
 VOL. 10, NO. 5, MARCH 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2047

EVALUATING METRICS AT CLASS AND METHOD LEVEL FOR JAVA
PROGRAMS USING KNOWLEDGE BASED SYSTEMS

Umamaheswari E.1, N. Bhalaji2 and D. K. Ghosh3

1SCSE, VIT Chennai Campus, Chennai, India
2SSN College of Engineering, Kalavakkam, India

3V.S.B Engineering College, Karur, India

ABSTRACT

Software metrics is considered to be the most important tool in software process management. It is also measure
of property for a specific piece of software [1]. Metrics also serves as a resource to anticipate and avoid the problems.
Since there are only few measurement tools available, the need for metrics tool in testing the software is increasing.
Although many metrics have been proposed by researchers they are used in isolation or ignored because they are not
focused much. Therefore, an open source tool called “JAM (java metrics)” is to be developed to calculate various metrics
and to display the metrics in graphical representation for java code. This learning tool allows software engineers to
measure their code and to improve their software quality. It calculates the metrics at class level and method level. This tool
also provides some basic information about the metrics calculated.

Keywords: software metrics tool, JAVA, class level metrics.

1. INTRODUCTION

Software metrics is a standard to measure
software or its specification. In recent years, quality of
software is considered as a very important criterion. In
order to improve the quality, we go with metrics
calculation. Once the metrics is calculated we can alter the
program accordingly. Metrics also helps to compare the
program and check their performance. The software
metrics are useful in representing the present state of the
software and assist to associate and forecast the current
accomplishment of software applications [8]. Metrics
calculation is essential factor to obtain software with high
quality and low testing and maintenance cost. Metrics can
be used in different phases of software development life
cycle like requirements phase, number of files, number of
data elements, number of processes at specification phase,
number of modules, fault statistics, module cohesion,
module coupling etc. at design phase, total number of test
cases, number of tests resulting in failure, total number of
faults at implementation and integration phase, measure of
effectiveness of inspections, measure of fault density at
maintenance and inspection phase. The main objective of
this paper is to evaluate different metrics at method and
class level using a tool.

2. WHY USE TOOLS?

In manual calculation we may omit some value or
interpret the data incorrectly. Using a tool means that the
assessment is more repeatable and consistently calculated
as the preconceived notion is removed. Example:
assessing cyclomatic complexity or monitoring tools to
assess the system behavior, static analysis tool for nesting
the components. It helps to reduce human errors. Large
calculations can be done easily. It displays the output in
click of a button saving time. When we use a tool we can
view the information easily by representing them in any
graphical format as information presented in graphical
format is much easier for human mind to interpret. In this

project, a tool will be developed to calculate the metrics at
class and method level and display the result in graphical
format.

3. DIFFERENCE BETWEEN MANUAL AND
AUTOMATED CALCULATION

The work humans do manually in calculating a
metric will consume more time than the way we do it
using an automated tool. For example, if we want to
calculate Cyclomatic complexity manually, we have to
draw flow charts and should count edges, nodes etc. Then
by substituting in the formulae we get the result. But, if we
measure the same complexity using the automated tool, we
just need to provide the program and we will get the result
in very less time compared to manual calculation.
Mistakes can be reduced by using an automated tool and
the use of automated tools to calculate metrics requires
less knowledge and effort.

4. WHAT ARE WE MEASURING?

This tool calculates metrics based on the class
level and method level. Metrics like number of lines,
number of statements, number of branches, number of
comments, maximum depth, percentage of branches,
percentage of comments Cyclomatic complexity, coupling,
depth of inheritance tree. In order to measure accurately,
first, we have to know what we are measuring. We need
measurement in all aspects of a software development. For
example, in software development life cycle, we use
metrics in all phases like measuring the requirements
which changes in requirement phase, measuring the
number of files, cost, duration and so on in specification
phase, number of modules, Cyclomatic complexity in
design phase, total number of test cases and number of
tests resulting in failure in implementation and integration
phase and faults detected in a page in maintenance phase.

5. METRICS DESCRIPTION

 VOL. 10, NO. 5, MARCH 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2048

There are around 200 different metrics available
[4] and metrics which this tool calculates are explained
below with respect to the formula used to calculate them,

5.1 Lines of code

This metrics calculates the complexity of the
software based on the length of the program. It is basis for
measuring programmer productivity. i.e. higher the lines
of code higher is the possibility of bug density. It counts
the total lines in code including the blank space and
comment lines. It gives a better assessment of project
quality.

