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ABSTRACT 
 Decision tree analysis involves forecasting future outcomes and assigning probabilities to those events. One of the 
most basic fundamental applications of decision tree analysis is for the purpose of option pricing. The binomial tree would 
factor in multiple paths that the underlying asset's price can take as time progresses. The price of the option is calculated 
using the discrete probabilities and their associated pay-offs at maturity date of the option. In this work we came up with an 
approach to build a binomial decision tree that can be used to price European, American and Bermudian options and a 
methodology to train the decision tree using a clustering based learning algorithm that minimizes the mean square error 
(MSE) between the observed and predicted option prices. The training methodology involves clustering the options based 
on moneyness and fit a linear equation for each cluster to calculate the confidence that needs to be used in building the 
binomial decision tree for a particular strike price within the cluster. It is observed that the MSE for option price using the 
proposed model is less when compared to the Black-Scholes model for the proposed learning algorithm. 
 
Keywords: option pricing, clustering, decision tree, binomial option pricing.  
 
1. INTRODUCTION 

 A derivative [13] is an agreement between two 
parties that has a value derived on the underlying asset. 
There are many kinds of derivatives with most notable 
being swaps, futures and options. An option [13] is a 
financial derivative that represents contract sold by one 
party (option writer) to another party (option holder). The 
contract offers the buyer the right, but not the obligation, 
to buy (call) or sell (put) a security or other financial asset 
at an agreed-upon price (the strike price) during a certain 
period of time or on a specific date (exercise date). The 
Black-Sholes formula [2] presented the first pioneering 
tool for rational valuation of options. There are several 
assumptions, used to derive the original Black Sholes 
model, relaxation of which had been reported in the 
literature: No dividends Relaxed in [15], No taxes nor 
transaction costs, Constant interest rates relaxed in [15], 
No penalties for short sales, Continuous market operation 
relaxed in [16], Continuous share price relaxed in [7], 
Lognormal terminal stock price return relaxed in [14]. In 
addition, Black-Sholes model assumes; continuous 
diffusion of the underlying relaxing which resulted in 
jump diffusion model [15], constant standard 
deviation/volatility, and no effect on option prices from 
supply/demand. These models improve pricing 
performance and generalize Black-Sholes formula to a 
class of models referred to as the modern parametric 
option pricing models. Modern parametric option pricing 
models which are a generalization to the Black-Sholes 
model are more complex and have poor out-of-sample 
performance and use implausible and/or inconsistent 
implied parameters. They often produce parameters 
inconsistent with underlying time-series and inferior 
hedging and retain systematic price bias they were 
intended to eliminate [3], [4].   

 Prompted by shortcomings of modern parametric 
option-pricing, new class of methods was created that do 

not rely on pre-assumed models but instead try to 
uncover/induce the model, or a process of computing 
prices, from vast quantities of historic data. Many of them 
utilize learning methods of Artificial Intelligence. Non-
parametric approaches are particularly useful when 
parametric solution either; lead to bias, or are too complex 
to use, or do not exist at all. The purest version of non-
parametric option-pricing methods, are model-free 
methods. They involve no finance theory but estimates 
option prices inductively using historical or implied 
variables and transaction data. Although some form of 
parametric formula usually is involved, at least indirectly, 
it is not the starting point but a result of an inductive 
process. There are several methods in this group:  
 
 Model-free option pricing with Genetic Programming 

(GP) 
 Model-free option-pricing with kernel regression 
 Model-free option-pricing with Artificial Neural 

Networks (ANN) 
 
