
 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1222

NOVEL IMPLEMENTATION OF A WORM DETECTION SYSTEM USING
PROTOCOL GRAPHS

 M. R. Muralidharan and Srinivasan Bhargav

Super Computer Education, Bangalore, India
Department of Manipal Institute of Technology, Indian Institute of Science, Manipal, India

Email: murali@serc.iisc.in

ABSTRACT
 Computer worms are self-propagating malicious entities that spread throughout a network or the entire internet,
causing irreparable damage. More sophisticated worms emerged and a continuous race between attackers and defenders is
ongoing. In order to detect the effects caused by these worms on a network, we have implemented an efficient algorithm
that uses the Protocol Graph method for the detection and prevention of worm propagation. The system is implemented
using C++ and a Perl wrapper, with a frontend. The system will be able to distinguish malicious traffic in real time based
on effective statistical methods. Our algorithm is very efficient and we have included a survey of possible implementation
methods and the reason as to why our method proves to be unique and efficient.

Keywords: Intrusion detection computer security, computer network management, graph theory, algorithm design and analysis, IP
networks, data structures.

INTRODUCTION

 Significance of Computer Worms
Worms can cause disruptions such as a Denial of Service
attack, and can lead to malicious activities such as
information theft or abuse (N.Kawaguchi and et.al., 2006)
. In the area of virus and worm modelling, Kephart, White
and Chess of IBM performed a series of studies from 1991
to 1993 on viral infection based on epidemiology models
(J. O. Kephart and S. R. White. 1991), (J. O. Kephart and
S. R. White. 1993). Staniford et al. used the classical
epidemic model to model the spread of Code Red right
after the Code Red incident on July 19th, 2001. The Code
Red worm managed to successfully compromise hundreds
of thousands of Microsoft Windows IIS servers. Chen et
al. presented a discrete-time version of a worm model that
considered the patching and cleaning effect during a
worms propagation (Chen, S., & Tang, Y.,2007). In this
paper we have described a method of implementation for
detecting the presence of HitList worms in an enterprise
network. The basic idea for this implementation is derived
from Mr. Reiter’s article about using Protocol Graphs for
HitList worm detection. (Collins, M. P., & Reiter, M. K.,
2007).

 Implementation of a worm detection system
 In this implementation of a worm IDS, we use the
Protocol Graph (Collins, M. P., & Reiter, M. K., 2007)
method for analysis of flow records. The method describes
that we should sample the records for a small duration,
dur, say every 60 seconds. The number of vertices, V and
the size of the largest connected component C are
recorded. These records are then analysed to see if they
satisfy certain conditions (6) and (7). Those that satisfy the
conditions are considered NORMAL traffic and others are
possibly malicious. This method offers a very low false
positive rate, since it can be calibrated by fine tuning the

threshold value t. In our system, we use our own graph
search algorithm in order to detect V and C, for a
mentioned dur. We verify our system, by feeding malware
PCAP files from the Netresec group [13], and also the
Wireshark Book website. After testing, suitable conditions
can be set by modifying the parameters in equations (6),
(7) and (9), and the system can be deployed for use real
time. The system can be part of a NAT box, or on any
system where the flow records can be collected and
processed.

Figure-1. Our system in action on a Linux box.

 Epidemiological model for worm propagation
 In order to understand the nuances of worm
propagation, we need to look at literature relating to the
earliest models of worm propagation. Monitoring and
Early Detection for Internet Worms” by Cliff Zou et al.
(Zou, Cliff C.; Gong, Weibo; Towsley, Don; and Gao,
Lixin, 2004). gives us an accurate description about the
different models used for worm propagation. The paper
introduces an idea of a non-threshold based detection
system, which relies on trend detection rather than
threshold detection. Various approaches have been taken
as counter measures to worm propagation, such as the
Epidemiological model. This model attempts to predict
worm behaviour using differential equations. Assume I(t)

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1223

denotes the number of infected hosts and N is the total
number of suspicious (vulnerable) hosts at a time when
worms break out. And Ω denotes the address space in the
Internet (232) and worms scan rate is denoted as η. Now,
the number of hosts that are infected at t is expressed as
follows. The rate of infection,

dI(t)/dt = ηΩI(t)[NI(t)]
Solving this equation we get,

(1)

I(t) = I(0)N/[I(0) + [N − I(0)]e−(η/Ω)Nt] (2)

Where I(0) is the number of initially infected hosts = 0.

