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ABSTRACT 
 Transmission of private information over the public channels requires security or data protection against 
unauthorized access. Elliptic Curve Cryptography (ECC) is one of the efficient encryption technique can be used to secure 
the private data. High level security requirement of Restricted Services of Indian Regional Navigation Satellite System 
(IRNSS) to transmit the navigation data through wireless channel, can be achieved by ECC with minimum key size.ECC is 
based on Elliptic Curve Scalar Multiplication (ECSM) which is the process of multiplying a point on elliptic curve by a 
scalar value. The operations has been performed on National Institute of Standards and Technology (NIST) recommended 
elliptic curves over binary field E (2233).The performance of ECC algorithm is influenced by the implementation of elliptic 
curve finite field operations. Therefore, field operations play vital role in ECC. Among finite field operations such as 
squaring, multiplication and inversion, multiplication is very important in cryptosystem. Karatsuba algorithm with 
polynomial multiplication is more efficient for large numbers. The encryption algorithm, point operations and field 
operations have been implemented in Xilinx Virtex-5 FPGA board.  
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1. INTRODUCTION 
 Elliptic Curve Cryptography is an effective public 
key cryptography or asymmetric key cryptography. It uses 
elliptic curves for encryption and decryption. The points 
on elliptic curve satisfy the properties of finite field 
elements. Thus the set of points on elliptic curve can be 
considered as a finite field. In ECC, the cryptographic 
operations are performed over this finite field. With ECC 
high level of security can be achieved even for smallest 
key size [1]. The encryption is performed after encoding 
the message to the points in the elliptic curve finite field. 
Elliptic curve encryption can be implemented efficiently in 
two different finite fields. One is prime field E(p) and 
another one is binary field E(2m) [2]    and [3]. 
 The message is encrypted to a point in elliptic 
curve finite field by mapping the message to the points in 
the same elliptic curve finite field. The encryption is 
performed by Elliptic Curve Scalar Multiplication 
(ECSM) or point multiplication. ECSM multiplies a scalar 
value with a point in an elliptic curve finite field to obtain 
another point in the same field. ECSM can be performed 
by repeated point addition and point doubling. It is called 
“Add and Double Method” [4]. 
 Many hardware implementations of ECC have 
been proposed to achieve optimized efficient encryption. 
A high                    performance ECC processor for 
general curves over GF (p) based on systolic arithmetic 
unit has been proposed in [5].  
 The pipeline stalls are avoided by delaying the 
conditional operations and the communication mismatch is 
avoided by distributing the register to individual PE 
(Processing Elements). Elliptic curve processor can be 
used in RFID to provide privacy, authentication and 
protection against tracking of RFID tags. Due to the 
property of high security for smallest key size ECC can be 
used in RFID [6]. A hardware design using Motgomery 
scalar multiplication based on “add and double method” 

has been presented in [7]. An elliptic crypto processor has 
been implemented over 256-bit prime field with minimum 
clock cycles using new unified modular inversion 
algorithm in [8]. 
 There are various standard bodies leading to the 
implementation of security protocols for the industrial 
applications. Some of the organizations involved in 
standard activities are Internet Engineering Task Force 
(IETF), American Bankers Association, International 
Telecommunication Union, IEEE and National Institute of 
Standards and technology (NIST) [9]. There are ten NIST 
-recommended elliptic curves. Among them five is for 
prime field and another five is for binary field. The 
processor which supports all five NIST-recommended 
primes of sizes 192, 224, 256, 384 and 521 bits has been 
designed in [10]. The characteristics of NIST-
recommended prime fields can be analyzed by its software 
implementation [11]. 
 ECC can also be used to encrypt the image 
efficiently. There are many research have been run for 
image encryption. Image can be encrypted by mapping the 
image pixels into the points on the elliptic curve. Even text 
can also be encrypted efficiently by converting it into 
image [12]. Aim of cryptography is to achieve secured 
communication through insecure channel. Image can be 
securely transmitted using ECC over finite field [13]. 
 In different fields, ECC can be used for secured 
data communication. Combination of ECC and AMP 
(Authentication via Memorable Password) can produce 
stronger authentication protocol [14].  ECC can be used to 
provide high authentication and security to the messages 
with small computation time [15]. The large number of 
security vulnerabilities in Wireless Sensor Networks 
(WSN) can be avoided by ECC [16]. 
 Multiplication is the basic building block of ECC 
systems. In practice, there are different algorithms 
employed for multiplication [17-20]. With the usage of 
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Hybrid Karatsuba multiplier high speed and optimized 
design can be achieved. 
 