 The independence of model-free approaches from 

any finance theory means prices produced by them may 
not conform to rational pricing and/or may not capture 
restrictions implied by arbitrage [10]. To improve model-
free approaches in this respect, constraints have to be 
introduced [5]. There are several ways used to enforce 
rational pricing into model-free pricing; The Equivalent 
Martingale Measure (EMM) adjusts prices to reflect a 
preference-free, risk-neutral market. In risk-neutral 
economy all assets must earn the same return [6]. Under 
the risk-adjusted probability distribution, the stock price 
follows a Martingale (a stochastic process where the best 
forecast of tomorrow’s price is today’s) and is arbitrage-
free. Non-parametric adjustments to Black-Sholes estimate 
a portion of the option-pricing non-parametrically while 
retaining the conventional option-pricing framework to 
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guarantee rational-pricing. Generalized Deterministic 
Volatility estimates unknown volatility either 
parametrically or non-parametrically and inserts this 
estimate into a conventional model. The three sample 
approaches in this category are:  

 
 Implied Binomial Tree [18], [19]. 
 Generalized Deterministic volatility    functions [9] 
 Kernel approach [1], [11]. 
 

 Generalized volatility approaches have their costs 
and benefits. The implied tree approach for example can 
help with estimation of exotic, path dependent options 
where no analytical formula exists. 

 Option pricing using binomial decision tree 
allows to price even American or Bermudian options 
which can be exercised at any time or at specific dates 
respectively with in maturity. A method to generate 
binomial option pricing has been proposed by Cox J et al. 
[8]. However it assumes that the underlying returns are 
log-normally distributed. A novel approach [21] has been 
proposed to generate a binomial decision tree which uses 
chebyschev inequality to determine the underlying future 
states and also uses absolute returns instead of logarithmic 
returns in determining the volatility used in generating the 
binomial decision tree. A methodology to build the 
binomial decision tree with implied volatility incorporated 
in it has been proposed [20]. The model allows changing 
the implied volatility used in building the tree through a 
parameter called “k”. In real world markets, it has been 
observed that the implied volatility is a function of strike 
price and maturity of the option. Therefore for a given 
maturity the implied volatility is a function of strike price. 
Any option pricing model has to be trained to attain the 
market prices by using certain training data in which the 
pricing parameters are adjusted to attain the known market 
prices.  

 In this work we came up with a training method 
that fits a linear equation for calculating the confidence (1-
1/k2) to be used in binomial decision tree and implied 
volatility to be used in the Black-Scholes model on a set of 
options that are clustered based on moneyness (S/Sk). The 
mean square error (MSE) in the observed option prices 
and predicted option prices is calculated. The predicted 
prices with the proposed model are also compared with the 
predicted prices from the Black-Scholes Model. It is 
observed that the MSE obtained using the proposed model 
is less than the MSE obtained using the Black-Scholes 
model. 
   The rest of the paper is organized as follows; 
section 2 describes the method to generate binomial 
decision tree and the data model used for clustering 
algorithm and the parameters used in pricing the option. 
Section 3 describes training the model using the clustering 
methodology on options and curve fitting for confidence 
and various tests that are performed on the pricing model. 
Section 4 describes the results and discusses the accuracy 
of the model with and without clustering. Section 5 
discusses the future work that can be done in this area. 

2. DECISION TREE CONSTRUCTION AND 
OPTION PRICING 
 Markets will be either bullish or bearish. The 

value of an asset increases in a bullish market and 
decreases in a bearish market. Hence in a binomial 
decision tree only two states are considered for the 
movement of the underlying asset one is the up-move and 
the other is the down move. The magnitude of the up or 
down moves depends on the volatility of the underlying 
asset. For a known volatility of a random process the 
chebyschev inequality [6] states that the probability that 
the values of the random process lies with-in “k” standard 
deviations (volatility) from the mean is given by (1-1/k2). 
Considering the return on an underlying (equity or  Index) 
as a random process with zero mean and variance σ2t, the 
probability that the underlying value lies between the 
upper boundary St+kσ√t and St-kσ√t  is given by 
equation(1).  

 
P[St-kσ√t ≤ S ≤ St+kσ√t] ≥ 1-1/k2     (1) 
 
 Considering that the probability of an up move as 

“p” the probability of down move is “1-p”. Figure 1 shows 
the movement of the underlying and its associated 
probabilities. Considering arbitrage free pricing with risk-
free interest rate as “r” the equation (2) has to be satisfied 
where the expected value of the underlying on a future 
date should be equal to the continuously compounded 
value at risk-free rate. 

