria,
executing them, and checking the outputs against a test
oracle to determine whether any failures detected or not.

 A test oracle is a mechanism to check whether
the output of executing a program under testing using a
test case is according to the expected output or not. In
other words, it is used to verify whether the progam has
passed the test or not (Hierons, 2012).

The presence of oracle testing is very important
in conducting testing. However, in most situation, oracle
testing is impractical to be found or too expensive which is
known as an oracle problem (Manolache et al, 2001).

Chen et al designed a new testing method, called
Metamorphic Testing (MT) which was aimed to alleviate
the oracle problem (Chen et al, 1998). This method is
approached based on the property of program under test.

Based on the properties, tester is expected to generate
some Metamorphic Relations that mainly have two
functions: (i) to generate new test cases from the original
test cases, and (ii) to verify whether test passes or fails
based on the relations of the inputs and or outputs of
original test cases and new test cases.

This paper aims to introduce the use of MT in a
case study of matrix multiplication. This case is chosen as
matrix multiplication proogram can face oracle problem
particularly when the size of matrices are large. However
the case is quite common and widely used so that it will be
easier to understand in explaining the concept used in MT.
 This paper consists of several parts as follows: (i)
a literature study of MT, (ii) a presentation of the case
study used in this paper, (iii) the explanation of the
Metamorphic Relations identified in this study, (iv) the
experimental design, (v) the experiment result, (vi), some
discussions on the result, and ended by (vii) the conclusion
of the paper.

METAMORPHIC TESTING
 Metamorphic Testing (MT) is property bases
testing which aims to find some useful relations (called
Metamorphic Relations) to alleviate the oracle problems
(Chen et al, 2003). As explained by Asrfai et al. (Asrafi et
al, 2011), a metamorphic relation (MR) is an expected
relation of the program under test which should be valid
over a set of distinct input data and their corresponding
output for multiple executions. Figure-1 sumarizes the
relations in MT which involve source and follow-up inputs
and outputs.MT checks the validity of MRs by multiply
executing of the target program. The steps of MT are as
folllowings: (i) determining specific properties of the SUT
to construct MRs, (ii) generating source test case by some
traditional testing techniques (such as random testing), (iii)

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1199

generating follow-up test cases based on source test cases
according to the MRs, (iv) executing the test cases, and (v)
verifing the outputs of the test cases against MRs. If the
outputs of the source and follow-up test cases do not
match their relations in corresponding MR, then the test
fails.

Figure-1. Relation in MT.

Asrafi et al (Asrafi et al, 2011) presented a

simple example of MT in a sorting program as follows.
The program sorts a set of integers in the ascending order.
Suppose S is a set of numbers to be sorted. If the set S is
rearranged in reverse order the output of the sorting
program will still remain same. This MR can be denoted
by Sort(S) = Sort (reverse(S)). Suppose S = {35, 15, 32,
25}, Sort(S) will yield {15, 25, 32, 35}.We reverse the set
S to generate the follow-up test case reverse(S) = {25, 32,

�15, 35}. If Sort (reverse(S)) {15, 25, 32, 35}, we can
say a fault is detected. MT has been widely used in solving
many oracle problems (Barus et al, 2009; Chen et al, 1998;
Chen et al, 2009; Chen et al, 2004).

CASE STUDY

 In mathematics, matrix multiplication is a binary
operation that takes a pair of matrices, and produces
another matrix (Coppersmith et al., 1990). As shown in
Figure 1, if A is an n × m matrix and B is an m × p matrix.
The matrix product AB is defined to be the n × p matrix,
where each i, j entry is given by multiplying the entries Aik
(across row i of A) by the entries Bkj (down column j of
B), for k = 1, 2, ..., m, and summing the results over k.

This operation is simple if the size of matrices are
small. However, if the sizes are large, it may be difficult to
verify whether the output of the operation is correct or not.
A program implementing matrix multiplication is
potentially facing oracle problem. Therefore, we choose
this case study in this paper, to present the use of
Metamorphic Testing as the concept can be easily
presented and understood.