Figure-2. Epidemiological model of worm propagation.

 When this distribution is examined over time, the
number of infected nodes can be predicted at any given
instant. The Epidemiological model can be used as a rough
estimate to predict the trend of worm propagation
throughout the network. The model assumes that the
network is free from human intervention and counter
measures and that all the nodes operating in the network
are functional and are equally probable to get infected. The
rate of infection is when plotted as a function of time
approximates to the epidemiological model and hence
when we observe this trend, then the network may be
suspected of being infected with a worm. However, this
model contained inaccuracies which were addressed by a
discrete model proposed by Chen et al [10]. The AAWP
model is a discrete form of the Epidemiological Model
which takes into account that some machines will probably
be non operational and thus cannot be infected, or the fact
that there is a redundancy in the number of hosts marked
infected. Thus it can be observed that the Epidemiological
Model overestimates the number of hosts which are
infected at any given time[6]. In this model, I(t + 1) can be
expressed as,

I(t + 1) = I(t) + [N − I(t)][1 − (1 − (1/Ω))ηI(t)] (3)

Figure-2 shows a comparison between the estimated
number of infected hosts, generated by the two models,
and a simulation result which shows the variation of the
number of infected hosts over time.

Figure-3. Comparison between AAWP and

Epidemiological.

However these models were not capable of
accurately predicting new worm behavior because they
were largely models(J.Jung and et.al. 2004) dependent on
previously stored worm signatures for their analysis. A
new and more robust method needed to be developed in
order to effectively study worm behavior (Zou, Cliff C.;
Gong, Weibo; Towsley, Don; and Gao, Lixin, 2004),
(N.Kawaguchi and et.al., 2006,), (S.Staniford-Chen and
et.al., 1996).

GRAPH BASED METHODS FOR WORM
DETECTION

GrIDS - A graph based intrusion detection system
 GrIDS (Graph-Based Intrusion Detection
System) is an excellent example of a graph based IDS that
was first introduced by Santiford. GrIDS collects data
about activity on computers and network between them.
GrIDS is capable of analyzing network activity of TCP/IP
connections on networks that have tens and thousands of
hosts [6][7]. When a worm intrudes a network with GrIDS,
the network activity associated with its propagation causes
GrIDS to build a tree-like graph. Previously detected data
can recognize this tree-like graph as a potential worm. This
evaluation might count the number of nodes and branches
in the graph. Recognition (detection) occurs when the
counts exceed a user-specied threshold, thus reporting a
worm. GrIDS is not a scalable model and hence it proves
to be ineffective against silent worms, DoS attacks and
disruptions or faults in the network.

Protocol graphs

This method of using protocol graphs in order to detect
worms was pioneered by M. P. Collins (Redjack),from
Software Engineering Institute, Carnegie Mellon

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1224

University and the Department of Computer Science,and
Michael K. Reiter (CERT), University of North Carolina at
Chapel Hill. We have adopted this, and suggested an
efficient implementation method and also designed a fully
functional system which analyses input data in real time.
A protocol graph is defined as a graph in which the
vertices are IP addresses which are unique and the edges
are comprised of sets of IP addresses which have
communicated with each other. The sets of edges are
undirected, therefore an edge from the source to the
destination implies that there is an edge from destination to
source as well.
 Protocol graph is a representation of traffic log
for a single protocol, namely HTTP or FTP. It comprises
of vertices and edges. Vertices represent a single IP
address and edges represent communication between those
addresses. Graph size and Largest Component size are two
parameters which can be analysed which is extensively
used in this methodology. An alarm is raised if the largest
component or graph size exceed predicted sizes. An frr
(false alarm rate can be set to either moderately or
aggressively detect attacks. A visual representation of a
Protocol Graph is shown in Figure-4.

Figure-4. A visual representation of a Protocol Graph with
a largest connected component size of six.

