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ABSTRACT 

The aim of this paper is to investigate the viability to recognise an individual by gait where this individual is 
having a twin sibling where he/she is sharing similar facial features, hence may render a challenge to face recognition 
systems.  To facilitate the investigation, supervised classification experiments are devised to compare the gait of both twins 
and non-twins siblings and additionally compare both of these with the inclusion of an early SOTON data set to synthesise 
a small population data set.  An important component of this investigation is to firstly develop data sets consisting of twins 
and non-twins siblings, which are video-based data sets.  After extraction of lower limbs kinematics signals from the 
videos, to learn the recognition viability performance, this paper performs classification with a leave-one-out cross 
validation on the data sets.  The best correct classification rates using the proposed descriptor is 95%, 76%, 82%, and 74% 
respectively for data sets containing of only non-twins siblings, only twins, both non-twins and twins, and both non-twins 
and twins including SOTON data set. 
 
Keywords: gait biometric, twins siblings, classification, small sample validation. 
 
INTRODUCTION 

Gait is a biometric based on the way human 
walks. It is believed to be unique to every person (Murray, 
1967) (Stevenage et al., 1999) and every person is said to 
have his/her own idiosyncratic way of walking.  Gait and 
face biometrics are biometrics suitable for use in 
surveillance systems.  These are non-invasive biometrics 
via computer vision technologies that do not require an 
individual to even realise that he/she is being recorded. 

However, for a security system that employs face 
biometric, the issue of facial similarity still poses a risk 
and thus interest in research on face biometric for 
recognising between twins has increased (Rychlik et al., 
2008), (Park & Jain, 2010), (Sun et al., 2010), (Phillips et 
al., 2011), (Strikland et al., 2011), (Jain et al., 2012), 
(Srinivas et al., 2012), (Dinakardas et al., 2013).  One 
central issue in these twins biometric literatures is to 
distinguish one twin from another via the facial features.    

So far, no research on the gait biometric 
recognition of twins has been found except the ones by us.  
Similarly, there is no preliminary research being done to 
analyse gait among siblings let alone a gait biometric 
research involving twins in a sample population.  This 
paper aims to research this issue since it is unknown if an 
individual with a twin can be recognised based on his/her 
gait via computer vision. 

This work  adopts a data-driven machine learning 
approach via classification to investigate its data set.  
Thus, the methodology section that follows is divided into 
subsections that describe the data sets collection, feature 
extraction and selection, and finally classification.  After 
that this paper presents and discusses its results and finally 
presents its conclusion. 
 
 
 
 
 

METHODOLOGY 
 
Data sets collection 
 In this work, there are two supervised gait data 
sets that are investigated; one is a 12 pairs of twins data set 
(TW) and two is a 10 pairs of non-twins siblings data set 
(NT).  These are volunteered young adult subjects, age 16-
28, declared as healthy without known gait problem.  To 
reduce the effect of body weights, the subjects in the data 
sets are having almost similar height-to-weight ratio.  This 
carefully establishes a better measure than just relying on 
weight measurement alone. 
   Following the setup of early SOTON database 
(Nixon et al., 2006), which has successfully been used in 
previous gait biometric research on unique individual 
recognition, each subject in each data set is to have 
recorded videos of them walking from left-to-right and 
right-to-left.  This is to ensure data are invariant to 
walking leg and body sides.  Subjects are to walk their 
usual walk and at their normal pace to ensure invariability 
to walking speed.  At least three steps are recorded in each 
video.  There are at least two videos per subject recorded 
for the left-to-right and right-to-left walking.  Each video 
is then converted to image-frames.  

Additionally, two extra data sets are created by 
combining both the TW and NT data sets, known as 
siblings data set (SB) and by combining the SB data set 
with an early SOTON data set of 10 unique individuals 
(AP) that has been used here (Mohd-Isa, 2005).  The early 
SOTON data set is from the Southampton Human ID at a 
Distance project, which was supported by DARPA.  This 
paper has used the Large DB data set that can be found 
here: 
http://www.gait.ecs.soton.ac.uk/database/large_db.php3.  
The data sets dictionary is as described in Table-1.   
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Table-1. Data sets dictionary of this paper. 
 

Acronyms Description 
TW Twins of 24 individuals (12 pairs) 
NT Non-twins siblings of 20 individuals (10 

pairs) 
SB Combination of TW and NT data sets 
AP Combination of SB data set and 10 unique 

individuals from early SOTON database. 
 
The inclusion of this early SOTON data set as the 

AP data set can be equated to synthesizing a real-world 
population that consists of unique individuals and twins.  
This strategy is chosen as an approach to validate the 
small sample size data, which is due to the scarcity of 
twins data.   