Figure-2. The operation of matrix multiplication1.

METAMORPHIC RELATIONS

 Below are some notations to be used to illustrate
the metamorphic relations in matrix multiplication
program:
1. A, B: a pair of source inputs of matrices
2. A’, B’: a pair of corresponding follow-up inputs of

matrices
3. O: output of multiplication of source inputs of

matrices
4. O’: output of multiplication of follow-up inputs of

matrices

In other words:
O = A x B and
O’ = A’ x B’.

Based on the properties of matrix multiplication

operation, some Metamorphic Relations are identified as
follows:
1) MR-1: if A’ is equal to B and B’ is equal to A then O’

is not equal to O.
This MR corresponds to the property of matrix
multiplication operation where A.B is not equal to
B.A

2) MR-2: if A’ is equal to A and B’ is equal to B
multiplied by I (Identity Matrix) then O is equal to O’.
This MR corresponds to the property of matrix
multiplication operation where A.B is equal to A.
(B.I) where I is a identity matrix.

3) MR-3: if A’ is equal to A * N where N is a positive
integer and B’ is equal to B then O*N is equal to O’.
This MR corresponds to the property of matrix
multiplication operation where A. N. B is equal to
A.B.N where N is a positive integer.

4) MR-4: if A’ is equal to A * N where N is a negative
integer and B’ is equal to B then O*N is equal to O’.
This MR corresponds to the property of matrix
multiplication operation where A. N. B is equal to
A.B.N where N is a negative integer.

1 Source:
http://en.wikipedia.org/wiki/Matrix_multiplication

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1200

5) MR-5: if A’ is a negative of A and B’ is a
negative of B then O’ is equal to O.
This MR corresponds to the property of matrix
multiplication operation where A.B is equal to
A’.B’ where A’ is (-1).A and B’ is (-1). B.

DESIGN EXPERIMENT

To conduct the experiment, two steps of preparation
below are required to do:

1) Creating test pools

A hundred of test pools are randomly generated where
each test pool contains 100.000 (a hundred thousand)
of test cases. A test case contains a pair of matrices
with random size of rows and columns. For each test
pool, seventy percent of test cases are valid (the size
of row of first matrix is equal to the size of column of
the second one) and the remaining pairs are invalid
(the size of row of first matrix is not equal to the size
of column of the second one).

2) Creating mutant versions
A program implementing matrix multiplication is
made by a programmer excluded from the author of
the paper. Then five Mutant version of the program
are generated randomly, using a technique
intoruduced by Mu et al. (Mu et al, 2005). The
generated errors for each Mutant can be seen in
Table-1 below.

Table-1. Mutated lines of codes.

Mutant Correct version Mutant version

Mut-1
for (c = 1 ; c < p ;
c++)

for (c = 0 ; c < p ;
c++)

Mut-2 if (n < p) if (n != p)

Mut-3
for (d = 1 ; d < q ;
d++)

: for (d = 0 ;
d < q ; d++)

Mut-4 If (n <= p) if (n != p)
Mut-5 sum = 1 sum = 0

For each metamorphic relation, a new set of test

cases (follow-up test cases) are generated from the source
test cases generated in each test pool. Then the source and
follow-up test cases are executed againts five different
Mutants, and the results are recorded to see whether
failures are detected or not. These steps are repeated 100
(one hundred) times for 100 (one hundred) different test
pools.

EXPERIMENT RESULT

After conducting the experiments, the result can
be found in Table-2 and Table-3 below.

Table-2. Average number of pair test cases revealing
errors.

MR/
Mutant

MR-1 MR-2 MR-3 MR-4 MR-5

Mut-1 32350.38 97239.49 97520.02 97742.12 15001.46

Mut-2 32359.93 29999.87 29999.63 29999.44 15001.46

Mut-3 32393.28 67285.10 67565.90 67788.20 67285.10

Mut-4 64753.21 82286.69 82567.49 82789.79 82286.96

Mut-5 32393.28 67285.90 67565.90 67588.20 67285.10

Table-3. Average percentage number of pair test cases

revealing errors.