 Consider a log file (set) A = A1,Anof traffic
records. Each record A has fields for IP addresses, namely
source addressA.sip and destination address A.dip. In
addition,A.port denotes the address of the server in the
protocol interaction(A.port < A.sip,A.dip >), though we
emphasize that we require A.port it is crucial in our
detection or attacker identification mechanisms. Given A,
we define an undirected graph G(A) =< V (A),E(A) >,
where V (A) are the set of vertices and E(A) are a set of
edges,

V (A) = setof < A.sip,A.dip > (4)

E(A) = setof < A.sip,A.dip > (5)
G(A) is sampled every 60 seconds or some pre-defined
amount of time dur and the graph is thus constructed. One

set of records is created for each half a day and is denoted
by G(A)π; and the largest connected component for that
time period is denoted by Cdurπ and the number of
vertices is denoted by V durπ [8].
 We denote the log file by Aπ. log file that is
recorded during the interval π[00 : 00GMT,23 : 59GMT]
on some specified date.
 NetFlow reports flow logs, where a flow is a
sequence of packets with the same addressing information
that are closely related in time. Flow data is a compact
summary of network traffic and therefore useful for
maintaining records of traffic across large networks. Flow
data does not include payload information, and as a result
we identify protocol traffic by using port numbers. Given a
flow record, we convert it to a log record A of the type we
need by setting A.port to the IP address that has the
corresponding service port; e.g., in a flow involving ports
80 and 3946, the protocol is assumed to be HTTP and the
server is the IP address using port 80.
 These scans are added to the graph and then they
need to be rigorously filtered in order to eliminate any
unwanted data; namely scans for addresses that don’t exist
and other interferences from normal data.

Analysis of protocol graphs
Once the algorithm has completed finding the largest
connected components and the number of vertices, then
the results can be collected and tabulated. The mean and
standard deviations for each C and V are plotted separately
for each protocol and their corresponding normal
distributions are plotted. After plotting these distributions,
a threshold is set based on certain probability conditions
that will be explained.
After suitable thresholds have been set and the system
trained, the system will not require any human
intervention. Thus enabling an automated detection
process.
More precisely, we divide the day into two intervals,
namely am = [00 : 00GMT,11 : 59GMT] and pm = [12 :
00GMT,23 : 59GMT]. For each protocol we consider, we
define random variables V 60sam and V 60spm.
We raise an alarm for a protocol graph if either of these
observations hold good:

(6)

(7)

(8)

The false (alarm) rate frr for a given threshold t:

 Frr = 1 − Pr[Vdur ≤ µVπdur + tσVπdur] (9)

Similarly, we can evaluate the false alarm rate for the
largest connected component variable C. A suitable
threshold can then be determined based on the value of the
false alarm rate. Additionally, suitable frr can be set by
observing the network under normal conditions.

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1225

Therefore, the threshold t is given by,

√ t = 2erf−1[0.5 − (frr/2)] (10)

Note that the use of frr/2 in the - equation ensures that
each of conditions 6 and 7 contribute at most half of the
target frr and consequently that both conditions combined
will yield at most the target False Negative Rate .

IMPLEMENTATION OF PROTOCOL GRAPHS
 The Protocol Graph HitList Worm detection
scheme depends on two variables, namely the number of
vertices in a graph and the largest connected component in
the graph. Counting the number of connected components
in the graph and hence finding the largest connected
component. The Union Find Algorithm, which operates on
a time complexity of O(mn)](Wayne, Kevin, and Robert
Sedgewick, 2014), and the rank optimized version which
operates on a time complexity of O(mlog2n)](Wayne,
Kevin, and Robert Sedgewick, 2014). Here, m is the
number of objects and n is the number of times the Union-
Find operation is performed, which leads to a worst case of
O(n2) and O(nlog2n) respectively. We would like to
compare this one to our implementation, which is basically
a modification of the Breadth First search Algorithm,
which allows us to count the Number of Vertices and also
the size of the largest connected component in each
disjoint set.

Union find algorithm
 There are two basic functions that are involved in
the UnionFind algorithm, namely:
Make Set: This function creates singleton sets of all the
individual elements, initially.
Find: This function is used to find which particular subset,
an element belongs to in the collection of disjoint sets.
Union: This function merges two disjoint subsets together
to form a single set.