 
Feature extraction 

The lower limb orientation has been proposed as 
the descriptors to represent the kinematics of gait for the 
TW and NT video data sets.  This is because according to 
research on motion perception, it had been shown that 
human observers perceive gait by relying on features from 
lower limbs motion (Todd, 1983).  Other similar studies in 
similar domain also support the use of the proposed 
descriptor (Giese et al., 2008), (Roether et al., 2009) 
(Thurman et al., 2010).  Early research on recognition of 
individual by gait has been successful as well (Huang, 
2001), (Yam et al., 2004), (Bouchrika & Nixon, 2008).  

To extract this kinematics attribute from a video, 
raw data in the form of coordinates are gathered and 
tracked at each coloured image-frame.  The coordinates 
are the manually located positions of the hip (SH), knee 
(SK), and ankle (SA) on the lower limbs of a human object 
in an image-frame.  By triangle trigonometry, the 
kinematics measurements by the thigh () and lower 
leg() orientation angles can be calculated between the 
coordinates at the hip (SH), knee (SK), and ankle (SA) 
locations at each image-frame as illustrated in Figure-1. 

 

 
Figure-1. Coordinates (SH, SK, SA) gathering and 

kinematics measurements (, ) at an image-frame of a 
video. 

 
Once all  and  values are gathered from all 

relevant image-frames in a video (as illustrated in Figure-

2), they form two representative signals ( and ) for each 
video containing walking individual,  

 

 [ ]              ,2 2n n        α Z   (1) 

       

 [ ]              ,2 2n n        β Z   (2) 

 
n   =  image-frame number 
 

 
 

Figure-2. Collection of [n] and [n] measurements at each 
image-frame form signals of  and   for a video. 

 
Feature selection 

Different person walks at different speed and thus 
the number of image-frames produced by each video 
varies.  There is a need to select features to make further 
analysis invariant to the effect of speed.  According to 
Murray (1967) gait is periodic and can be defined by a gait 
cycle as shown in Figure-3. 

 
Figure-3. A complete gait cycle that starts from a 

heel strike and ends at a heel strike of the same leg 
(Murray, 1967). 

 
Our signal values vary between positive angles 

(when a person’s leg moves forward) and negative angles 
(when a person’s leg moves to the rear of the body) 
continuously in a continuous video.  There will be zero 
values that each signal crosses for a continuous video.  
These zero values represent the position when the leg is 
straight.  Thus, we define our gait cycle to be between two 
consecutives zero values of the same leg as in Figure-4.  
Figure-4 is an extended version of Figure-3 with an 
addition of arrows to point to the position of zero values. 
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Figure-4. Our gait cycle that is defined between two 

zeros. 
 

To deal with the unequal lengths of signal data, 
we resample the signals lengths to 30 data points by firstly 
interpolating each signal data and then resampling by a 
piece-wise cubic spline.  The number 30 is chosen since it 
is the average lengths of all signals that can make up one 
gait cycle.  Both processes of interpolation and resampling 
are done via the Support Vector Regression (SVR) 
framework.  The mathematical formulation for  is as 
follows (the mathematical formulation for  is similar): 

 

[ ]
1

ˆ( ) ( , )
n

j j
j

t K t t  


    (3) 

 
ˆ( )t     =   SVR function estimate for  [ ]n  

[ ]( , )jK t t  =   kernel function as in Equation 5 

j     =   support vectors 

  =   bias term 
 
γ and   are found by minimising the regularised risk R,  

  2

1

ˆ( ), ( )
n

j

R Loss t t   


   
(4) 

 
   =  regularisation parameter 
 
While the piece-wise cubic polynomial spline kernel is, 
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(5) 

 
The resultant signals of new  and  are ilustrated in 
Figure-5 and Figure-6. 

To sum up, for every video, there are two 
representative signals.  Each person has four videos, and 
thus has in total eight representative signals as his/her 
kinematics descriptor.  Additionally, a combined feature is 
formed that concatenates both   and  and is denoted as 
signal w.  The w signal adds for more signals to each 
video. Thus there are in total 12 representatives signals. 

 
 

 
Figure-5. An example  signal after feature selection. 

 

 
Figure-6. An example  signal after feature 

selection. 
 

Classification analysis 
To investigate the usefulness of the gait 

descriptor, machine learning method of supervised 
classification has been employed for calculating a correct 
classification rate (CCR).  A high CCR value may indicate 
that a person has been successfully recognised by his/her 
kinematics descriptor and vice versa.  In any supervised 
classification method, the data set is divided into a training 
and a test set.  A classifier is then used to map an 
unlabelled exemplar from the test set to a labeled class 
using internal data structures information in the training 
set.  