MR/
Mutant

MR-1 MR-2 MR-3 MR-4 MR-5

Mut-1 32,35% 97,24% 97,52% 97,74% 15,00%
Mut-2 32,36% 30,00% 30,00% 30,00% 15,00%
Mut-3 32,39% 67,29% 67,57% 67,79% 67,29%
Mut-4 64,75% 82,29% 82,57% 82,79% 82,29%
Mut-5 32,39% 67,29% 67,57% 67,59% 67,29%

Table-2 presents data of average number of pair

test cases that are able to reveal failures for every Mutants.
It means the corresponding relations of each MR cannot be
verified by the pairs of inputs hence the failures are
detected. Table-3 presents the same data however in
percentage instead of in numbers. Figure-1 displays the
data in Table-3 grouped by each MR.

Table-2 shows that the largest numbers of pair
test cases revealing errors for Mutant-1 are ones generated
by MR-2, MR-3, and MR-4. The largest numbers of pair
test cases revealing errors for Mutant-2 are ones generated
by MR-1, MR-2, MR-3, and MR-4. The largest numbers
of pair test cases revealing errors for Mutant-3 are ones
generated by MR-2, MR-3, MR-4, and MR-5. The largest
numbers of pair test cases revealing errors for Mutant-4
are ones generated by MR-2, MR-3, MR-4, and MR-5. For
Mutant-5, the largest numbers of pair test cases revealing
errors are generated by MR-2, MR-3, MR-4, and MR-4.

Figure-3. Average percentage number of pair test cases
revealing errors.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1201

DISCUSSIONS
Based on experiment results shown in Table-1

and Table-2, we can see there are a number of pairs of test
cases revaling failures for each Mutant. This shows that
all Mutants can be “killed” by the five MRs. Or in other
words, all MRs are effective in detecting failures in all
Mutants.

By comparing the number of test cases revealing
the failures, as shown in Figure-2, overall we can see that
all MRs performs good as they are able to kill all mutated
version. In particular, MR-2, MR-3, and MR-4 perform
quite similar and are the best among all MRs. MR-1
performs worse than others in testing Mutant-1, Mutant-3,
and Mutant-5. MR-5 performs worse than others
particularly in testing Mutant-1 and Mutant-2.

The similar performance between MR-2, MR-3,
and MR-4 can be understood as their corresponding
properties are relatively similar. This may cause the same
response against the same mutated versions under testing.

The effectiveness of MRs is indeed a very
interesting study to be conducted. Relevant studies have
been conducted by Asrafi et al (Asrafi et al., 2011) and Liu
et al. (Liu et al., 2014). There are some criteria can be
assessed to see the performance of MRs, such as the
excution behaviour of the pairs of source and follow-up
test cases (Asrafi et al., 2011).

This paper is a preliminary study of an
application of Metamorphic Testing. It is good to be
continued in the future to study the efectiveness of each
MR introduced in this paper according to some assessment
criteria such as been investigated in (Asrafi et al., 2011).

CONCLUSIONS

An implementation of Metamorphic Testing
(MT) has been studied in this paper, particularly for
testing a program implementing multiplication matrix.
Five different Metamorphic Relations (MRs) have been
identified and also implemented. Using 5 (five) different
mutation versions of the program, MT has been conductes
using a hundred set of test pools, each containing 100.000
(a hundred thousand) of test cases.

From the conducted experiment, it is found that
all MRs have been successfully generating test cases that
are able to reveal faliures of every Mutant. The
performance of three MRs which are MR-2, MR-3. MR-4
are quite similar and the best among all MRs. MR-1
performs worse than others in testing Mutant-1, Mutant-3,
and Mutant-5. MR-5 performs worse than others
particularly in testing Mutant-1 and Mutant-2.