 
Figure-1. One step binomial tree. 

 
p(St+kσ√t) + (1-p) (St-kσ√t) = St*ert     (2) 
 
p = 0.5 { 1 + (St * (ert -1) / kσ√t ) }     (3) 
 
u = 1 + kσ√t / St       (4) 
    
d = 1 - kσ√t / St       (5) 
 
 The value of the underlying asset at step “n” 

attained due to “r” up moves and “n-r” down moves is 
given by equation (6). The corresponding nodal 
probability is given by equation (7). 

 
St+n(r) = Sturd(n-r)       (6) 
 
P(St+n(r)) =  (n!/(r!*(n-r)!) pr (1-p)n-r     (7) 
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Once the decision tree is constructed the price of the 
option is determined by calculating the pay-off at the leaf 
nodes of the tree. The pay-off for call and put options are 
given in equations (8) and (9) respectively. 

 
Pc=  max (0, S – Sk)       (8) 
 
Pp=  max (0,Sk – S )       (9) 

 
 

The call option premium is calculated by using 
equation (10). 

 
C = p*(max (0, Stu- Sk)) + (1-p)*(max(0, Std - Sk)) * e-rt    (10) 

 
Similarly the put option premium is calculated by using 

equation (11). 
 
P = p*(max (0, Sk - Stu))+ (1-p)*(max(0, Sk  - Std)) * e-rt    (11) 

 
Thus the value of the call/put option is the discounted 

value of a weighted average of the expiration date value of 
the call.  

 
2.1 Data model  

The data required for predicting the option price for 
various strike prices on a particular underlying are the 
underlying time series to calculate the volatility (σ), the 
data related to options traded on the underlying at a 
particular strike and maturity and the risk free rate of 
interest. The schema of respective data tables is given in 
Tables-1, 2 and 3.  

 
Table-1. Underlying time series. 

S. No. Attributes 
1 Underlying Symbol  
2 End Of Day Underlying Price 
3 Date 

 
Table-2. Option data. 

S. No. Attributes 
1 Underlying  Symbol  
2 Option Type 
3 Strike Price(Sk) 
4 Maturity(t) in months 
5 Option Premium 
6 Current Underlying Price(St ) 

 
Table-3. Interest rate. 

S. No. Attributes 
1 Currency  Symbol  
2 Time Period 
3 Interest Rate (r) 

 
From the underlying time series, the daily returns are 

calculated using the differences in the historical end of day 
underlying price between two successive dates i.e., (St+1- 
St ). The returns over a period of latest 252 trading days is 
used to calculate the annual volatility(σ) of the underlying 

which is used in building the underlying binomial decision 
tree. 

The option data is used to train and test the proposed 
model for option pricing that uses the binomial decision 
tree built using the data from tables 1, 2 and 3 along with 
other input parameters as mentioned below. 

 
1. Current Underlying Price 
2. Volatility 
3. Interest Rate 
4. Number of Steps 
5. Option Maturity 
6. Confidence 
 

3. MODEL TRAINING AND TESTING  
 At any point of time the parameters that are used 

in option pricing are directly observed from the market 
except the volatility. The volatility depends on the 
historical time series that is used to calculate the returns. It 
is observed in the real world that the volatility used in 
pricing the options of various moneyness on the same 
underlying and same maturity varies. Hence a 
methodology to calculate the volatility based on the 
moneyness has to be established so that the prices 
calculated using the model matches the market prices. The 
methodology proposed fits a linear equation to calculate 
the confidence (1-1/k2) to be used in the construction of 
binomial decision tree that minimizes the error between 
the observed market price and the model predicted price. 
The value of “k” that is obtained from calculated 
confidence is a multiplying factor for historical volatility 
converting it into implied volatility. Various clustering 
algorithms [12] and a comparison of the same have been 
presented by Osma Abu Abbas [17]. The proposed 
clustering algorithm forms clusters based on moneyness 
bounds.  The curve fitting is done for each cluster of 
options, clustered based on the moneyness and the MSE in 
each case is calculated. 
 
