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ABSTRACT  

This paper discusses an application of System Dynamics approach in managing renewable biological resources.  
In essence, a management of a biological resource can be regarded as a control to the size of the associated population of 
the resource subject to certain criteria. For example, in harvesting theory or in fishery industries the management is 
directed towards the finding of the best size of the population giving rise to an optimal harvest as the objective. In finding 
this best size one should incorporate both the biological concern (sustainability of the resources) and the economic concern 
(maximum profit). In this regards, the objective can also be stated in other words, i.e. we have to find the maximum level 
of harvest such that the long-term sustainability of the resource is warranted.  Technically this level of harvest is often 
called as the Maximum Sustainable Yield (MSY). The paper is aimed to find the MSY for biological resources having a 
complex ecosystem structure.  We will assume that the resource forms a meta-population and in each sub-population the 
intra-specific competition may vary according to low, moderate and high level of competition. The paper shows that a 
different harvesting strategy should be applied depending on the level of competition status in each sub-population.  
 
Keywords: maximum sustainable yield, intraspecific competition, meta-population model. 
 
1. INTRODUCTION  
 System dynamics (SD) is an approach to 
understand the behavior of a complex system with the 
respect to time. SD is introduced for the first time by 
Professor Jay Forrester from the Massachusetts Institute of 
Technology [1] and often characterized by the existence of 
internal feedback loops in the form of flows connecting 
among entities (stocks). The complexities sometime 
increases, e.g. by the presence of time delays in the 
response of an action at the previous time to the reaction at 
the current time [2, 3]. These complexities certainly affect 
the behavior of the whole system.  
 Conceptually SD has a sister which is called 
Dynamical System (DS) born earlier in the Newton’s 
mechanic era, and is defined roughly as a concept in which 
a fixed rule describes the dependences of the position of a 
point in a geometric space to time. The rule often appears 
in the form of differential equation with the solution called 
trajectory or orbit [4, 5]. 

Principally, both SD and DS study the same 
object, i.e. the time series of a system. However, SD more 
emphasizes on the application of mathematical 
computation through the discretization of the system using 
computer modeling software like Dynamo, Stella, Vensim, 
and Powersim. Meanwhile, DS more emphasizes on the 
application of analytical/mathematical tools to uncover the 
behavior of the system under study represented by the 
qualitative behavior of the solution of its mathematical 
equation or model. 

In this paper we combine the SD and DS 
approaches since basically they work in the same spirit. In 
section 2 of the paper we give the formulation for the basic 
model used in the subsequent sections. 

 
2. SYSTEM DYNAMICS IN FISHERIES INDUSTRY  

2.1 Basic model and notations  

The following notations will be used to formulate the 
mathematical model in this section, 
N  = Number of population 

t  = Time (in continuous model) 

n  = Time (in discrete model) 

r  = Intrinsic growth rate 

K  = Carrying capacity 

  = Intra-specific competition intensity 

h  = Harvest rate 
*h  = Optimal harvest rate 

E  = Effort of harvesting 

q  = Catch-ability of harvesting 

U  = Catch per unit effort 

nE =  Effort of harvesting at time n 

( )U n =  Catch per unit effort at time n 

nU =  Total catch per unit effort in year n 

Management in a fisheries industry in some sense 
can be regarded as the management of the number of fish 
population. The basic system in this regard is the growth 
of the fish population. The growth in many cases is 
assumed to be logistic [6], although other sigmoid form is 
also common [7]. In this paper we will assume that the 
natural growth of the fish is logistic. It is well-known that 
the DS equation for the system is given by (1), 
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1
dN N

rN
dt K

  
 
 

. 
 
               (1) 

In equation (1), N=N(t) defines the number of 
population at time t. The equation is equivalent to the SD 
form of flow-stock diagram (Figure-1) and to the SD 
equations in Powersim format (Figure-2). 

 

Figure-1. Representation of equation (1) in SD flow-stock 
diagram. 

 

 

Figure-2. Representation of equation (1) in SD 
equations. 