The similar performance between MR-2, MR-3,
and MR-4 are suspected due to their corresponding
properties are relatively similar. This may cause the same
response against the same mutated versions under testing.

FUTURE WORK

Currently the effectiveness of MRs are widely
investigated. However it is not covered by this study. In
the future, it is interesting to continue this study by
investigating the effectiveness of all MRs identified in this

study. One criterion of assessment such as the execution
behaviour of the pairs of source and follow-up test cases,
can be investigated as the causeof different performance of
MRs in this study. The similarity performance of MR-2,
MR-3, and MR-4 are worth to be investigated further. It is
as well as their differences to MR-1 and MR-5.

In addition to the effectiveness of MRs, the
increase number of MRs needs to be considered.
Considering the operation of matrix multiplication, there
will be a lot of potential MRs to be identified. This can be
added in the future study of investigating the effectiveness
of MRs of this study.
 The expansion case studies to more operations in
matrix can be also the extension of the future work of this
study.

REFERENCES

R. M. Hierons (2012). Oracles for distributed testing.
IEEE Transactions on Software Engineering, 38(3), pp
629–641.

A. C. Barus., T. Y. Chen D..,Grant F.-C. Kuo. and M.-F.
Lau. Testing of heuristic methods: A case study of greedy
algorithm. In Proceedings of the 3rd IFIP TC 2 Central
and Eastern European Conference on Software
Engineering Techniques (CEE-SET 2008), volume 4980
of Lecture Notes in Computer Science, 2011, pp. 246–260.

Chen T. Y., Cheung S. C. and Yiu S. M (1998).
Metamorphic testing: a new approach for generating next
test cases.Technical Report HKUST- CS98-01,
Department of Computer Science, Hong Kong University
of Science and Technology.

Manolache L. I. Kourie D.G (2001). Software testing
using model programs. Software: Practice and Experience.
Vol. 31, pp. 1211–1236.

Chen T. Y., Tse T. H., Zhou Z. Quan (2003). Fault-based
testing without the need of oracles. Information and
Software Technology. Vol. 45(1). pp 1-9.

Asrafi M., Kuo F.-C., Liu H. (2011). On Testing
Effectiveness of Metamorphic Relations: A Case Study.
2011 Fifth International Conference on Secure Software
Integration and Reliability Improvement, pp 147-156.

Coppersmith D., Winograd S. (1990). Matrix
multiplication via arithmetic progressions, J. Symbolic
Comput. 9, p. 251-280.

Ma Y.-S., Offutt J., Kwon Y.-R (2005): MuJava: An
Automated Class Mutation System. Journal of Software
Testing, Verification and Reliability. 15(2): pp 97-133

H. Liu F.-C. Kuo D. Towey T.Y. Chen (2014). How
Effectively does Metamorphic Testing Alleviate the

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1202

Oracle Problem, IEEE Transactions on Software
Engineering, 40(1). pp. 4-22.

B. Hailpern and P. Santhanam (2002). Software
debugging, testing, and verification. IBM Systems Journal,
41(1) pp: 4–12.

G. J. Myers (2004). The Art of Software Testing. John
Wiley and Sons, second edition. Revised and updated by
T. Badgett and T. M. Thomas with C. Sandler.

T. Y. Chen., S. C. Cheung. and S. M. Yiu. Metamorphic
testing: A new approach for generating next test cases.
Technical Report HKUST-CS98-01, Department of
Computer Science, Hong Kong University of Science and
Technology, 1998.

T. Y. Chen., J. W. K. Ho. H. Liu. and X. Xie. An
innovative approach for testing bioinformatics programs
using metamorphic testing. BMC Bioinformatics, 10:24:1–
24:12, 2009.

T. Y. Chen, D. H. Huang T. H. Tse. and Z. Q. Zhou. Case
studies on the selection of useful relations in metamorphic
testing. In Proceedings of the 4th Ibero-American
Symposium on Software Engineering and Knowledge
Engineering (JIISIC 2004), pages 569–583, 2004.

