
                                        VOL. 10, NO. 3, FEBRUARY 2015                                                                                                               ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
1222

NOVEL IMPLEMENTATION OF A WORM DETECTION SYSTEM USING 
PROTOCOL GRAPHS 

 
 M. R. Muralidharan and Srinivasan Bhargav 

Super Computer Education, Bangalore, India 
Department of Manipal Institute of Technology, Indian Institute of Science, Manipal, India 

Email: murali@serc.iisc.in  

 
ABSTRACT 
 Computer worms are self-propagating malicious entities that spread throughout a network or the entire internet, 
causing irreparable damage. More sophisticated worms emerged and a continuous race between attackers and defenders is 
ongoing. In order to detect the effects caused by these worms on a network, we have implemented an efficient algorithm 
that uses the Protocol Graph method for the detection and prevention of worm propagation. The system is implemented 
using C++ and a Perl wrapper, with a frontend. The system will be able to distinguish malicious traffic in real time based 
on effective statistical methods. Our algorithm is very efficient and we have included a survey of possible implementation 
methods and the reason as to why our method proves to be unique and efficient. 
 
Keywords: Intrusion detection computer security, computer network management, graph theory, algorithm design and analysis, IP 
networks, data structures. 
 
INTRODUCTION 

 Significance of Computer Worms 
Worms can cause disruptions such as a Denial of Service 
attack, and can lead to malicious activities such as 
information theft or abuse (N.Kawaguchi and et.al., 2006) 
. In the area of virus and worm modelling, Kephart, White 
and Chess of IBM performed a series of studies from 1991 
to 1993 on viral infection based on epidemiology models 
(J. O. Kephart and S. R. White. 1991), (J. O. Kephart and 
S. R. White. 1993). Staniford et al. used the classical 
epidemic model to model the spread of Code Red right 
after the Code Red incident on July 19th, 2001. The Code 
Red worm managed to successfully compromise hundreds 
of thousands of Microsoft Windows IIS servers. Chen et 
al. presented a discrete-time version of a worm model that 
considered the patching and cleaning effect during a 
worms propagation (Chen, S., & Tang, Y.,2007). In this 
paper we have described a method of implementation for 
detecting the presence of HitList worms in an enterprise 
network. The basic idea for this implementation is derived 
from Mr. Reiter’s article about using Protocol Graphs for 
HitList worm detection. (Collins, M. P., & Reiter, M. K., 
2007). 
 
 Implementation of a worm detection system 
  In this implementation of a worm IDS, we use the 
Protocol Graph (Collins, M. P., & Reiter, M. K., 2007) 
method for analysis of flow records. The method describes 
that we should sample the records for a small duration, 
dur, say every 60 seconds. The number of vertices, V and 
the size of the largest connected component C are 
recorded. These records are then analysed to see if they 
satisfy certain conditions (6) and (7). Those that satisfy the 
conditions are considered NORMAL traffic and others are 
possibly malicious. This method offers a very low false 
positive rate, since it can be calibrated by fine tuning the 

threshold value t. In our system, we use our own graph 
search algorithm in order to detect V and C, for a 
mentioned dur. We verify our system, by feeding malware 
PCAP files from the Netresec group [13], and also the 
Wireshark Book website. After testing, suitable conditions 
can be set by modifying the parameters in equations (6), 
(7) and (9), and the system can be deployed for use real 
time. The system can be part of a NAT box, or on any 
system where the flow records can be collected and 
processed. 
 

 

Figure-1. Our system in action on a Linux box. 
 
 Epidemiological model for worm propagation 
 In order to understand the nuances of worm 
propagation, we need to look at literature relating to the 
earliest models of worm propagation. Monitoring and 
Early Detection for Internet Worms” by Cliff Zou et al. 
(Zou, Cliff C.; Gong, Weibo; Towsley, Don; and Gao, 
Lixin, 2004). gives us an accurate description about the 
different models used for worm propagation. The paper 
introduces an idea of a non-threshold based detection 
system, which relies on trend detection rather than 
threshold detection. Various approaches have been taken 
as counter measures to worm propagation, such as the 
Epidemiological model. This model attempts to predict 
worm behaviour using differential equations. Assume I(t) 
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denotes the number of infected hosts and N is the total 
number of suspicious (vulnerable) hosts at a time when 
worms break out. And Ω denotes the address space in the 
Internet (232) and worms scan rate is denoted as η. Now, 
the number of hosts that are infected at t is expressed as 
follows. The rate of infection, 
 

dI(t)/dt = ηΩI(t)[NI(t)] 
Solving this equation we get, 

(1)

I(t) = I(0)N/[I(0) + [N − I(0)]e−(η/Ω)Nt] (2)
 
Where I(0) is the number of initially infected hosts = 0. 
 