3.1 Clustering and curve fitting algorithm 
1. Collect all options that have same maturity, option 

type, and underlying and different strike price. 
2. Calculate the moneyness using the formula St /Sk 
3. Compute 5 clusters based on the below conditions 
a. Cluster-1 if (St /Sk< 0.85 ) 
b. Cluster-2 if (0.85 ≤St /Sk< 0.95 ) 
c. Cluster-3 if (0.95 ≤St /Sk< 1.05 ) 
d. Cluster-4 if (1.05 ≤St /Sk< 1.15 ) 
e. Cluster-5 if (1.15 ≤St /Sk ) 

 
4. Within each cluster pick the maximum, minimum and 

median strike prices 
5. Compute the value confidence (1-1/k2) and implied 

volatility that needs to be used in the binomial 
decision tree and Black-Scholes model respectively 
for the strike prices obtained in the above step so that 
the option price calculated using the binomial 
decision tree and Black-Scholes model matches the 
observed price. 
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6. Fit a linear equation using the values of (strike price, 
1-1/k2) and (strike price, implied volatility) taking the 
pairs of (median, maximum)and (median, minimum) 
and use them to calculate the confidence and implied 
volatility that needs to be used for strikes on either 
side of the median respectively.  

7. For any new strike price for which the option price 
has to be calculated, compute the moneyness and 
associate the moneyness to a cluster as defined in step 
3. Compare the moneyness with the moneyness of the 
median of a cluster and use one of the linear equations 
that defines the confidence/implied volatility on either 
sides of the median based on whether the moneyness 
is less than or greater than the median moneyness. 

 
The model is trained using the put option data of Index 

option on S&PCNX Nifty. The data for put options 
expiring on April 24th with one and two month maturity 
period i.e with March 24th and February 24th as start date 
respectively are taken for training and cross validation. 
The MSE on the predicted values using test data is 
calculated using equation (12). 

 
    N  

MSE = 1/N Σ  (observationj - predictionj)2    (12)          
         j=0                                 

 
The cross-validation (CV) accuracy is measured in 

terms of mean square error (MSE).  
 

3.2 Curve fitting example 
 The closing value of Nifty on 24th March 2014 is 

6583.5. The median strike price in the cluster-3 composing 
of at-the-money options is 6600. The confidence which 
matches the corresponding option price of 91.3 is 95.98. 
Similarly for option with strike price of 6800 the 
confidence that matches the corresponding option price of 
196.35 is 94.61. Therefore equation (13) governs the 
confidence for a given strike price greater than median 
strike price of 6600.. Similarly equation (14) gives the 
implied volatility to be used in the Black-Scholes model. 

 
Confidence = 95.98+m*(Strike – 6600)    (13) 
 
Where  
  
m = (94.61-95.98)/ (6800-6600) 
 
Implied    = 14.47+m*(Strike – 6600)    (14) 
 
Volatility 
 
Where  
 m = (12.49-14.47)/ (6800-6600) 
 
For strike prices less than 6600 the confidence and 

implied volatility are given by equation (15) and (16) 
respectively. 

 

Confidence = 95.98+m*(Strike – 6600)     (15) 
 
Where  
 m = (96.86-95.98)/ (6400-6600) 
 
Implied    = 14.47+m*(Strike – 6600)      (16) 
Volatility 
 
Where  
 m = (16.45-14.47)/ (6400-6600) 
 
Equations (13) and (15) gives the confidence that have 

been  used in building the binomial decision tree to get the 
option price for strike prices on either side of the median. 
Equations (14) and (16) give the implied volatility to be 
used in the Black-Scholes model to obtain option price.  

 
3.3 Model testing 

An option pricing model that follows rational pricing 
should satisfy the principles given below: 

 
1. Arbitrage free pricing. An option pricing model is 

said to be arbitrage free if it satisfies the put-call 
parity for which the equation below is satisfied on 
non-dividend paying stock. 