Two standard and established classifiers, the k-
nearest neighbor (k-NN) and linear discriminant analysis 
(LDA) are chosen for the task.  Both are similarity-based 
linear classifiers that consider successful classification 
based on nearest distance of a test sample (unknown class) 
to a training sample with a known class.  The difference 
between the two is that k-NN measures distance nearest to 
some k numbers of samples while LDA measures distance 
nearest to a discriminant function.   

For the TW data set, there are in total 96 samples 
of 24 subjects (12 pairs) with four video samples each; 
two samples of left-to-right walking and two samples of 
right-to-left walking.  For the NT data set, there are 80 
samples of 20 subjects (10 pairs).  Altogether the SB data 
set contains 176 samples of 44 subjects (22 pairs).  The 
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early SOTON data set has 40 samples of 10 unique 
subjects.  Altogether the AP data set contains 216 samples 
of 54 subjects.  This is summarised in Table-2. 

 
Table-2. Size of data sets. 

 

Name 
Size 

Subjects Pairs 
Total 

samples 
TW 24 12 96
NT 20 10 80
SB 44 22 176 
AP 54 0 216 

Due to the difficulty in getting volunteered 
subjects, this gives rise to the small sample size as seen in 
Table-2, validation technique is required for confirming 
the best estimator for classification performance.  In a 
validation technique, data set is split into training and test 
sets.  For each run of classification (or known as 
classification run), a test set is set aside containing some 
number of samples, other samples become the training set.  
At each run, the classifier is re-trained from scratch with 
combinations of training and test sets.  The performance 
estimate (via CCR) is obtained as the average of the 
classification performance considering all runs. 

The leave-one-out cross validation (LOO) takes 
out one sample as its test set and others become its training 
set at each classification run.  This allows for a very 
accurate estimate of performance due to the large number 
of splits that is based on the total number of samples in a 
data set.  The trade-off is the computational expense.  
However, since our data sets are small, the LOO is our 
preferential choice so that the classifier runs on as many 
total samples in our data set as possible. 
 
RESULTS AND DISCUSSIONS 
Results 

Table-3–Table-5 summarise the results of 
classification for all data sets using w, , and  signals, 
respectively.  The standard Euclidean and City-Block 
distance measures are used with the k-NN classifier.    The 
average CCR values in all three tables are the results when 
the test sample is tested for its individuality and hence gait 
viability as a descriptor.   

In Table-3, with the k-NN classifier of k = 1 and 
via City-Block distance measure, an individual gait may 
be recognised as unique with an average CCR of 95% for 
NT and 76% for TW, when using the w data, as 
highlighted in Table-3.  The next highest result in NT is 
through k = 1 classification via k-NN classifier with the 
Euclidean distance at 87.5%, while the third highest is the 
LDA classifier that gives out 75% average CCR.  For TW, 
the second highest results of 65.6% are from k = 3 of k-NN 
classifier of both Euclidean and City-Block distance.  
LDA gives out the worst performance at 43.8% for TW 
data set. 

Table-4 and Table-5 give out the best results 
when using the 1-NN City-Block classifier with values of 
80% and 63.5% for NT and TW data in Table-4 while 

Table-5 lists 70.8% and 61.3% for NT and TW data sets, 
respectively for each  and  kinematics. 

To further look at how well the descriptors can be 
discriminative, extra data sets known as SB data set and 
AP data set have been created.  This AP data set can be 
equated to synthesising a real-world population that 
consists of unique individual and twins.  The results are 
presented in the last two columns of Table-3 – Table-5.  
Comparing these two columns in all three tables, the best 
results are from 1-NN via City-Block.  In Table-3, the 
results are 82.4% for SB data set and 74% for AP data set 
when using the w signal.  Table-4 is for the  descriptors 
where, the results are 63.1%  for SB and 55.6% for AP.  
Table-5 shows the results of  descriptors where, the 
results are 61.4% for SB and 56.5% for AP data set. 

 
Table-3. Average CCR values for all data sets using w 

signal (Concatenation of thigh and lower leg orientation). 
  

w signal 
Average CCR (%) 

TW NT SB AP 
LDA 43.8 75.0 77.8 70.8

1-NN via 
Euclidean 

76.0 87.5 75.0 66.7 

3-NN via 
Euclidean 

65.6 65.0 60.8 56.5 

5-NN via 
Euclidean 

45.8 55.0 52.8 48.1 

1-NN via 
City-Block 

76.0 95.0 82.4 74.0 

3-NN via 
City-Block 

65.6 76.3 73.9 68.1 

5-NN via 
City-Block

58.3 70.0 65.9 62.5 

 
  Table-4. Average CCR values for all data sets using  
Signal (thigh orientation signal). 
 