Figure-2. Epidemiological model of worm propagation. 

  When this distribution is examined over time, the 
number of infected nodes can be predicted at any given 
instant. The Epidemiological model can be used as a rough 
estimate to predict the trend of worm propagation 
throughout the network. The model assumes that the 
network is free from human intervention and counter 
measures and that all the nodes operating in the network 
are functional and are equally probable to get infected. The 
rate of infection is when plotted as a function of time 
approximates to the epidemiological model and hence 
when we observe this trend, then the network may be 
suspected of being infected with a worm. However, this 
model contained inaccuracies which were addressed by a 
discrete model proposed by Chen et al [10]. The AAWP 
model is a discrete form of the Epidemiological Model 
which takes into account that some machines will probably 
be non operational and thus cannot be infected, or the fact 
that there is a redundancy in the number of hosts marked 
infected. Thus it can be observed that the Epidemiological 
Model overestimates the number of hosts which are 
infected at any given time[6]. In this model, I(t + 1) can be 
expressed as, 
 
I(t + 1) = I(t) + [N − I(t)][1 − (1 − (1/Ω))ηI(t)]    (3)  

Figure-2 shows a comparison between the estimated 
number of infected hosts, generated by the two models, 
and a simulation result which shows the variation of the 
number of infected hosts over time. 

 
Figure-3. Comparison between AAWP and 

Epidemiological. 
 

However these models were not capable of 
accurately predicting new worm behavior because they 
were largely models(J.Jung and et.al. 2004) dependent on 
previously stored worm signatures for their analysis. A 
new and more robust method needed to be developed in 
order to effectively study worm behavior ( Zou, Cliff C.; 
Gong, Weibo; Towsley, Don; and Gao, Lixin, 2004), 
(N.Kawaguchi and et.al., 2006, ), (S.Staniford-Chen and 
et.al., 1996). 
 
GRAPH BASED METHODS FOR WORM 
DETECTION 
 
GrIDS - A graph based intrusion detection system 
  GrIDS (Graph-Based Intrusion Detection 
System) is an excellent example of a graph based IDS that 
was first introduced by Santiford. GrIDS collects data 
about activity on computers and network between them. 
GrIDS is capable of analyzing network activity of TCP/IP 
connections on networks that have tens and thousands of 
hosts [6][7]. When a worm intrudes a network with GrIDS, 
the network activity associated with its propagation causes 
GrIDS to build a tree-like graph. Previously detected data 
can recognize this tree-like graph as a potential worm. This 
evaluation might count the number of nodes and branches 
in the graph. Recognition (detection) occurs when the 
counts exceed a user-specied threshold, thus reporting a 
worm. GrIDS is not a scalable model and hence it proves 
to be ineffective against silent worms, DoS attacks and 
disruptions or faults in the network. 

Protocol graphs 

This method of using protocol graphs in order to detect 
worms was pioneered by M. P. Collins (Redjack),from 
Software Engineering Institute, Carnegie Mellon 
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University and the Department of Computer Science,and 
Michael K. Reiter (CERT), University of North Carolina at 
Chapel Hill. We have adopted this, and suggested an 
efficient implementation method and also designed a fully 
functional system which analyses input data in real time. 
A protocol graph is defined as a graph in which the 
vertices are IP addresses which are unique and the edges 
are comprised of sets of IP addresses which have 
communicated with each other. The sets of edges are 
undirected, therefore an edge from the source to the 
destination implies that there is an edge from destination to 
source as well. 
  Protocol graph is a representation of traffic log 
for a single protocol, namely HTTP or FTP. It comprises 
of vertices and edges. Vertices represent a single IP 
address and edges represent communication between those 
addresses. Graph size and Largest Component size are two 
parameters which can be analysed which is extensively 
used in this methodology. An alarm is raised if the largest 
component or graph size exceed predicted sizes. An frr 
(false alarm rate can be set to either moderately or 
aggressively detect attacks. A visual representation of a 
Protocol Graph is shown in Figure-4. 
 