 
By referring to Figure-2 above, the initial value 

of the system is given by N(0)=250,000 at time t=0 with 
the known carrying capacity K and intrinsic growth rate r. 
Using Runge-Kutta scheme, the solution of the system 
from  t=0 to t=6 is shown by Figure-3,  

Year

P
op

ul
at

io
n

0 1 2 3 4 5 6

500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000

Figure-3. Time series solution of equation (1) with 
parameters in Figure-2. 

 

2.2 MSY for the basic model  

We assume that the commercial population 
governed by equation (1) is exploited with the constant 
harvesting rate h, such that the equation becomes  

1
dN N

rN
dt K

h    
 

. 
 

(2) 

The manager of the commercial population would 
like to maximize yield from the industry while keeping the 
population sustainable. Mathematically, sustainability can 
be achieved if the growth of the population is not negative. 
Without losing the generality, this is satisfied in the zero 
growth phase of the population. This condition is often 
used to find the maximum harvest h* satisfying the 
sustainability of the population. The resulting harvest is 
called the Maximum Sustainable Yield (MSY) which can 
be obtained by noting that 

( ) 1
N

h h N rN
K

   
 
 

. 
 

   (3) 

It is easy to show that at * / 2N K  the harvest 

will be maximum given by   * / 4h rK . Harvesting the 
population at MSY level, theoretically, will guarantee that 
the industry will sustainable with the steady state of the 

fish population at the level of * / 2N K . On the other 
hand, harvesting the population beyond that level may 
cause the industry collapse [8]. 

Furthermore, the author in [8] shows that if the 
exploitation is carried out at the level h (not necessarily at 
the MSY), then the steady state of the population is at the 

level of 2 2( 4 ) /(2 )N rK r K rhK r   .  The results 

above tell us that knowing the values of r and K is very 
important in the fisheries industry. Figure-4 shows the 
effect of harvesting to the previous system illustrated in 
Figure-3 with MSY level given by 

* / 4h rK  1,090,595. In this Figure we assume that the 
first harvesting is carried out when the population is at its 
carrying capacity (i.e. after the sixth year shown in Figure-
3) for the period of the remaining eight years onwards. 
Figure-4 is also the representation of the SD diagram in 
Figure-5.  

 

Year

Population

Catch

MSY

0 1 2 3 4 5 6 7 8

500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000

 
Figure-4. Harvesting of system in Figure-3 with the 

constant MSY. 
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Figure-5. Representation of equation (2) in SD 
diagram. 

 
Figure-4 above assumes that harvesting is done 

with a constant harvest of population. In this case at MSY 
level. In many cases harvesting is done with a constant 
effort rather than a constant harvest. In this case we can 
modified equation (2) as follows. Harvesting rate can be 
regarded as a function of the number of the existing 
population number (N) and the effort exerted to catch the 
population (E) with a certain catchability (q). Hence 
equation (2) becomes   

1
dN N

rN
dt K

qEN    
 

. 
 

(4) 

It can be shown easily that the optimal effort 

associated with the MSY level is * /(2 )E r q . As in the 

case of the constant optimal harvest, the constant optimal 
effort also converge to a constant catch eventually (but see 
Figure-6 for comparison). 

 

Year

Population

Catch

MSY

0 1 2 3 4 5 6 7 8

500,000
1,000,000
1,500,000
2,000,000
2,500,000
3,000,000

Figure-6. Harvesting of system in Figure-3 with a 
constant effort. 

2.3 Parameter estimation for the basic model 
Time series or trajectory as solution of equation 

(1) in Figure-3 above is obtained by assuming certain 
values for the parameters (r and K) of the model in the 
equation as illustrated by Figure-2. Hence the relevant 
question is how do we parameterize the model in equation 
(1) from available data? If for example we have a time 
series data as in Figure-3 then we can parameterize the 
model straight forward by regressing the equation to the 
data. But this kind of data is never existed. The only 
available data in a real application is the catch and effort 

data. To facilitate the parameterization we briefly 
summarize the method discussed in [9, 10] as follows.  