 
C + Sk* e-rt= P + St 

 
Where  
 
C = Call Option Price 
P = Put Option Price 
St = Underlying Price 
Sk = Strike Price 
r = Risk free rate 
t = Time to maturity 
 

2. The call/put option price should increase with 
increase in confidence/ volatility. 

3. The price of the call option decreases with increase 
in strike price. 

4. The price of a put option increases with decrease in 
strike price 

5. The price of a call option increases with increase in 
value of the underlying 

6. The price of a put option decreases with increase in 
value of the underlying. 

7. The price of a call option increases with increase of 
interest rate. 

8. The price of a put option increases with decrease of 
interest rate. 

9. The price of a call/put option increases with 
increase in maturity. 

 
 The results satisfying the principles 2 to 9 are 

presented in Figures-2 to 6. The adherence to the principle 
1 is shown in Table-4. 
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Figure-2. Underlying Vs Premium. 

 
Figure-3. Strike Price Vs Premium. 

 

 
Figure-4.Volatility Vs Premium. 

 

 

Figure-5. Maturity Vs Premium. 
 

 
Figure-6. Interest Rate Vs Premium. 

 

Table-4. Put Call Parity for Sk = 5000, r = 6% , t 
=1month. 
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4800 027.27 202.33 5002.3 5002.3 

4900 081.96 157.02 5057.0 5057.0 

5000 136.84 111.90 5111.9 5111.9 

5100 194.46 066.99 5169.5 5167.0 
5200 247.23 022.28 5222.3 5222.3 

 
4. RESULTS AND CONCLUSIONS 

 The proposed model and the Black-Scholes 
model are trained using the clustering and curve fitting 
algorithm to obtain the confidence in case of proposed 
model and implied volatility in case of Black-Scholes 
model for corresponding strike prices. The models are 
cross-validated for strike prices other than the ones used in 
training the models on the same date. The MSE for the 
proposed model and Black-Scholes model is calculated 
using equation (12). It is observed that the MSE with the 
proposed model is less than the MSE of Black-Scholes 
model. The MSE between the option prices obtained using 
the Black-Scholes model and the proposed model is given 
in Tables-5 and 6. 

 
Table-5. Mean Square Error Vs Model 

 
Cluster 

 
MSE proposed 

model 
MSE 

Black-Scholes 
1 00.09 00.11 
2 00.03 00.06 
3 35.47 36.45 
4 00.02 00.06 
5 00.04 00.07

 
Table-6. Mean Square Error Vs Maturity. 

Maturity 
period in 
months 

MSE proposed 
model 

MSE 
Black-Scholes 

1 35.47 36.45 
2 17.35 60.66 
3 15.25 77.54 

 
 It is observed that the MSE of option prices 

obtained using the novel proposed model is less than the 
MSE obtained using Black-Scholes model. Also the 
proposed model can be used to price even European, 
American and Bermudian options compared to Black-
Scholes model which can price only European options. 
Unlike the model free approaches, the proposed model 
satisfies the principles of rational pricing and obeys all the 
principles of the finance theory and also can be calibrated 
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to the real time data using the proposed clustering 
algorithm there by making it a tool to calculate the option 
price for various strikes that match the market prices. The 
proposed model and the training algorithm are simple to 
understand and give a decision tree that depicts various 
paths that the terminal price can take. It is observed that 
while pricing options and the confidence used in building 
the binomial decision tree has to be adjusted such that the 
strike price falls between the maximum and minimum 
values that the underlying can take, otherwise the price of 
the option becomes zero as it is assumed that the scenario 
doesn’t occur. Hence as the strike price moves towards 
zero or infinity, the confidence should be increased so that 
the strike price falls between the maximum and minimum 
values that the underlying can take. Hence the confidence 
rather being constant takes the shape of smile. This 
explains the reason for volatility smile as the strike price 
of the options move away from the current price of the 
underlying.  
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