2. ELLPTIC CURVE CRYPTOGRAPHY 
 The mathematical operations in ECC are based 
on the equation of elliptic curve. 

      
2 3y = x + ax + b    (1) 

For different values of a and b different elliptic curves can 
be obtained. The values of a and b should satisfy the 
following condition, 
 

       
3 24a 27 0b       (2) 

 

If the condition is not satisfied, curve will be non smooth 
and which is called singular curve. The non smooth curve 
is not safe for cryptography. 
 
a) Layers of ECC 
 Figure-1 shows the layers of ECC which include 
finite field arithmetic, point addition, point doubling, point 
multiplication and protocols. The operations in the top 
layers are influenced by the operations in the lower layers. 
 

 

Protocols 

Point Multiplication 

Elliptic curve addition and 
doubling 

Finite field arithmetic 

 

Figure-1.  Layers of ECC. 
  

b) Protocols 
 The first layer of ECC is protocols which include 
key generation and Exchange protocol, encryption 
algorithm, decryption algorithm, signature generation and 
signature verification. 

c) Point multiplication 
 Point multiplication or Elliptic Curve Scalar 
Multiplication (ECSM) is the process of multiplying a 
scalar value (k) with the point on the elliptic curve (P) to 
obtain another point (Q) on the same curve.  

  Q = kP        (3) 

 Point multiplication can be performed by two 
fundamental elliptic curve operations. 

Point Addition (L = J + K) 

Point Doubling (L = 2J) 

It uses point addition and point doubling repeatedly so it is 
called “double and add” method. 

If  k = 47 then kP = 23P = 2(2(2(2(2P)+P)+P)+P)+P 

 
d) Point addition 
 Figure-2 explains the point addition which is the 
process of adding two points in the elliptic curve finite 
field to obtain the third point in the same field. Point 
addition of J (xJ , yJ) and  K (xK , yK) gives a third point L 
(xL , yL).  

mod f(x) divider 

Squarer

mod f(x) multiplier 

yJ yK xJ xK 
yJ xL

xL 

s 

s 

a 

yL

xL

yJ 

Figure-2. Point addition. 

 
e) Point doubling 
 Figure-3 explains point doubling which is the 
process of adding a point in the elliptic curve finite field 
itself to obtain another point in the same field. Point 
double of J (xJ , yJ) gives another point          L (xL , yL). 

 

Divider

Squarer 

Multiplier 

Squarer 

yJ xJ

xJ

s

a

1 

xL 

xL 

yL  

Figure-3.  Point doubling. 
 
 

f) Finite field arithmetic 
 Cryptographic operations on real numbers are not 
fast and less accurate due to truncation error. To make the 
cryptographic operations more efficient and accurate two 
finite fields are used. 
 

Prime field E(p) 

Binary field E(2m) 

If a value exceeds the limits then it wrapped around to 
finite value by modulo reduction by prime p or irreducible 
polynomial. 
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3. PROTOCOLS 

 
A. Key generation and exchange 
 A public key is a point or element in the elliptic 
curve finite field and the private key is a random number. 
Public key is the multiplication of private key and 
generator point ‘G’. The key generation and distribution is 
explained in Figure-4. 
Steps in key generation are, 

 Initially the curve C is selected (i.e. the selection 
of a, b and p) by A and it is sent to B. 

 A and B generate points in elliptic curve finite 
field. 

  A decides its secret key, nA, 
curve C and point G. A 

exchanges C and G. 

B decides its secret key, nB, 
and receives public curve C 

and public point G. 

A generates and exchanges 

its public key PA= nAG 

B generates and exchanges 

its public key PB= nBG 

C, G 

PA 

PB  
Figure-4.  Key generation and exchange. 

 
 A selects generator point G which presents in the 

generated elliptic curve finite field. A sends 
generator point G to receiver B. 

 Using generator point G and private keys (nA and 
nB), A and B generates their public keys 
separately. 

 The public keys are exchanged between A and B. 

B. Encryption and decryption 

 To encrypt plain text into cipher text using ECC 
the plain text M is encoded into the points PM in the finite 
set of points EP (a,b). A selects a random integer k and 
computes the cipher text as a pair of points Pc using public 
key of B as shown in Figure-5. 
 

 c M BP =[kG,P +kP ]                   (4) 
 

where PB is public key of B.  
After receiving the cipher text PC, b Multiplies the first 
point with its private key nB and subtracts the result from 
the second point. 
 

