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ABSTRACT 

This paper presents a Firefly Optimization (FFO) based design methodology for improving the efficiency of 
Induction Motor (IM). Firefly Algorithm, inspired by social flashing behaviour of fireflies, is one of the evolutionary 
computing models for solving multimodal optimization problems. Among the number of design variables of the IM, seven 
variables are identified as primary design variables and the FFO based design methodology is tailored to optimize the 
chosen primary variables with a view to obtain the global best design. The developed methodology is applied in solving 
two IM design problems and the results are presented with a view of exhibiting the superiority of the developed algorithm.  
 
Keywords: induction motor, firefly optimization. 
 
Nomenclature 
ACO ant colony optimization 
FFO firefly optimization 

if  i -th firefly 
j

if  j -th design variable of i -th firefly 

GA genetic algorithm 
)(xg  a set of inequality constraints 

)(xh  objective function to be optimized 

IM induction motor 
maxIter  maximum number of iterations for convergence check 

kW  rating of IM 

iLI  light intensity of i -th firefly 

min"" & max""      minimum and maximum limits of the respective variables 

nd  number of decision variables 

nf  number of fireflies in the population 

ODIM optimal design of IM 
PM proposed method 

tP  total losses 

nlP  no load loss 

cusP  stator copper loss. 

curP  rotor copper loss. 

ijr  Cartesian distance between i -th and j -th fireflies 

X  vector of primary design variables 
    a set of limit violated constraints 

  random movement factor 

o  attractiveness parameter 

ij  attractiveness between i -th and j -th fireflies 

  absorption factor 

w   weight constant of the penalty terms 
 

1. INTRODUCTION 
  Induction motors (IM) are the most widely used 
in domestic, commercial and various industrial 
applications. Especially, the squirrel cage IM is 
characterized by its simplicity, robustness and low cost, 
making it more attractive and hence captured a leading 

place in industrial and agricultural sectors. As millions of 
such motors are in use in various sectors, they consume a 
considerable percentage of overall produced electrical 
energy.  The ever mounting pressure of oil crisis and the 
need for energy conservation necessitate designing the 
IMs with increased levels of efficiency through the 
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selection of appropriate combination of the design 
parameters. The optimal design of IM (ODIM) is so 
complicated that it is still a combination of art and science. 
There are many geometrical parameters and their 
relationships connected with motor specifications, which 
are in general nonlinear. (Mehmet Cunkas 2010).  
  Over the years, in addition to statistical methods 
(Han and Shapiro 1967) and the Monte Carlo technique 
(Anderson 1967), several mathematical programming 
techniques, which provide a means for finding the 
minimum or maximum of a chosen objective function of 
several decision variables under a prescribed set of 
constraints, have been applied in solving the IM design 
problems. These techniques such as nonlinear 
programming, (Ramarathnam et al. 1971), Lagrangian 
relaxation method (Gyeorye Lee et al. 2013), direct and 
indirect search methods (Nagrial et al. 1979), Hooks and 
Jeeves method (Faiz et al 2001), Rosenbrock’s method 
(Bharadwaj et al. 1979-a),  Powell’s method 
(Ramarathnam et al.  1973), finite element method (Parkin  
et al. 1993) and sequential unconstrained minimization 
technique (Bharadwaj et al. 1979-b)  are most 
cumbersome and time consuming. Besides a few of them 
requires derivatives and exhibits poor convergence 
properties due to approximations in the derivative 
calculations.  
  Apart from the above methods, another class of 
numerical techniques called evolutionary search 
algorithms such as  simulated annealing (Bhuvaneswari et 
al. 2005: Kannan et al. 2010),  genetic algorithm (GA) 
(Satyajit Samaddar et al. 2013: Sivaraju et al. 2011),   
evolutionary algorithm (Jan Pawel Wieczorek et al. 1998),  
evolutionary strategy (Kim MK et al. 1998), and particle 
swarm optimization (PSO) (Thanga Raj et al. 2008: 
Sakthivel  et al. 2011) have been widely applied in solving 
the IM design problems. Having in common processes of 
natural evolution, these algorithms share many 
similarities; each maintains a population of solutions that 
are evolved through random alterations and selection. The 
differences between these procedures lie in the techniques 
they utilize to encode candidates, the type of alterations 
they use to create new solutions, and the mechanism they 
employ for selecting the new parents. These algorithms 
have yielded satisfactory results across a great variety of 
engineering optimization problems.  
  Recently, firefly optimization (FFO) has been 
suggested for solving optimization problems (Yang 2008: 
Yang 2009). It is inspired by the light attenuation over the 
distance and fireflies’ mutual attraction rather than the 
phenomenon of the fireflies’ light flashing. In this 
approach, each problem solution is represented by a 
firefly, which tries to move to a greater light source, than 
its own.  It has been applied to a variety of power system 
problems (Kuldeep Kumar Swarnkar 2012: Sulaiman et al. 
2012: Chandrasekaran 2012) and found to yield 
satisfactory results.    
  The aim of this paper is to develop a FFO based 
method for optimally designing IMs with a view of 
effectively exploring the solution space and obtaining the 

