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ABSTRACT 

The presence of crack in a structure tends to modify its modal parameters (natural frequencies and mode shapes). 
The fact can be used inversely to predict the crack parameters (crack depth and its location) from measurement of the 
changes in the modal parameters, once a functional relationship between them has been established. The machine 
components like turbine blade can be treated as a cantilever beam and a shaft as a simply supported beam. Vibration 
analysis of cantilever beam and simply supported beam can be extended successfully to develop online crack detection 
methodology in turbine blades and shafts. In the present work, finite element analysis of a cantilever and simply supported 
beams for flexural vibrations has been considered by including two transverse open U-notches. The modal analysis has 
been carried out on cantilever and simply supported beams with two U-notches and observed the influence of one U-notch 
on the other for natural frequencies and mode shapes. This has been done by carrying out parametric studies using ANSYS 
software to evaluate the natural frequencies and their corresponding mode shapes for different notch parameters (depths 
and locations) of the cantilever and simply supported beams FEM model. Later, by using a central difference 
approximation, curvature mode shapes were then calculated from the displacement mode shapes. The location and depth 
corresponding to any peak on this curve becomes a possible notch location and depth. The identification procedure 
presented in this study is believed to provide a useful tool for detection of medium size crack in a cantilever and simply 
supported beam applications. 
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INTRODUCTION 

Any localized crack in a structure reduces the 
stiffness in that area. These features are related to variation 
in the dynamic properties, such as, decreases in natural 
frequencies and variation of the modes of vibration of the 
structure. One or more of above characteristics can be 
used to detect and locate cracks. This property may be 
used to detect existence of crack or faults together with 
location and its severity in a structural member. Rizos [1] 
measured the amplitude at two points and proposed an 
algorithm to identify the location of crack. Pandey [2] 
suggested a parameter, namely curvature of the deflected 
shape of beam instead of change in frequencies to identify 
the location of crack. Ostachowicz [3] proposed a 
procedure for identification of a crack based on the 
measurement of the deflection shape of the beam.  
Ratcliffe [4] also developed a technique for identifying the 
location of structural damage in a beam using a 1D FEA. 
A finite difference approximation called Laplace’s 
differential operator was applied to the mode shapes to 
identify the location of the damage. Wahab [5] 
investigated the application of the change in modal 
curvatures to detect damage in a prestressed concrete 
bridge. Lakshminarayana [6] carried out analytical work to 
study the effect of crack at different location and depth on 
mode shape behaviour. Chandra Kishen [7] developed a 
technique for damage detection using static test data. 
Nahvi [8] established analytical as well as experimental 
approach to the crack detection in cantilever beams. Ravi 
Prakash Babu [9] used differences in curvature mode 
shapes to detect a crack in beams.  

This paper deals with the technique and its 
application of mode shapes to a cantilever and a simply 
supported beam. The paper of Pandey et al. [2] shows a 
quite interesting phenomenon: that is, the modal 
curvatures are highly sensitive to crack and can be used to 
localize it. They used simulated data for a cantilever and a 
simply supported beam model with single damage to 
demonstrate the applicability of the method. The cracked 
beam was modeled by reducing the E-modulus of a certain 
element. By plotting the difference in modal curvature 
between the intact and the cracked beam, a peak appears at 
the cracked element indicating the presence of a fault. 
They used a central difference approximation to derive the 
curvature mode shapes from the displacement mode 
shapes. An important remark could be observed from the 
results of Pandey et al. [2]: that is, the difference in modal 
curvature between the intact and the damaged beam 
showed not only a high peak at the fault position but also 
some small peaks at different undamaged locations for the 
higher modes. To avoid this, a U-notch was modelled at 
the location of faults instead of reducing the E-modulus of 
a certain element. Also, analysis was carried out for beams 
with two cracks instead of one. 

So, this paper is done to study about the changes 
in mode shapes because of the presence of U-notches in 
the cantilever and simply supported beams and is 
concerned with investigation of the accuracy when using 
the central difference approximation to compute the modal 
curvature and determine the location of the U-notches and 
to find out the reason of the presence of the misleading 
small peaks. The application of this technique to 
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constructions in which more than one fault positions exist 
is investigated using a continuous beam with simulated 
data. The results of this scenario will be analyzed in this 
paper and U-notches will be detected and localized by 
using the measured change in modal curvatures. 
So, as a summary, in the present work, a methodology for 
predicting crack parameters (crack depth and its location) 
in a cantilever and simply supported beam from changes in 
curvature mode shapes has been developed. Parametric 
studies have been carried out using ANSYS Software to 
evaluate mode shapes for different crack parameters 
(depth and its location). Curvature mode shapes were then 
calculated from the displacement mode shapes to identify 

crack location and its severity in the cantilever and simply 
supported beam. 
 