1: find(int parent[], int i):
2: if (parent[i] equals -1)
3: return i
4: end if
5: return find(parent, parent[i]);
 6: end find

1: Union(int parent[], int x, int y):
2: xset = find (parent, x)
3: yset = find(parent, y)
4: parent[xset] = yset
5: end Union

Analysis of the Nave implementation
 The analysis of a nave union find algorithm is
relatively easy, and the total worst case cost can be proven
to be O(mn). Where m is the number of elements and n
represents the number of times the Union-Find Operation
is called (Wayne, Kevin, and Robert Sedgewick, 2014).
Analysis of weighted union find with path compression:
The total worst case cost can be proven to beO(m +

nlog2n). Where m is the number of elements and n
represents the number of times the Union-Find Operation
is called. This algorithm can be improved using a
technique called using weights or ranks, an a process
called path compression. Path compression is just a
flattening of the tree such that we set every nodes parent to
its grandparent, and so on hence decreasing the depth and
also the complexity of the algorithm (Wayne, Kevin, and
Robert Sedgewick, 2014, CMU 15-451/651 (Algorithms),
2014)

There are several methods to optimize the union
find algorithm, the first way, called union by rank, is to
always attach the smaller tree to the root of the larger tree.
Since it is the depth of the tree that affects the running
time, the tree with smaller depth gets added under the root
of the deeper tree, which increases the depth if the depths
were equal. One element trees are defined to have a rank
of zero, and whenever two trees of the same rank r are
united, the rank of the result is r + 1.

1: Union(int a, int b):
2: element x = find(a)
3: element y =
find(b)
4: x.parentID = y.ID
5: if (x.parentID equals y.parentID)
6: return
7: end if
8: if (x.rank < y.rank):
9: x.parentID = y.ID
10: else if (x.rank >

y.rank):
 11: y.parentID = x.ID
12: else
 13: y.parentID = x.ID
14: end if
 15: x.rank = x.rank + 1
16: end Union

1: elementfind(element x):
 2: if (x.parent equals -1)

3: return i
4: end if
5: return find(x.parent)
6: end find

 The set of elements can be represented as a linked
list and each member of the list can have an ID and the ID
of its parent. Initially all elements parent ID is set to the
element ID itself. When two elements are merged, then the
parent ID of the second element, is changed to the first
elements ID. The first element then becomes the root of
the tree. Thus, trees are formed and any element which is a
member of the tree, has its parent ID set to the ID of the
root element of the tree.
 Consider one element, x of any arbitrary setS. The
MakeSet function runs in linear time as it just involves
setting x.parentID = x.ID for m elements initially. The find
function takes constant time, as the element being queried

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1226

has to return x.parentID. The Union function on the other
hand needs to merge two sets together to create a larger
set. Let us consider the element x, and say that x and y
should be operated by union. This leads to a formation of
set x,y. The worst case scenario is that all elements of a set
are initially paired with each other resulting in n sets of
pairs of elements. (Considering an even number of
elements). Next, the union function will be called n/2
times to merge the pairs into quads, and so on until all the
elements have the same root, and are in the same large set.
This takes log2n steps, and each step has to iterate through
a possible n elements, hence giving an overall worst case
complexity of O(nlog2n) for unions and a cost of
O(m+nlog2n) for the entire algorithm (CMU 15-451/651
(Algorithms), 2014). Now, this algorithm is not practical
because once the tree structure is formed, the deletion of
vertices or edges can be difficult. The functionality of
being able to flexibly insert and delete edges without
having to collapse and reconstruct the entire data structure
is most important in the practical implementation of such a
system. This criteria gave us an idea of using an actual
graph data structure called the Adjacency List in order to
implement a solution to this problem.

Novel implementation of an algorithm to count
connected components

 From the standpoint of the algorithm, all child
nodes obtained by expanding a node are added to a FIFO
(i.e., First In, First Out) queue. In typical implementations,
nodes that have not yet been examined for their neighbors
are placed in some container (such as a queue or linked
list) called ”open” and then once examined are placed in
the container ”closed”. We have modified this algorithm in
order to facilitate the detection of the largest connected
component in a Protocol Graph representation of a
network.

Algorithm (informal)

1: Mark all nodes as undiscovered initially and mark one
start node.

2: If the element sought is found in this node, quit the
search and return a result.

3: Otherwise enqueue any successors (the direct child
nodes) that have not yet been discovered.

4: Repeat the process until all the nodes are marked as
discovered.