global best solution. The developed methodology has been 
applied in designing two IMs and the performances have 
been studied. The paper is divided into five sections. 
Section 1 provides the introduction, section 2 overviews 
FFO, section 3 formulates the IM design problem and 
elucidates the proposed method (PM), section 4 discusses 
the results and section 5 concludes.  

 
2. FIREFLY OPTIMIZATION 

The FFO, a nature-inspired optimization 
algorithm, is based on the social flashing behaviour of 
fireflies and similar to other optimization algorithms 
employing swarm intelligence such as PSO.  FFO initially 
produces a swarm of fireflies located randomly in the 
problem space. The position of each firefly in the problem 
space represents a potential solution of the optimization 
problem. The fitness function takes the position of a firefly 
as input and produces a single numerical output value 
denoting how good the potential solution is. The 
brightness of each firefly depends on the fitness value of 
that firefly. Each firefly is attracted by the brightness of 
other fireflies and tries to move towards them. The 
velocity or the pull of a firefly towards another firefly 
depends on the attractiveness. The attractiveness depends 
on the relative distance between the fireflies and is a 
function of the brightness of the fireflies as well. A 
brighter firefly far away may not be as attractive as a less 
bright firefly that is closer. In each iterative step, FFO 
computes the brightness and the relative attractiveness of 
each firefly. Depending on these values, the positions of 
the fireflies are updated. After sufficient amount of 
iterations, all fireflies converge to the best possible 
position in the search space. Each i -th firefly is denoted 
by a vector if  as (Yang 2008: Yang 2009) 

 

 nd
iiii ffff ,, 21                                                           (1) 

 
The search space is limited by the following inequality 
 

)()( maxffminf kkk   :  ndk ,,2,1                  (2) 

 
  Initially, the positions of the fireflies are 
generated from a uniform distribution using the following 
equation 
 

  randminfmaxfminff kkkk
i  )()()( (3) 

 

Here, rand  is a random number in between 0 
and 1, taken from a uniform distribution. Equation (3) 
generates random values from a uniform distribution 
within the prescribed range defined by Equation (2). The 
initial distribution does not significantly affect the 
performance of the algorithm. Each time the algorithm is 
executed, the optimization process starts with a different 
set of initial points. However, in each case, the algorithm 
searches for the optimum solution. In case of multiple 
possible sets of solutions, the algorithm may converge on 
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different solutions each time. But each of those solutions 
will be valid as they all will satisfy the requirements. 