5.2 Number of comments

This metrics gives the number of single and
multiline comments present in the source code. A good
program must consist of 30%-75% of comments. If it is
less than 30% then the program is considered as a poorly
explained program and if comments exists more than 75%
then the program file is considered as a document not a
program.

5.3 Number of statements

This metric calculates the number of statements
in the program. It is referred as a more robust method.
This metric counts statement like break, continue, do,
explicit constructor call, explicit super constructor call,
for, if, return, switch, throw, try, and catch, finally, while,
assignments. Method calls, pre/post increment/decrement.

5.4 Cyclomatic complexity

Code complexity associates with the defect rate
and robustness of the application program. Code with
good complexity helps in easier understanding and easier
maintenance. It is used to measure the linearly
independent path in a program. Cyclomatic complexity
increases with number of decision path and loops. If the
complexity is greater then there is more execution path
which makes it difficult to understand and test. It is a
testability metrics using which we can access the number
of test case needed to test the program or module.
Cyclomatic complexity=Number of Decision Points+1

In this method, the code will be first converted
into flow graph and then with the help of that flow graph
complexity will be found using the formulae.

E=Number of edges of the graph and N=Number
of nodes of the graph

Or we can use the formula; Where P is number of
predicate nodes.

Figure-1. Code snippet.

The above snippet is converted into the flow
graph as shown below,

 VOL. 10, NO. 5, MARCH 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2049

Figure-2. Flow graph.

After converting into flow graph, the Cyclomatic
complexity is calculated as shown below.

Figure-3. Metrics calculation.

If complexity is from
1 to 10 - The code is well written with high

testability and low maintenance cost.
10-19 - The code is moderately complex with

medium testability and medium maintenance cost or
effort.

20-40 - The code is very complex with low
testability and high maintenance cost or.

>40 - The code is not testable and any amount of
money or effort to maintain the code may not be adequate.

Figure-4. Cyclomatic complexity.

Cyclomatic complexity is referred as V(G). The
above diagram clearly shows that the shaded region is
considered to be more error prone region. Hence more the
complexity, more the possibilities for error occurrence.

Algorithm for cyclomatic complexity

Method-1

 VOL. 10, NO. 5, MARCH 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2050

Method-2

Method 3:

Method 4:

5.5 CK metrics

CK metrics was developed by Chidamber and
Kemerer. CK metrics is used to measure the design of
object oriented programs.

CK metrics are better predictors than “the
traditional” code metrics, which can only be collected at a
later phase of the software development process [9]. The 6
metrics which comes under CK metrics suite are explained
below,

Weighted method per class [WMC]: This
metrics count the number of methods in for class. It helps
to evaluate the time and effort needed to construct and
maintain a class. The class which contains large number of
methods is more application specific and hence it limits
the possibility of reuse.
WMC = i

C1 is a class containing methods m1…m2 and complexity
c1...c2 . [12]

Depth of inheritance tree (DIT): This metrics
counts the maximum number of steps from node to root of
the tree. Complexity depends upon the number of steps
(i.e. more the number of methods then more the
complexity). If the class is deeper in the hierarchy then it
is more complex to predict its behavior.

Number of children (NOC): This metrics counts
of number of immediate subclasses. A class with many
children requires more testing [7]. Larger the number of
children, greater is the chance of misusing the subclasses.

Coupling between objects (CBO): This metrics
calculates the number of other classes a class has coupled.
Smaller the CBO value, higher the modularity and
encapsulation. This coupling can occur via return types,
field accesses, inheritance, arguments, method calls and
exceptions.

Lack of cohesion of methods (LCOM): This
metrics measures the divergence of methods in a class by
means of instanced variables. This metrics will consider
all the pairs of the class methods. Low cohesion increases
the complexity and hence it is preferred to have a high
ratio of cohesion. It does not provide encapsulation but
helps in identifying low quality design.

Response for class (RFC): This metrics refers to
set of methods which can be potentially executed with
respect to the received message by object of that particular
class [9]. It can also be defined as the number of methods
in that class in addition to the number of methods called
by those methods. Testing and maintenance becomes a
complex process, if large numbers of methods are invoked
from a class.

This tool calculates Weighted Methods per Class,
Depth of Inheritance tree and Number of Children from
the CK Metrics suite.

 VOL. 10, NO. 5, MARCH 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2051

Table-1. Criteria level values.