 

Figure-4. A visual representation of a Protocol Graph with 
a largest connected component size of six. 

   
  Consider a log file (set) A = A1,Anof traffic 
records. Each record A has fields for IP addresses, namely 
source addressA.sip and destination address A.dip. In 
addition,A.port denotes the address of the server in the 
protocol interaction(A.port < A.sip,A.dip >), though we 
emphasize that we require A.port it is crucial in our 
detection or attacker identification mechanisms. Given A, 
we define an undirected graph G(A) =< V (A),E(A) >, 
where V (A) are the set of vertices and E(A) are a set of 
edges, 
 
 

V (A) = setof < A.sip,A.dip > (4)

E(A) = setof < A.sip,A.dip > (5)
G(A) is sampled every 60 seconds or some pre-defined 
amount of time dur and the graph is thus constructed. One 

set of records is created for each half a day and is denoted 
by G(A)π; and the largest connected component for that 
time period is denoted by Cdurπ and the number of 
vertices is denoted by V durπ [8]. 
  We denote the log file by Aπ. log file that is 
recorded during the interval π[00 : 00GMT,23 : 59GMT] 
on some specified date. 
  NetFlow reports flow logs, where a flow is a 
sequence of packets with the same addressing information 
that are closely related in time. Flow data is a compact 
summary of network traffic and therefore useful for 
maintaining records of traffic across large networks. Flow 
data does not include payload information, and as a result 
we identify protocol traffic by using port numbers. Given a 
flow record, we convert it to a log record A of the type we 
need by setting A.port to the IP address that has the 
corresponding service port; e.g., in a flow involving ports 
80 and 3946, the protocol is assumed to be HTTP and the 
server is the IP address using port 80. 
  These scans are added to the graph and then they 
need to be rigorously filtered in order to eliminate any 
unwanted data; namely scans for addresses that don’t exist 
and other interferences from normal data. 
 
Analysis of protocol graphs 
Once the algorithm has completed finding the largest 
connected components and the number of vertices, then 
the results can be collected and tabulated. The mean and 
standard deviations for each C and V are plotted separately 
for each protocol and their corresponding normal 
distributions are plotted. After plotting these distributions, 
a threshold is set based on certain probability conditions 
that will be explained. 
After suitable thresholds have been set and the system 
trained, the system will not require any human 
intervention. Thus enabling an automated detection 
process. 
More precisely, we divide the day into two intervals, 
namely am = [00 : 00GMT,11 : 59GMT] and pm = [12 : 
00GMT,23 : 59GMT]. For each protocol we consider, we 
define random variables V 60sam and V 60spm. 
We raise an alarm for a protocol graph if either of these 
observations hold good: 

 

(6) 

(7) 

(8) 
 

The false (alarm) rate frr for a given threshold t: 

 Frr = 1 − Pr[Vdur ≤ µVπdur + tσVπdur]             (9) 

Similarly, we can evaluate the false alarm rate for the 
largest connected component variable C. A suitable 
threshold can then be determined based on the value of the 
false alarm rate. Additionally, suitable frr can be set by 
observing the network under normal conditions. 
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Therefore, the threshold t is given by, 
 

√ t = 2erf−1[0.5 − (frr/2)]                                          (10)  
 
Note that the use of frr/2 in the - equation ensures that 
each of conditions 6 and 7 contribute at most half of the 
target frr and consequently that both conditions combined 
will yield at most the target False Negative Rate . 
 