 

 signal 
Average CCR (%) 

TW NT SB AP 
LDA 52.1 66.3 53.4 46.8 

1-NN via 
Euclidean 

43.8 72.5 52.8 46.3 

3-NN via 
Euclidean 

42.7 60.0 48.3 43.1 

5-NN via 
Euclidean 

41.7 27.5 32.4 31.9 

1-NN via 
City-Block 

63.5 80.0 63.1 55.6 

3-NN via 
City-Block 

53.1 70.0 60.2 55.1 

5-NN via 
City-Block 

54.2 46.3 50.6 46.8 
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Table-5. Average CCR values for all data sets using  
signal (Lower leg orientation signal). 

 

 signal 
Average CCR (%) 

TW NT SB AP 
LDA 63.5 60.0 59.7 56.0 

1-NN via 
Euclidean 

61.5 60.0 56.8 51.4 

3-NN via 
Euclidean 

51.0 50.0 45.5 41.7 

5-NN via 
Euclidean 

38.5 38.8 35.8 32.9 

1-NN via 
City-Block 

70.8 61.3 61.4 56.5 

3-NN via 
City-Block 

54.1 60.0 53.4 50.0 

5-NN via 
City-Block 

46.9 48.8 44.3 41.2 

 
Figure-7 shows the best classification 

performance of all three developed descriptors across all 
data sets.  The figure is tabulating values from the 1-NN 
City-Block classifier from Table-3 to Table-5.  The 
average CCR are plotted against four different data sets, 
which are the NT, TW, SB, and AP.  This figure can be 
used for looking at recognition trends which has shown a 
decreasing trend whenever the data set sample 
(population) increases.  As described earlier, the NT data 
set has 20 classes (20 persons), TW has 24 classes (24 
persons), SB has 44 classes, and AP has 54 classes (20 + 
24 + 10 persons).  These results are useful to predict the 
generalisation ability of the gait signal descriptors in a 
large population. 

 
Figure-7. Recognition performance trend across data sets. 

 
DISCUSSIONS 

It is apparent that the highest results are mostly 
from the value of k = 1 for the k-NN classifier.  This 
situation arises in all three NT, TW, and SB data sets.  One 
possible causes of this is perhaps due to the sample size 
limitation.  As mentioned in Raudys & Jain (1991) the 

number of neighbours among others can affect the 
evaluation of a finite number of sample data set.  Due to 
the small sample size, of only four, the number of nearest 
neighbours of k = 3 and k = 5 does not affect the results 
much.  This can be seen from the results where the 
difference between the average CCRs of 1-NN is 
sometimes so much higher than its 3-NN and 5-NN 
counterparts.   

On the results between the LDA classifier and k-
NN, the LDA has not been performing very well for most 
data sets when compared to k-NN.  The LDA calculates 
the CCR by considering the statistics of the training set 
population and thus creates the decision function for 
classification; as opposed to the k-NN classifier where it 
looks at the location of the data in a classification sample 
space.  Again the number of samples is believed to affect 
the results of the LDA classifier.  Since statistical measure 
on the small size data set may be inaccurately estimated. 

It may be expected that the performance of the 
classifiers to drop as the number of samples increases, 
which means an increase of the sample population.  As has 
been seen in Figure-7, this effect has been shown by the 
decreasing trends occurring in the figure.  Also, the 
performance does increase with combined signals 
descriptor (w) than any independent signal descriptor () 
and (). 

Is gait a viable biometric for use in person 
recognition involving twins? From  the promising results 
in Table-3 – Table-5, perhaps TW data set can be said to 
contain such singularity that may allow a twin to be 
recognised by his/her gait.  However, the results can be 
said to depend much on its proposed descriptor. 

 
CONCLUSIONS 
 This paper has presented a gait biometric 
recognition analysis on twins and non-twins siblings and 
extrapolate its analysis to include some unique individuals 
to simulate a real world population sample.  Throughout 
this paper, the problem of person recognition by gait is 
considered.  This paper investigates the viability of gait as 
a biometric in recognising person when there are 
individuals with genetic similarities included.  Guided by 
the nature of gait, a lower limb orientation has been 
adopted as its descriptor.  The recognition measure is 
learnt from classification performances on the descriptors 
of four data sets, which are small in size.  The results 
cannot be verified in complete absence of a validation 
method.  A leave-one-out cross-validation with multiple 
runs and multiple partitions may allow the confirmation of 
the accuracy of the developed descriptors.  It is hoped that 
the results would be a contribution to the twins biometric 
research domain. 
 Future work may consider explorations on a more 
holistic description of gait such as the silhouette image 
data as was the approach by many in the domain of gait 
recognition on unique individual. 
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