Cost Experience
Level Benefits Credibility Validation

Relevance to
reliability Level Value Level Value

W 1.0 W 1.0 A 1.0 1.0 1.0 1

M 0.93 M 0.541 B 0.92 0.86 0.845 0.89

Q 0.7 L 0.23 C 0.59 0.65 0.449 0.789

Y 0.31 E 0.149 D 0.34 0.62 0.253 0.748

T 0 N 0 E 0.12 0.349 0 0.22

 F 0 0 0

6. MODULES DESCRIPTION

6.1 User interface

User interface defines a tool. The user interface
should be easy to use, efficient and should provide the
result in understandable format. The user interface of this
tool contains two buttons in the home screen, namely find
metrics and details.

Figure-5. Home page.

Find metrics button displays the file chooser
dialog box as shown in Figure-6, let us to choose the java
file for which metrics is to be calculated .

Figure-6. File chooser.

Details button displays the list of metrics, from
which the user can select a particular metrics name button
for which details will be displayed as shown in Figure-7.

Figure-7. Details of selected metrics.

6.2 Metrics calculation

This module calculates various metrics at method
and class level based on formulae and integrate it with the
user interface.

Figure-8. Calculated metrics values.

In Figure-8, the calculated metrics value of the
program is displayed.

6.3 Chart generation

In this module pie chart will be generated for the
calculated values of percentage of comments and
percentage of branches.
In Figure-9, black color represents the percentage of
comment lines in the given program and blue color
represents the remaining lines of code.

 VOL. 10, NO. 5, MARCH 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2052

Figure-9. Percentage of comments.

In Figure-10, red color represents the percentage
of branches in the given code and blue color represents
the remaining lines of code.

Figure-10. Percentage of branches.

The graphical representation helps us to
understand the code better.

7. APPLICATION OF THIS TOOL

The purpose of using this tool is to save the user
time and to improve their quality of software. This method
will be used in software debugging, estimating cost,
quality assurance testing, performance optimization of the
software, and best personnel task assignments [6].
Software complexity measures are used to indicate
whether the software has desirable attributes such as
understandability, testability, maintainability and
reliability. This tool will be widely used in java
applications that require output to be displayed in
graphical format. This tool also provides the basic
information about the metrics being calculated. Hence the
purpose of this tool is not only to calculate metrics but also
to provide information about the metrics in order to help
the user in understanding it still better.

8. CONCLUSION AND FUTURE WORK

This paper is discussed about the calculation of
metrics at class and method level for the java program. In
this tool, we display the output in graphical format to

eliminate code smells and to maintain the threshold value.
The source code of this software is freely accessible for
everyone to download, develop and modify. This tool does
not calculate metrics at system and package level which
can be developed in future.

REFERENCES

[1] E.Umamaheswari, D.K. Ghosh. 2013. Developing a

Reliability Prediction System Using Multivariate
Analysis Theory on Software Quality Metrics, Vol. 3,
Issue 1, IJETCSE.

[2] Radulescu. 2009. Open Source Tools to measure
software complexity, IEEE.

[3] Tuhonglei. 2009. The Research on Software Metrics
and Software Complexity Metrics, IEEE.

[4] Kaushal Bhatt, VinitTarey, Pushpraj Patel. 2012.
Analysis of Source Lines of Code (SLOC) Metric,
IEEE.

[5] Rüdiger Lincke, Jonas Lundberg and WelfLöwe,
Comparing Software Metrics Tools, IEEE.

[6] Wikipedia
http://en.wikipedia.org/wiki/Software_metric.

[7] ArtiChhikara and R.S.Chhillar, Analyzing the
complexity of java programs using object oriented
software metrics.

[8] Meyer B, Oriol M and Schoeller B. 2009. Software
engineering: Lecture 17-18: estimation techniques and
software metrics, Chair of software Engineering.

[9] Chidamber-Kemerer (ck) and Lorenze-kidd (lk)
metrics to assess java programs, Jubair J. Al-Ja'afer
and KhairEddin M. Sabri

[10] Software Quality metrics,zijian Yuan

[11] Hamer, P. G. and Frewin, G. D. 1982. M. H.
Halstead's Software Science - A Critical Examination,
In: Proceedings of the 6th International Conference on
Software Engineering, Tokyo, Japan, pp. 197-206.

[12] 2001. An Overview of Object-Oriented Design
Metrics, Daniel Rodriguez Rachel Harrison March.