IMPLEMENTATION OF PROTOCOL GRAPHS 
  The Protocol Graph HitList Worm detection 
scheme depends on two variables, namely the number of 
vertices in a graph and the largest connected component in 
the graph. Counting the number of connected components 
in the graph and hence finding the largest connected 
component. The Union Find Algorithm, which operates on 
a time complexity of O(mn) ](Wayne, Kevin, and Robert 
Sedgewick, 2014), and the rank optimized version which 
operates on a time complexity of O(mlog2n) ](Wayne, 
Kevin, and Robert Sedgewick, 2014). Here, m is the 
number of objects and n is the number of times the Union-
Find operation is performed, which leads to a worst case of 
O(n2) and O(nlog2n) respectively. We would like to 
compare this one to our implementation, which is basically 
a modification of the Breadth First search Algorithm, 
which allows us to count the Number of Vertices and also 
the size of the largest connected component in each 
disjoint set. 
  
Union find algorithm 
  There are two basic functions that are involved in 
the UnionFind algorithm, namely: 
Make Set: This function creates singleton sets of all the 
individual elements, initially. 
Find: This function is used to find which particular subset, 
an element belongs to in the collection of disjoint sets. 
Union: This function merges two disjoint subsets together 
to form a single set. 

1: find(int parent[], int i): 
2: if (parent[i] equals -1) 
3: return i 
4: end if 
5: return find(parent, parent[i]); 
 6:  end find 
 
1: Union(int parent[], int x, int y): 
2: xset = find (parent, x) 
3: yset = find(parent, y) 
4: parent[xset] = yset 
5: end Union 

Analysis of the Nave implementation 
  The analysis of a nave union find algorithm is 
relatively easy, and the total worst case cost can be proven 
to be O(mn). Where m is the number of elements and n 
represents the number of times the Union-Find Operation 
is called (Wayne, Kevin, and Robert Sedgewick, 2014). 
Analysis of weighted union find with path compression: 
The total worst case cost can be proven to beO(m + 

nlog2n). Where m is the number of elements and n 
represents the number of times the Union-Find Operation 
is called. This algorithm can be improved using a 
technique called using weights or ranks, an a process 
called path compression. Path compression is just a 
flattening of the tree such that we set every nodes parent to 
its grandparent, and so on hence decreasing the depth and 
also the complexity of the algorithm (Wayne, Kevin, and 
Robert Sedgewick, 2014, CMU 15-451/651 (Algorithms), 
2014) 

There are several methods to optimize the union 
find algorithm, the first way, called union by rank, is to 
always attach the smaller tree to the root of the larger tree. 
Since it is the depth of the tree that affects the running 
time, the tree with smaller depth gets added under the root 
of the deeper tree, which increases the depth if the depths 
were equal. One element trees are defined to have a rank 
of zero, and whenever two trees of the same rank r are 
united, the rank of the result is r + 1. 

1: Union(int a, int b): 
2: element x = find(a) 
3: element y = 
find(b) 
4: x.parentID = y.ID 
5: if (x.parentID equals y.parentID) 
6: return 
7: end if 
8: if (x.rank < y.rank): 
9: x.parentID = y.ID  
10: else  if ( x.rank > 

y.rank): 
 11: y.parentID = x.ID 
12: else 
 13: y.parentID = x.ID 
14: end if 
 15: x.rank = x.rank + 1 
16: end Union 

1: elementfind(element x): 
  2: if (x.parent equals -1) 

3: return i 
4: end if 
5: return find(x.parent) 
6: end find 

  The set of elements can be represented as a linked 
list and each member of the list can have an ID and the ID 
of its parent. Initially all elements parent ID is set to the 
element ID itself. When two elements are merged, then the 
parent ID of the second element, is changed to the first 
elements ID. The first element then becomes the root of 
the tree. Thus, trees are formed and any element which is a 
member of the tree, has its parent ID set to the ID of the 
root element of the tree. 
  Consider one element, x of any arbitrary setS. The 
MakeSet function runs in linear time as it just involves 
setting x.parentID = x.ID for m elements initially. The find 
function takes constant time, as the element being queried 
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has to return x.parentID. The Union function on the other 
hand needs to merge two sets together to create a larger 
set. Let us consider the element x, and say that x and y 
should be operated by union. This leads to a formation of 
set x,y. The worst case scenario is that all elements of a set 
are initially paired with each other resulting in n sets of 
pairs of elements. (Considering an even number of 
elements). Next, the union function will be called n/2 
times to merge the pairs into quads, and so on until all the 
elements have the same root, and are in the same large set. 
This takes log2n steps, and each step has to iterate through 
a possible n elements, hence giving an overall worst case 
complexity of O(nlog2n) for unions and a cost of 
O(m+nlog2n) for the entire algorithm  (CMU 15-451/651 
(Algorithms), 2014). Now, this algorithm is not practical 
because once the tree structure is formed, the deletion of 
vertices or edges can be difficult. The functionality of 
being able to flexibly insert and delete edges without 
having to collapse and reconstruct the entire data structure 
is most important in the practical implementation of such a 
system. This criteria gave us an idea of using an actual 
graph data structure called the Adjacency List in order to 
implement a solution to this problem. 
 