To estimate the parameter in equation (1) we 
assume that the population depicted by the equation is 
harvested with a constant harvest h. As explained earlier 
harvesting rate can be regarded as a function of the 
number of the existing population number (N) and the 
effort exerted to catch the population (E) with certain 
catch ability (q). Using this assumption then equation (1) 
is equivalent to equation (4). Furthermore, [8, 9] defines U 
as   catch per unit effort i.e. /U h E , and hence 

/N U q . Substituting this equation into equation (4), 

we have 

1
dU U

U
qdt qK

r
EU

q
 

   
 

 

      
 
     (5) 

The authors in [9, 10] is able to develop the discrete 
version of equation (5) in the form of  

11

( 1)
ln

( )

( ) ( )
2 2

n nn n

U n

U n
r q

r U U E E
qK



 
 
 

    
 

 

   (6) 

The last equation is a discrete analog of the 
continuous equation (1). Using this equation we are able to 
estimate the parameter r and K in equation (1) through the 
regression of equation (6) by an available catch-effort 
data. This method is often called the Schnute method, 
referring to the last name of the author in [10]. As an 
illustration of the application of equation (6), we use the 
catch-effort data presented in Table 1 of [9] giving rise to 
the values K=3,050,615, r=1.43, and q=0.000000913. For 
the subsequent discussion we will use these values unless 
stated otherwise. 

 
3. NUMERICAL SIMULATION FOR COMPLEX 
MODELS 

In this numerical simulation we consider two different 
source of complexity. The first one is the existence of 
different intensity of intra-specific competition and the 
second one is the presence of  spatial heterogeneity in the 
system, where we assume that there is a metapopulation 
structure comprising of two different quality of patches. 

 
3.1 Different  intensity of  intra-specific competition  
 Equation (1) assumes that the coefficient of intra-
specific competition in the model is one. We may interpret 
this is a moderate situation of competition. In reality, the 
competition might be higher or lower than this moderate 
rate. In general if the intensity of the intra-specific 
competition is  then equation (1) becomes  

1
dN N

rN
dt K



 
 
 
 

 
 

(7) 
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By referring to [10], the MSY of the system in 
equation (7) is given by  

1/
* 1

1
1 1

K
h r



 
           

 
 

(8) 

with the associated equilibrium population size given by 

 ln /(1 ) /* KN e    (9) 

Next we use the catch-effort data in Table-1 of [9] 
for two different condition. The first condition is when the 
intensity of the intra-specific competition is low (=0.90) 
and the second one is when the intra-specific competition 
is high (=1.05). For both situation we will assume that 
the exploited population has parameters K=3,050,615, 
r=1.43, and q=1.  The results of their respective MSY are 
shown in Figures-7 and 8. 

Year

Population

Catch

MSY

0 2 4 6 8 10

2,000,000

4,000,000

6,000,000

 

 

 

Figure-7. Equilibrium population size and MSY for 
correct management (top) and incorrect management 
(bottom) of the population.  =0.90 for both figures. 

 
Figure-7 shows the case of low intensity of intra-

specific competition. In this case, if we exploit the 
population correctly, then we have MSY=5,320,759 and 
the population equilibrium is at 7,855,045 with the graph 
of catch over time shown in Figure-7 (top). Meanwhile, if 
we exploit the population incorrectly, e.g. by ignoring the 
low intra-specific competition intensity, then we have 
MSY=1,090,595 and the population equilibrium is at 
1,525,308 with the graph of catch over time shown in 
Figure-7 (bottom). Compared to the Figure (top), the catch 

predicted by Figure-7 (bottom) is lower than it is to be, 
indicating an underexploited situation. 

Figure-8 shows the case of high intensity of intra-
specific competition. In this case, if we exploit the 
population correctly, then we have MSY=553,949 and the 
population equilibrium is at 756,308 with the graph of 
catch over time shown in Figure-8 (top). Meanwhile, if we 
exploit the population incorrectly, e.g. by ignoring the high 
intra-specific competition intensity, then we have 
MSY=1,090,595 and the population equilibrium is at 
1,525,308.  If then we harvest the population at only 55% 
of the suggested MSY then the population goes extinct 
after the sixth year of exploitation (Figure-8 (bottom)). 
This clearly indicates that the resource is overexploited. 