 
The light intensity of the i -th firefly, iLI  is given by 

 
)( ii fFitnessLI                                                              (4) 

 
The attractiveness ( ji ) between the i -th and j-th firefly 

is given by 
 

 2exp jioji r                                                           (5) 

 
Where 

 jir  is Cartesian distance between i -th and j-th 

firefly  

 



nd

k

k
j

k
ijiji ffffr

1

2
                                  (6) 

 

o  is a constant taken to be 1.   is another constant 

whose value is related to the dynamic range of the solution 
space. The position of firefly is updated in each iterative 
step. If the light intensity of j -th firefly is larger than the 

intensity of the i -th firefly, then the i -th firefly moves 
towards the j -th firefly and its motion at t-th iteration is 

denoted by the following equation: 
 

   5.0)1()1()1()(  randtftftftf ijjiii        (7) 

 
  is a random movement factor, whose value depends on 
the dynamic range of the solution space. At each iterative 
step, the intensity and the attractiveness of each firefly is 
calculated. The intensity of each firefly is compared with 
all other fireflies and the positions of the fireflies are 
updated using Equation (7). After a sufficient number of 
iterations, all the fireflies converge to the same position in 
the search space and the global optimum is achieved.  
 
3. PROPOSED METHODS 

  The proposed FFO based solution method for 
ODIM involves formulation of the problem, representation 
of fireflies through the chosen design variables and 
construction of a light intensity function, LI .  
 
3.1 Problem formulation 

The ODIM problem involves large number of 
design variables. Many of these variables fortunately have 
a little influence either on the objective function or on the 
specified constraints.  However, to ease the curse of high 
dimensionality, the following seven variables are 
identified as primary design variables. 

T
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 (8) 

 
The ODIM problem is formulated by defining an objective 
function and a set of constraints as   
 

Maximize 
tPKW

KW
xh


)(                                             (9) 
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maxmin
iii xxx           ndi ,2,1                                (11) 

 

Where  curcusnlt PPPP                                           (12) 

 
3.2 Representation of design variables 

The firefly, f  is represented to denote the chosen primary 

design variables, defined by Eq. (8), in vector form as: 

   721
721 ,,,,, xxxffff iiii                               (13) 

 
3.3  Fitness function 

The algorithm searches for optimal solution by 
maximizing a light intensity function LI , which is 
formulated from the objective function of Eq. (9) and the 
penalty terms representing the limit violation of the 
explicit constraints of Eq. (10). The LI  function is written 
as 

Maximize     
 






i
i xgw

xh
LI

2)(1

)(                               (14) 

3.4 Solution process 

An initial population of fireflies is obtained by generating 
random values within their respective limits through Eq. 
(11). The LI  is calculated by considering the values of 
each firefly and the movements of all fireflies are 
performed with a view of maximizing the LI  till the 
number of iterations reaches a specified maximum number 
of iterations. The pseudo code of the PM is as follows. 
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Read the IM data 

Choose the parameters, nf , maxIter , , o and   . 

Generate  the initial swarm of fireflies 
Set  the iteration counter  0t  
while  (termination requirements are not met) do  

for  nfi :1  

Obtain the primary design variables  from  i -th 
firefly. 
Compute the remaining secondary variables of the 
design problem. 
Evaluate iLI   using  Eq. 14 respectively 

for nfj :1  

Obtain the primary design variables  from  j -th 

firefly. 
Compute the remaining secondary variables of 
the design problem. 
Evaluate jLI   using  Eq. 14  

if  ji LILI   

Compute ijr using Eq. (6) 

Evaluate  ij  using Eq. (5) 

Move i -th firefly towards j -th firefly 

through Eq. (7) 
end-(if) 

end-( j ) 

end-( i ) 
Rank the fireflies and find the current best. 

end-(while) 
Choose the best firefly possessing the largest iLI   in the 

population as the optimal solution 
 
4. NUMERICAL RESULTS 

The proposed FFO method (PM) is used to obtain 
the optimal design of two IMs. The first machine under 
study is rated for 7.5 kW, 400 V, 4 pole, 50 Hz and the 
second one for 30 kW, 400 V, 6 pole, 50 Hz. The 
effectiveness of the PM is demonstrated through 
comparing the performances with those of the GA and 
ACO based design approaches. In this regard, the same set 
of primary design variables, fitness function and design 
equations, involved in the PM, are used to develop the GA 
and ACO based design approaches. The software packages 
are developed in Matlab platform and executed in a 2.67 
GHz Intel core-i5 personal computer. There is no 
guarantee that different executions of the developed design 
programs converge to the same design due to the 
stochastic nature of the GA, ACO and  FFO, and hence the 
algorithms are run 20 times for each motor and the best 
ones are presented. The optimal design representing the 
values of the primary design variables for both the IMs 
and their efficiencies are presented in Table-1 and 2. 
 