PROBLEM FORMULATION 

Figures-1(a) & 1(b) shows a cantilever and a 
simply supported beam of rectangular cross section, made 
of mild steel with two U- notches. To find out mode 
shapes associated with each natural frequency, FE analysis 
has been carried out using ANSYS Software for un-
notched and U-notched beam. 
 
 

 
Figure-1(a). Cantilever beam with two U-notch cracks. 

 
 

Figure-1(b). Simply supported beam with two U-notch cracks. 
 

The mode shapes of the multiple U-notched 
cantilever and simply supported beams are obtained for U-
notches located at normalized distances (c/l & d/l) from 
the fixed end of a cantilever beam and from left end 
support of a simply supported beam with a normalized 
depth (a/h). 

 
Figure-2. Discretised model of beam with two U-

notches. 

Figure-2 shows the discretised model (zoomed 
near the position of U-notches) of a beam with two U-
notches. Parametric studies have been carried out for thin 
beam having length (l) = 260 mm, width (w) = 25 mm and 
thickness (h) = 4.4 mm.  The breadth (b) of each U-notch 
has been kept as 0.32 mm. The U-notch locations from the 
fixed end (c & d) of the cantilever beam have been taken 
in different combinations near the fixed end, free end and 
middle of the beam. Similarly, U-notch locations from the 
left end support (c & d) of the simply supported beam 
have been taken in different combinations near the 
supports and middle of the beam. The intensity of U-notch 
(a/h) was varied by increasing its depth over the range of 
0.25 to 0.75 in the steps of 0.25. This represented the case 
of a varying degree of crack at particular location. For 
each model of the two U-notch locations, the first three 
natural frequencies and corresponding mode shapes were 
calculated using ANSYS software. 
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Governing equation 

Determination of modal parameters (natural 
frequency & mode shape) in a beam is an Eigen value 
problem. ANSYS Software is used for theoretical modal 
analysis of the beam and the governing equation for 
general Eigen value problem is: 
 

      0 XKXM                                                 (1) 

Disposing the brackets without ambiguity equation (1) is 
rewritten as follows: 
 

0 KXXM 
                                                 (2) 

Pre-multiplying both sides of equation (2) by 1M :  

0111   MKXMXMM   

Now,  XIXMM  1  and 

AXKXM 1 (say) 
 

0 AXXI                                                                 (3) 

Where,  KMA 1 = system matrix. 

Assuming harmonic motion ;XX   where,  2  

equation (3) becomes 
  

  0 XIA                                                                (4) 

The characteristic of motion is then: 
 

0 IA                                                 (5) 

The n-roots i , where i=1, 2, 3…n of the characteristic 

equation (5) are called Eigen values.   
The natural frequencies are found as: 
 

ii   , i = 1,2,3………n.                                   (6) 

Substitution of the Eigen values ( i s) in (4) gives the 

mode shapes iX  corresponding to i .  These are Eigen 

vectors. 
 
RESULTS AND DISCUSSION 

In this analysis, it is assumed that crack is of U-
notched shape. The depth (a) and locations (c & d) of 
these notches are normalized to the height and length of 
the cantilever and simply supported beams respectively. 
The first three mode shapes for the beam were calculated 
using ANSYS software and were shown below for 
different crack depths and crack location ratios. 
 
Curvature finite difference approximation 

Localized changes in stiffness result in a mode 
shape that has a localized change in slope, therefore, this 
feature will be studied as a possible parameter for crack 
detection purposes. For a beam in bending the curvature 
(k) can be approximated by the second derivate of the 
deflection:  

 

                                                                     (7) 

In addition, numerical mode shape data is discrete 
in space, thus the change in slope at each node can be 
estimated using finite difference approximations. In this 
work, the central difference equation was used to 
approximate the second derivate of the displacements u 
along the x - direction at node i:  

 

                                               (8) 

The term  is the element length. 
In this process meshing and node numbering is very 
important. Equation (8) require the knowledge of the 
displacements at node i, node i -1 and node i+1 in order to 
evaluate the curvature at node i. Thus, the value of the 
curvature of the mode shapes could be calculated starting 
from node 2 through node 261 in case of this beam. After 
obtaining the curvature mode shapes the absolute 
difference between the uncracked and cracked state is 
determined to improve crack detection. 
 