 

Year

Population

Catch

MSY

0 2 4 6 8 10
100,000

300,000

500,000

700,000

 

 

Year

Population

Catch

MSY

0 2 4 6 8 10
0

200,000

400,000

600,000

800,000

1,000,000

 

Figure-8. Equilibrium population size and MSY for 
correct management (top) and incorrect management 
(bottom) of the population.  =1.05 for both figures. 

 
From Figures-7 and 8 we see that less intense 

intra-specific competition gives a higher MSY than more 
intense intra-specific competition, which is plausible. 
Table-1 shows this result for a more diverse of intra-
specific competition. Every row in Table-1 is obtained 
from ordinary least square for linear regression of equation 
(6) using the data set in Table-1 of [9]. The only robust 
parameter is the catch ability parameter.  Other parameters 
are sensitive to the change of the intra-specific 
competition intensity. 
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Table-1. MSY and model parameters resulting from 
various assumption of the intra-specific competition 

intensity. 
. 

 R q K MSY 
0.10 7.366 7.45 x 10-7 4.541 10,097,403 
0.20 3.683 7.45 x 10-7 20.62 5,048,701 
0.30 2.455 7.45 x 10-7 93.63 3,365,801 
0.40 1.841 7.45 x 10-7 425.1 2,524,350 
0.50 1.473 7.45 x 10-7 1,930 2,019,480 
0.60 1.228 7.45 x 10-7 8,765 1,682,900 
0.70 1.052 7.45 x 10-7 39,803 1,442,486 
0.80 0.921 7.45 x 10-7 180,736 1,262,175 
0.95 0.775 7.45 x 10-7 1,748,805 1,062,884 
0.96 0.767 7.45 x 10-7 2,034,485 1,051,812 
0.97 0.759 7.45 x 10-7 2,366,833 1,040,969 
0.98 0.752 7.45 x 10-7 2,753,472 1,030,347 
0.99 0,744 7.45 x 10-7 3,203,272 1,019,939 
1.00 0.737 7.45 x 10-7 3,726,550 1,009,740 
1.01 0.729 7.45 x 10-7 4,335,308 999,742 
1.02 0.722 7.45 x 10-7 5,043,512 989,941 
1.03 0.715 7.45 x 10-7 5,867,406 980,330 
2.00 0.368 7.45 x 10-7 1.389 x 1013 504,870 
3.00 0.246 7.45 x 10-7 5.175 x 1019 336,580 
4.00 0.184 7.45 x 10-7 1.929 x 1026 252,435 
5.00 0.147 7.45 x 10-7 7.186 x 1032 201,948 

 
3.2 Heterogeneous intra-specific competition in two-
patch connected population 

Examples in Figures-7 and 8 show that if there 
are two separated populations with different level of intra-
specific competition intensity, i.e. one with a low intensity 
of intra-specific competition (=0.90) and the other one 
with a high intensity of intra-specific competition 
(=1.05), then the total MSY extracted from these two 
populations is 5,874,708 (5,320,759 plus 553,949). In the 
next discussion we will assume that these populations 
belong to a meta-population. The populations live in 
different habitat but they are connected through the 
migration of individuals. We will use the data in Table 1 of 
[9] to facilitate the discussion and we will show that this 
complexity has a significant role in determining the level 
of the total MSY of the meta-population.  

Considering there are two connected sub-
populations in the system with known migration 
parameters, now we can modify equation (1) into the form 
as seen in [11]. In this example we assume that the 
migration parameter p12 = 0.5 and p21 = 0.4. In this case, 
the total MSY is not equal to the previous MSY of the 
separated populations, but given by only 3,000,000’s 
(almost only a half of its original MSY for separated 
populations). Figure-9 shows the simulation of harvesting 
the two-patch meta-population for the situation above, 
with detail SD model given in Appendix 1.  The figure 
shows that migration and exploitation have made the 
system fluctuate rapidly. This fluctuation is observed in 
both of sub-populations. 

Time

Population

Catch

MSY

0 10 20 30 40 50

2,000,000

4,000,000

6,000,000

8,000,000

 
 

Time

Population_1

Catch_1

MSY_1

0 10 20 30 40 50

500,000

1,000,000

1,500,000

 
Figure-9. Equilibrium population size and the 

corresponding MSY for sub-population living in habitat 1 
(top) and for sub-population living in habitat 2 (bottom). 