 

 

Table-1. Comparison of results for Motor-1. 

  GA ACO PM 

Primary 
design 
variables 
X  

1x  1.35114 1.31979 1.36501 

2x  0.44063 0.42097 0.42688 

3x  22806.85 23155.24 23181.60 

4x  0.66918 0.46367 0.58873 

5x  3.35017 3.64492 3.48672 

6x  2.10549 2.00461 2.03984 

7x  1.10444 1.10145 1.10194 

Constraints 
)(xg  

21 g  1.736 1.621 1.677 

22 g  1.733 1.738 1.753 

05.03 g  0.020 0.021 0.020 

5.14 g  4.424 3.427 3.900 

705 g  46.121 45.728 45.894 

5.06 g  0.496 0.342 0.430 

75.07 g  0.808 0.854 0.827 

Objective 
function 

)(xh  

% 
Efficiency 86.708 86.727 86.736 

 
Table-2. Comparison of results for Motor-2. 

 
  GA ACO PM 

Primary 
design 
variables 
X  

1x  1.71468 1.19110 1.33580 

2x  0.34334 0.44126 0.39008 

3x  27143.81 28217.57 28756.51 

4x  0.89138 0.89713 0.98477 

5x  2.69663 2.69634 2.80913 

6x  2.01937 2.01649 2.02020 

7x  1.11485 1.10062 1.10010 

Constraints 
)(xg  

21 g  1.135 1.487 1.331 

22 g  1.126 1.528 1.368 

05.03 g  0.017 0.016 0.016 

5.14 g  1.636 1.748 1.598 

705 g  34.137 46.449 41.805 

5.06 g  0.278 0.347 0.330 

75.07 g  0.807 0.774 0.776 

Objective 
function 

)(xh  

% 
Efficiency 90.497 90.582 90.587 

 
It is observed from these tables that the PM offers 

an efficiency of 86.736% and 90.587%, which are higher 
than those of GA and ACO based approaches, for motor-1 
and -2 respectively.  These tables also include the values 
of the constraints of Eq. (10) along with their limits. It can 
also be observed from these tables that all the methods 
bring the constraints such as maximum flux density, slip at 
full load, starting to full load torque ratio, etc.  to lie within 
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the respective limit, as the constraints are added as penalty 
terms in the light intensity function of  Eq. (14).  The % 
efficiency enhancements for both the motors are calculated 
taking a non-optimal efficiency of 79.489% and 83.865% 
for motor-1 and motor-2 respectively and graphically 
compared in Figure-1. It is seen from Figure-1 that the 
%efficiency enhancement of the PM of motor-1 is 
9.117%, while for other methods, they are 9.082% and 
9.106%. Similarly for motor-2, the PM results in the 
%efficiency enhancement of 8.015, while for other 
methods, they are 7.908% and 8.009%. It is obvious that 
the PM offers better %efficiency enhancement than those 
of the existing approaches for both the motors. 

 
 

 
 

Figure-1. Comparison of % efficiency enhancement. 
 
5. CONCLUSIONS 
  Indeed the FFO is a powerful population based 
method for solving complex optimization problems. A 
new methodology involving FFO for solving ODIM 
problem has been developed and applied on two IM design 
problems. It determines the optimal values for primary 
design variables. The ability of the PM to produce the 
global best design parameters that improves the efficiency 
of the motor has been projected. It has been chartered that 
the new approach fosters the continued use of FFO and 
will go a long way in serving as a useful tool in design 
problems.  
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