                  (9) 
As a result of this analysis, a set of curvature 

vectors for different crack localizations are obtained. 
 
Uncracked case  

By using  the same finite element model shown in 
Figure-2, linear mode shapes was performed in ANSYS. 
The numerical results were exported to MATLAB to be 
processed.  

The associated mode shapes were sketched 
evaluating the displacements in y direction of the 261 
equidistant nodes located at the bottom line of the beam. 
In order to unify the results from the different cases, mode 
shapes were normalized by setting the largest grid point 
displacement equal to 1. It can be noticed from figures that 
all the mode shapes smoothed functions, what indicate the 
absence of cracks. Cracked beam mode shapes will be 
used to compare further results. Since changes in the 
curvature are local in nature, they can be used to detect 
and locate cracks in the beam.  
 
Simple cracked case 

The different combinations of crack location 
scenarios are selected for studying the effect of localized 
cracks in the beam. Although the reduction in natural 
frequencies is related to the existence of crack and its 
severity, this feature cannot provide any useful 
information about the location of the crack. Thus, 
curvature mode shapes were calculated and compared with 
the uncracked case. It can be seen that the maximum 
difference value for each mode shape occurs in the crack 
locations. In other areas of the beam this characteristic was 
much smaller. Although the third mode shapes was the 
most sensitive to the failure it is important that any of the 
three curvature mode shapes peak at the cracked locations. 
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Cantilever beam 

 
Figure-3. Mode shapes for crack at c/l = 0.15 of depth a/h = 0.25 and crack at d/l = 0.8 of depth a/h = 0.75. 

 

 
Figure-4. Difference curvature for crack at c/l = 0.15 of depth a/h = 0.25 and crack at d/l = 0.8 of depth a/h = 0.75. 

 

 
Figure-5. Mode shapes for crack at c/l = 0.15 of depth a/h = 0.5 and crack at d/l = 0.8 of depth a/h = 0.5. 
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Figure-6. Difference curvature for crack at c/l = 0.15 of depth a/h = 0.5 and crack at d/l = 0.8 of depth a/h = 0.5. 

 

 
Figure-7. Mode shapes for crack at c/l = 0.25 of depth a/h = 0.5 and crack at d/l = 0.65 of depth a/h = 0.5. 
 

 
Figure-8. Difference curvature for crack at c/l = 0.25 of depth a/h = 0.5 and crack at d/l = 0.65 of depth a/h = 0.5. 
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Figure-9. Mode shapes for crack at c/l = 0.25 of depth a/h = 0.75 and crack at d/l = 0.65 of depth a/h = 0.5. 

 

 
Figure-10. Difference curvature for crack at c/l = 0.25 of depth a/h = 0.75 and crack at d/l = 0.65 of depth a/h = 0.5. 
 

To examine the curvature mode shape technique 
for cantilever beam having several crack locations, the 
span of the beam is discretized by 260 elements. Two 
crack locations are assumed at a time. Firstly, two cracks 
at c/l = 0.15 of depth a/h = 0.25 and at c/l = 0.8 of depth 
a/h = 0.75 were considered. The first three displacement 
mode shapes are shown in Figure 3. The difference in 
modal curvature between the uncracked and the cracked 
beam is plotted in Figure 4 for the first three modes. For 
mode 1 in Figure 4, it can be observed that the peak at c/l 
= 0.15 is very small comparing to that at d/l = 0.8. And 
also, for mode 1 the modal curvature at c/l = 0.15 is less 
and has very small values at the nodes next to it. In 
contrast, at d/l = 0.8 high modal curvature takes place. 

This indicates the severity of the crack depth ratio a/h = 
0.75 at d/l = 0.8 compared to crack depth ratio a/h = 0.25 
at c/l = 0.15. And also, first mode shape modal curvature 
is more sensitive near the fixed end compared to second 
and third mode shape modal curvatures. Again second and 
third mode shape modal curvatures are more sensitive near 
the free end compared to first mode shape modal 
curvature. The same can be observed for some other crack 
scenarios shown in Figures-5 & 6, 7 & 8, 9 & 10. So, 
depending on the absolute ratio between the modal 
curvature values for a particular mode at two different 
locations, one peak can dominate the other. Therefore, one 
can conclude that in case of several crack locations in a 
structure, all modes should be carefully examined. 

 



                                        VOL. 10, NO. 4, MARCH 2015                                                                                                                    ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
1707

Simply supported beam 

 
Figure-11. Mode shapes for crack at c/l = 0.15 of depth a/h = 0.25 and crack at d/l = 0.8 of depth a/h = 0.5. 