The migration parameters are p12=0.5 and p21=0.4 with the 
intra-specific competition 1=0.90 and 2=0.05. The 

resulting MSY are 1,695,760 for habitat 1 and 1,593,841 
for habitat 2. 

 
4. CONCLUSIONS 

In this paper we give an example of the 
application of System Dynamics (SD) approach in the 
management of biological resources. SD is an appropriate 
approach to tackle problem in biological resource 
management, since most of problems in biological 
resource management is highly complex, hence 
mathematical tractability is often fail to delineate. In this 
case SD approach is a good alternative to thorough 
mathematical analysis of the problem.  Via SD approach 
we can increase the realism of the model and obtain some 
insight of the model behavior relatively easy, which 
otherwise difficult to obtain from other approach.  

The examples in the paper show that spasial 
heterogeneity and differential intra-specific competition 
intensity are vital in determining the appropriate maximum 
sustainable yield of the biological resources. Fail to 
recognise these two factors may lead to underexploitation 
or overexploitation of the resources depending on the 
values of parameters. In terms of parameter estimation of 
the model, the only robust parameter in the model is the 
catchability parameter.  Other parameters are sensitive to 
the change of the intra-specific competition intensity. In 
this paper we have assumed that the value of the  intra-
specific competition intensity is known. In practice this 
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value might be unknown and should also be estimated 
from the same available data. This is currently under 
investigation. 
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APPENDIX-1 System Dynamics equations use in 
simulation to generate Figure-9. 

 
init Population = 7855045 
flow Population = -dt*Outflow 
 +dt*Inflow 
init Population_1 = 756308 
flow Population_1 = -dt*Outflow_1 
 +dt*Inflow_1 
aux Inflow = 

Population*Intrinsic_growth_rate+p_21*Population_1 
aux Inflow_1 = 

Population_1*Intrinsic_growth_rate_1+p_12*Population 
aux Outflow = 

(Intrinsic_growth_rate*Population^(1+Intra_spesific_co
mpetition)/Carrying_Capacity)+Catch+p_12*Population 

aux Outflow_1 = 
(Intrinsic_growth_rate_1*Population_1^(1+Intra_spesifi
c_competition_1)/Carrying_Capacity_1)+Catch_1+p_21
*Population_1 

aux Catch = MSY 
aux Catch_1 = MSY_1 
aux Equil_pop_size = 

EXP(LN((Carrying_Capacity)/(1+Intra_spesific_competi
tion))/Intra_spesific_competition) 

aux Equil_pop_size_1 = 
EXP(LN((Carrying_Capacity_1)/(1+Intra_spesific_comp
etition_1))/Intra_spesific_competition_1) 

aux MSY = 
Intrinsic_growth_rate*(Carrying_Capacity/(1+Intra_spes
ific_competition))^(1/Intra_spesific_competition)*(1-
(1/(1+Intra_spesific_competition))) - 
p_12*(Carrying_Capacity/(1+Intra_spesific_competition
))^(1/Intra_spesific_competition) + 
p_21*(Carrying_Capacity_1/(1+Intra_spesific_competiti
on_1))^(1/Intra_spesific_competition_1) 

aux MSY_1 = 
Intrinsic_growth_rate_1*(Carrying_Capacity_1/(1+Intra
_spesific_competition_1))^(1/Intra_spesific_competition
_1)*(1-(1/(1+Intra_spesific_competition_1))) - 
p_21*(Carrying_Capacity_1/(1+Intra_spesific_competiti
on_1))^(1/Intra_spesific_competition) + 
p_12*(Carrying_Capacity/(1+Intra_spesific_competition
))^(1/Intra_spesific_competition)  

const Carrying_Capacity = 3050615 
const Carrying_Capacity_1 = 3050615 
const Intra_spesific_competition = 0.90 
const Intra_spesific_competition_1 = 1.05 
const Intrinsic_growth_rate = 1.43 
const Intrinsic_growth_rate_1 = 1.43 
const p_12 = 0.5 
const p_21 = 0.4 