The pseudo code of our implementation is:

1: PGraph(G,v) is
: 2: create a queue
Q
3: create a vector set V
4: create an integer V counter , Ccounter, Ncomponents
5: create an array sizeOfDisjointComponenet[V.length]
6: enqueue v onto Q

7: add v to V
8: while Q is not empty
loop:
9: Increment Ccounter, Ncomponents

10: sizeOfDisjointComponenet[Ncomponents] =
Ccounter

11: t = Q.dequeue()
12: if (t is what we are looking for then)
13: return t
14: end if
15: for all edges e in G.adjEdges(t) loop:
16: u = G.adjV ertex(t,e)
17: if u is not in V then
18: add u to V
19: enqueue u onto Q
20: increment V counter
21: end if
22: end for
23: end while
24: return none
25: print Vcounter
26: for all Ncomponents in

sizeOfDisjointComponenet[V.length] loop:
27: print sizeOfDisjointComponenet[Ncomponenets]
28: end for
29: end PGraph
The time complexity of BFS can be expressed as O(E +V)
since every vertex and every edge will be explored in the
worst case.

RESULTS

 In order to test our system we analysed a set of
PCAP files from the Wireshark Book website and the
Netresec group. These files contain data captured for less
than 60 seconds, and hence are ideal for testing our
system.

1) Normal HTTP session

 This test was done using a PCAP file which
contained packets exchanged during a normal HTTP
session for a time period of sixty seconds. We observed
that there are no large connected components C, and the
number of vertices V are low as well. Hence this kind of
traffic will not trigger the detector.

2) Port scan

This test was done using a PCAP file which contained
packets exchanged during a port scan being performed in
the network in which a worm is present for a time period
of sixty seconds. We observed that there are a large
number of connected components C, and the number of
vertices V is high and as well. Hence this kind of traffic
will trigger the detector.

3) A PCAP containing Malware NAPENTHES from
NE-TRESEC

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1227

This test was done using a PCAP file which contained
packets exchanged in the network in which a worm is
present for a longer time period. This file contains a
moderately large no. of vertices, and one large connected
component which has 14 nodes, this suggests malware
activity. This was featured in Capture the hacker 2013
competition (by Dr. David Day of Sheffield Hallam
University).

Table-1. Summary of results.

PCAP file
No. of vertices

(V)
No. of disjoint
components

httpbrowse.pcap 9 6

portscan.pcap 58 29

Ncapture.pcap 96 40

MERITS AND LIMITATIONS

 We can easily compare this system to similar
implementations such as GrIDS (and D S.Staniford-Chen
and et.al., 1996) discrete Anti Worm (DAW) System by
Chen .S. [9]. The methodology of this algorithm was
originally pioneered by Collins M.P. (Collins, M. P., &
Reiter, M. K., 2007) and they implement this methodology
using union-find algorithms.

Discrete anti worm system (DAW)

A DAW agent is deployed on all edge routers of the
ISP and a management station that collects data from the
agents. Each agent monitors the connection-failure replies
sent to the customer network that the edge router connects
to. It identifies the offending hosts in the customer network
and measures their failure rates.If the failure rate of a host
exceeds a pre-configured threshold, the agent randomly
drops a minimum number of connection requests. A
temporal rate-limit algorithm and a spatial rate-limit
algorithm are used to constrain any worm activity to a low
level over the long term. A temporal rate-limit algorithm is
designed to bound the maximum number of failed requests
per day. The temporal rate-limit algorithm constrains both
the maximum failure rate and the maximum number of
failed requests per day. The spatial rate limit algorithm
works in such a way that it thresholds the number of
network addresses used.
1) Slows down the network’s operation when a worm is

detected.
2) There is only one parameter which is used to

determine if the connection is worm infested, which
can be highly error prone.

Hierarchical worm defense model

This model assumes a tree structure where the internal
nodes of the tree are rewalls and leaves are servers
vulnerable to worm attacks. The rewalls are assumed to be
immune to infections. It is also assumed that we have
sensors at the vulnerable hosts that can detect an infection
and report it. Once the number of infection reports
amongst a nodes (rewalls) children reaches the threshold,

the rewall turns on the lter rules protecting all of its
children, and alerts its parent that the sub-tree below it is
infected but now protected. This escalation of alerts from
one level to the next higher level in the hierarchy and
protection of sub-trees takes place successively as the
threshold for infections is reached at each node.
1) The model can be inefficient because the network has

to be realized in the form of a tree.
2) There is no clear indication of any detection

methodologies.