Novel implementation of an algorithm to count 
connected components 

  From the standpoint of the algorithm, all child 
nodes obtained by expanding a node are added to a FIFO 
(i.e., First In, First Out) queue. In typical implementations, 
nodes that have not yet been examined for their neighbors 
are placed in some container (such as a queue or linked 
list) called ”open” and then once examined are placed in 
the container ”closed”. We have modified this algorithm in 
order to facilitate the detection of the largest connected 
component in a Protocol Graph representation of a 
network. 

Algorithm (informal) 

1: Mark all nodes as undiscovered initially and mark one 
start node. 

2: If the element sought is found in this node, quit the 
search and return a result. 

3: Otherwise enqueue any successors (the direct child 
nodes) that have not yet been discovered. 

4: Repeat the process until all the nodes are marked as 
discovered. 

The pseudo code of our implementation is: 

1: PGraph(G,v) is 
: 2: create a queue 
Q 
3: create a vector set V 
4: create an integer V counter , Ccounter, Ncomponents 
5: create an array sizeOfDisjointComponenet[V.length] 
6: enqueue v onto Q 

7: add v to V 
8: while Q is not empty 
loop: 
9: Increment Ccounter, Ncomponents 

10: sizeOfDisjointComponenet[Ncomponents] = 
Ccounter 

11: t = Q.dequeue() 
12: if (t is what we are looking for then) 
13: return t 
14: end if 
15: for all edges e in G.adjEdges(t) loop: 
16: u = G.adjV ertex(t,e) 
17: if u is not in V then 
18: add u to V 
19: enqueue u onto Q 
20: increment V counter 
21: end if 
22: end for 
23: end while 
24: return none 
25: print Vcounter 
26: for all Ncomponents in 

sizeOfDisjointComponenet[V.length] loop: 
27: print sizeOfDisjointComponenet[Ncomponenets] 
28: end for 
29: end PGraph 
The time complexity of BFS can be expressed as O(E +V) 
since every vertex and every edge will be explored in the 
worst case.  

RESULTS 

  In order to test our system we analysed a set of 
PCAP files from the Wireshark Book website and the 
Netresec group. These files contain data captured for less 
than 60 seconds, and hence are ideal for testing our 
system. 

1)   Normal HTTP session 

  This test was done using a PCAP file which 
contained packets exchanged during a normal HTTP 
session for a time period of sixty seconds. We observed 
that there are no large connected components C, and the 
number of vertices V are low as well. Hence this kind of 
traffic will not trigger the detector. 

2)   Port scan 

This test was done using a PCAP file which contained 
packets exchanged during a port scan being performed in 
the network in which a worm is present for a time period 
of sixty seconds. We observed that there are a large 
number of connected components C, and the number of 
vertices V is high and as well. Hence this kind of traffic 
will trigger the detector. 

3)  A PCAP containing Malware NAPENTHES from 
NE-TRESEC 
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This test was done using a PCAP file which contained 
packets exchanged in the network in which a worm is 
present for a longer time period. This file contains a 
moderately large no. of vertices, and one large connected 
component which has 14 nodes, this suggests malware 
activity. This was featured in Capture the hacker 2013 
competition (by Dr. David Day of Sheffield Hallam 
University). 

Table-1. Summary of results. 
 

PCAP file 
No. of vertices 

(V) 
No. of disjoint 
components 

httpbrowse.pcap 9 6 

portscan.pcap 58 29 

Ncapture.pcap 96 40 

 

MERITS AND LIMITATIONS 

  We can easily compare this system to similar 
implementations such as GrIDS (and D S.Staniford-Chen 
and et.al., 1996) discrete Anti Worm (DAW) System by 
Chen .S. [9]. The methodology of this algorithm was 
originally pioneered by Collins M.P. (Collins, M. P., & 
Reiter, M. K., 2007) and they implement this methodology 
using union-find algorithms. 
 