 

 
 

Figure-12. Difference curvature for crack at c/l = 0.15 of depth a/h = 0.25 and crack at d/l = 0.8 of depth a/h = 0.5. 
 

 
Figure-13. Mode shapes for crack at c/l = 0.25 of depth a/h = 0.5 and crack at d/l = 0.45 of depth a/h = 0.75. 
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Figure-14. Difference curvature for crack at c/l = 0.25 of depth a/h = 0.5 and crack at d/l = 0.45 of depth a/h = 0.75. 

 

 
Figure-15. Mode shapes for crack at c/l = 0.25 of depth a/h = 0.5 and crack at d/l = 0.65 of depth a/h = 0.5. 

 

 
Figure-16. Difference curvature for crack at c/l = 0.25 of depth a/h = 0.5 and crack at d/l = 0.65 of depth a/h = 0.5. 
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Figure-17. Mode shapes for crack at c/l = 0.65 of depth a/h = 0.5 and crack at d/l = 0.85 of depth a/h = 0.5. 

 

 
Figure-18. Difference curvature for crack at c/l = 0.65 of depth a/h = 0.5 and crack at d/l = 0.85 of depth a/h = 0.5. 

 
To examine the curvature mode shape technique 

for simply supported beam having several crack locations, 
the span of the beam is also discretized by 260 elements. 
Two crack locations are assumed at a time. Firstly, two 
cracks at c/l = 0.15 of depth a/h = 0.25 and at c/l = 0.8 of 
depth a/h = 0.5 were considered. The first three 
displacement mode shapes are shown in Figure 11. The 
difference in modal curvature between the uncracked and 
the cracked beam is plotted in Figure 12 for the first three 
modes. For all the modes in Figure 12, it can be observed 
that the peak at c/l = 0.15 is very small comparing to that 
at d/l = 0.8. In contrast, at d/l = 0.8 high modal curvature 
takes place. This indicates the severity of the crack depth 
ratio a/h = 0.5 at d/l = 0.8 compared to crack depth ratio 
a/h = 0.25 at c/l = 0.15. And also, third mode shape modal 
curvature is more sensitive near the supports compared to 
first and second mode shape modal curvatures. The same 
can be observed in Figure 18 at d/l = 0.85. Again in Figure 
14 third mode shape modal curvature is more sensitive 

near the middle portion of the beam at d/l = 0.45 compared 
to other mode shape modal curvature and the second mode 
modal curvature is more sensitive near the one-fourth of 
the length of the beam at c/l = 0.25. The same can be 
observed for some other crack scenarios shown in Figure 
16 at d/l = 0.65 and in Figure 20 at c/l = 0.65 for second 
mode shape. So, depending on the absolute ratio between 
the modal curvature values for a particular mode at two 
different locations, one peak can dominate the other. 
Therefore, one can conclude that in case of several crack 
locations in a structure, all modes should be carefully 
examined. 

And also, the crack is assumed to affect stiffness 
of the cantilever beam. The stiffness matrix of the cracked 
element in the FEM model of the beam will replace the 
stiffness matrix of the same element prior to damaging to 
result in the global stiffness matrix. Thus frequencies and 
mode shapes are obtained by solving the eigen value 
problem [K] – ω2 [M] = 0. So it can be seen in Figure 3, 9, 
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13 very clearly the changes in slopes and deviations in 
mode shape at crack location for crack depth ratio 0.75. 

 
CONCLUSIONS 

A method for identifying multiple crack 
parameters (crack depth and its location) in beams using 
modal parameters has been attempted in the present paper. 
Parametric studies have been carried out using ANSYS 
Software to evaluate modal parameters (natural 
frequencies and mode shapes) for different crack 
parameters. A theoretical study using simulated data for a 
cantilever and simply supported beams has been 
conducted. When more than one fault exists in the 
structure, it is not possible to locate crack in all positions 
from the results of only one mode. All modes should be 
carefully examined in order to locate all existing faults. 
Also, due to the irregularities in the measured mode 
shapes, a curve fitting can be applied by calculating the 
curvature mode shapes using the central difference 
approximation. The curvature mode shapes technique for 
crack localization in structures is investigated in this 
paper. The results confirm that the application of the 
curvature mode shape method to detect cracks in 
engineering structures seems to be promising. Techniques 
for improving the quality of the measured mode shapes are 
highly recommended. The identification procedure 
presented in this paper is believed to provide a useful tool 
for detection of medium size cracks in beams.  
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