Limitations of our algorithm
The system is highly robust, scalable and highly

reliable. The idea of using Protocol Graphs for worm
detection uses two variables and the joint probability of
both the variables exceeding the threshold is calculated.
However there are a few limitations of using this
algorithm, namely:
1) The system is not tuned to mitigate the spread of the

worm. Only detection is possible after which further
processing is required.

2) Testing and deployment of the algorithm on the
network can take significant time, as the thresholds
need to be set carefully.

3) The flow records of the network need to be streamed
in at a constant rate, without interruption, as the
system works real time.

FUTURE SCOPE

Polymorphic worms
 Network worms are malicious programs that
spread automatically across networks by exploiting
vulnerabilities that affect a large number of hosts.
Unfortunately, worms can be polymorphic. That is, they
can mutate as they spread across the network through self-
encryption mechanisms or code manipulation techniques.

Distributed architecture
 In order to be more effective, a distributed
detection of Silent worms based on Protocol Graphs is
needed. As the network size increases, it becomes more
difficult to accumulate and analyse all network logs in the
network to a single detection engine. In order to address
these challenges, a more distributed architecture is
advisable (Bin, L., Chuang, L., Jian, Q., Jianping, H., &
Ungsunan, P. 2008) (Chen, S., & Tang, Y., 2007).

Containing or mitigating the spread of worms
 Detecting the worm is fairly is simpler compared
to containing the worm. The best way to contain the worm
and block its access. Therefore, rate limiting algorithms or
content blocking algorithms can be used to mitigate the
rapid propagation of destructive worms(Chen, S., & Tang,
Y.,2007) .

CONCLUSIONS
 In summary, we have implemented a novel worm
detection system which encompasses of a system which

 VOL. 10, NO. 3, FEBRUARY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

1228

uses a graph search algorithm to detect largest connected
component size and number of vertices in a Protocol
Graph representation of the entire network. Suitable tests
have been conducted in order to test the effectiveness of
the system, and we have proved that it can clearly
differentiate between records that contain worm activity
and those that do not. This system is extremely flexible
and robust, and can run on both Windows and Linux.

REFERENCES

Zou Cliff C., Gong Weib., Towsley Don. and Gao Lixin,
”Monitoring and Early Detection for Internet
Worms”.University of Massachusetts, Computer Science
Department Faculty Publication Series. Paper 45-77. 2004.
J. O. Kephart and S. R. White. Directed-graph
Epidemiological Models of Computer Viruses. In Proc. of
IEEE Symposimum on Security and Privacy, pages 343-
359, 1991.

J. O. Kephart and S. R. White. Measuring and Modeling
Computer Virus Prevalence. In Proc. of IEEE
Symposimum on Security and Privacy, 1993.

Bin L., Chuang L., Jian Q., Jianping H. and Ungsunan P.
A NetFlow based flow analysis and monitoring system in
enterprise networks. Computer Networks, 52(5), 1074-
1092. 2008.

J.Jung and et.al. Fast portscan detection using sequential
hypothesis testing. In Proc of the IEEE Symposium on
Security and Privacy. pages 1-7. 2004.

N. Kawaguchi and et.al. Actm: Anomaly connection tree
method to detect silent worms. In Proc. of IEEE AINA
2006, volume vol.1, pages 901-906, 2006.

S.Staniford-Chen and et.al. Grids: A graph-based intrusion
detection system for large networks. In Proc. of the 19th
National Information Systems Security Conference, pages
361-370, 1996.

Collins M. P. and Reiter M. K. Hit-list worm detection
and bot identification in large networks using protocol
graphs. In Recent Advances in Intrusion Detection.
Springer Berlin Heidelberg. pages 276-295. January,
2007.

Chen S. and Tang Y. DAW: A distributed antiworm
system. Parallel and Distributed Systems, IEEE
Transactions on, 18(7), 893-906. 2007.

Z. Chen L., Gao. and K. Kwiat. Modeling the Spread of
Active Worms, In IEEE INFOCOM, 2003.

Wayne Kevin. and Robert Sedgewick. ”1.5 Case Study:
Union-Find.” Case Study: Union-Find. Princeton
University, 25 Sept. 2013se. Web. 25 April. 2014.

CMU 15-451/651 (Algorithms), Fall 2013. CMU
15451/651 (Algorithms) Fall 2013. Carnegie Mellon
University, 2013. Web. 25 April. 2014.

NETRESEC AB. ”Publicly Available PCAP Files.” Public
PCAP Files for Download, 2013.