Discrete anti worm system (DAW) 

A DAW agent is deployed on all edge routers of the 
ISP and a management station that collects data from the 
agents. Each agent monitors the connection-failure replies 
sent to the customer network that the edge router connects 
to. It identifies the offending hosts in the customer network 
and measures their failure rates.If the failure rate of a host 
exceeds a pre-configured threshold, the agent randomly 
drops a minimum number of connection requests. A 
temporal rate-limit algorithm and a spatial rate-limit 
algorithm are used to constrain any worm activity to a low 
level over the long term. A temporal rate-limit algorithm is 
designed to bound the maximum number of failed requests 
per day. The temporal rate-limit algorithm constrains both 
the maximum failure rate and the maximum number of 
failed requests per day. The spatial rate limit algorithm 
works in such a way that it thresholds the number of 
network addresses used. 
1) Slows down the network’s operation when a worm is 

detected. 
2) There is only one parameter which is used to 

determine if the connection is worm infested, which 
can be highly error prone. 

 
Hierarchical worm defense model 

This model assumes a tree structure where the internal 
nodes of the tree are rewalls and leaves are servers 
vulnerable to worm attacks. The rewalls are assumed to be 
immune to infections. It is also assumed that we have 
sensors at the vulnerable hosts that can detect an infection 
and report it. Once the number of infection reports 
amongst a nodes (rewalls) children reaches the threshold, 

the rewall turns on the lter rules protecting all of its 
children, and alerts its parent that the sub-tree below it is 
infected but now protected. This escalation of alerts from 
one level to the next higher level in the hierarchy and 
protection of sub-trees takes place successively as the 
threshold for infections is reached at each node. 
1) The model can be inefficient because the network has 

to be realized in the form of a tree. 
2) There is no clear indication of any detection 

methodologies. 
 

Limitations of our algorithm 
The system is highly robust, scalable and highly 

reliable. The idea of using Protocol Graphs for worm 
detection uses two variables and the joint probability of 
both the variables exceeding the threshold is calculated. 
However there are a few limitations of using this 
algorithm, namely: 
1) The system is not tuned to mitigate the spread of the 

worm. Only detection is possible after which further 
processing is required. 

2) Testing and deployment of the algorithm on the 
network can take significant time, as the thresholds 
need to be set carefully. 

3) The flow records of the network need to be streamed 
in at a constant rate, without interruption, as the 
system works real time. 

 
FUTURE SCOPE  
 
Polymorphic worms 
  Network worms are malicious programs that 
spread automatically across networks by exploiting 
vulnerabilities that affect a large number of hosts. 
Unfortunately, worms can be polymorphic. That is, they 
can mutate as they spread across the network through self-
encryption mechanisms or code manipulation techniques. 
 
Distributed architecture 
  In order to be more effective, a distributed 
detection of Silent worms based on Protocol Graphs is 
needed. As the network size increases, it becomes more 
difficult to accumulate and analyse all network logs in the 
network to a single detection engine. In order to address 
these challenges, a more distributed architecture is 
advisable (Bin, L., Chuang, L., Jian, Q., Jianping, H., & 
Ungsunan, P. 2008) (Chen, S., & Tang, Y., 2007). 
 
Containing or mitigating the spread of worms 
  Detecting the worm is fairly is simpler compared 
to containing the worm. The best way to contain the worm 
and block its access. Therefore, rate limiting algorithms or 
content blocking algorithms can be used to mitigate the 
rapid propagation of destructive worms(Chen, S., & Tang, 
Y.,2007) . 
 
CONCLUSIONS 
  In summary, we have implemented a novel worm 
detection system which encompasses of a system which 
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uses a graph search algorithm to detect largest connected 
component size and number of vertices in a Protocol 
Graph representation of the entire network. Suitable tests 
have been conducted in order to test the effectiveness of 
the system, and we have proved that it can clearly 
differentiate between records that contain worm activity 
and those that do not. This system is extremely flexible 
and robust, and can run on both Windows and Linux. 
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