M B B M B B M(P + kP ) - n kG = P + kn G - n kG = P      (5) 
 

PM is the point on elliptic curve to the corresponding plain 
text message M. 

k G 

k PB 

PM 

C1 C2 
 

 

Figure-5.  Encryption. 
 

4. FINITE FIELD ARITHMETIC 
 Implementation of ECC over binary field is more 
efficient than prime field if the chosen irreducible 
polynomial is trinomial or pentanomial.  
 
a) Squaring unit 
 The squaring operation on binary field is as easy 
as addition. The square of the polynomial a(x)  GF (2m) 
is given by 
 

 

m-1
2 2i

i
i=0

a(x) = a x  mod p(x)
                  (6) 

 

The squaring spreads the input bits by inserting zeroes in 
between two bits as shown in Figure-6. 

Squaring operation 

Modulo operation 

a (x)2

a (x)

 
 

Figure-6.  Squaring unit. 
 

b) Hybrid karatsuba multiplication 
 For high performance crypto processor, a 
multiplier called Karatsuba multiplier with small delay is 
suited. 233 bit multiplication is implemented using the 
hybrid of simple and general karatsuba multiplication. The 
hierarchy of implementation is shown in Figure-7. 
 The larger multiplications are performed by the 
smaller multiplication.  
 

233 bit* 

Two 117 bit*, one 116 bit* 

Five 58 bit*, Four 59 bit* 

Nineteen 29 bit*, Eight 30 bit* 

Nineteen 14 bit*, Sixty two 15 bit* 

Simple Karatsuba 
Multipliers 

General Karatsuba 
Multipliers 

 
 

Figure-7.  Hybrid Karatsuba multiplication. 
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c) Modulo reduction 
 In finite field operation, modulo reduction is 
required to make the result of squaring and multiplication 
within the finite field. In binary field the reduction is 
performed by irreducible polynomial as illustrated in 
Figure-8. Trinomial or pentanomial makes the reduction 
easier. 

  0 74 232 464 

 
 

Figure-8.  Modulo reduction. 
 
The modulo reduction shown in figure is for the trinomial 
x233+x74+1. 
 
d) Multiplicative inverse 

 Itoh – Tsujii Multiplicative Inverse (ITMI) 
algorithm based on Fermat’s Little theorem can be used 
for the efficient implementation of inversing component. 
 a GF(2m), then inverse of a is given by  
 

 
m m-1-1 2 -2 2 -1 2a = a = (a )       (7) 

 

 
k2 -1 m

kβ (a) = a GF(2 )      (8) 
 

 -1 2
m-1a = [β (a)]                     (9)

    
Number of required multiplications is reduced by addition 
chain. Addition chain for sequence U = (u0, u1, u2, . . .ur) 
satisfies, 

1) u0 = 1 
2) ur = n (n  N) 
3) ui = uj  + uk  for k  j < i  

Inverse of a GF (2233) is -1 2
232a = [β (a)]  where 

2322 -1
232β (a) = a . Addition chain for 232 is U = (1 2 3 6 7 

14 28 29 58 116 232). Inversion has been done in 10 steps 
with 231 squaring and 10 multiplications. 

5. RESULTS AND DISCUSSIONS 

 Elliptic curve cryptographic and the field 
operations have been programmed using verilog, 
synthesised in ISE Design Suite 14.6. Simulations have 
been done by ISim Simulator and the designs have been 
implemented in Virtex-5 FPGA board. 

a) Point addition 
 Point addition is the process of adding two points 
in the elliptic curve finite field to obtain another point on 
the same field. Point addition is programmed using verilog 
and its simulation result and RTL schematic are shown in 
Figure-9 & 10 respectively. 
 

 
 

Figure-9.  Simulation result of point addition. 
 

 
 

Figure-10.  RTL schematic of point addition. 
 

b) Point doubling 
 Point doubling is the process of adding a point in 
the elliptic curve finite field to itself to obtain another 
point on the same field. Point doubling is programmed 
using verilog and its simulation result and RTL schematic 
are shown in Figure-11 & 12, respectively.  
 

 
 

Figure-11.  Simulation result of point doubling. 
 

 
 

Figure-12.  RTL schematic of point doubling. 
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c) Point multiplication 
 It is the operation on which the security of elliptic 
curve cryptosystem relies on. It is more important in key 
generation and encryption. 
 

 
 

Figure-13.  Simulation result of point multiplication. 
 

 
 

Figure-14.  Simulation result of encryption. 
 

d) Karatsuba multiplier 
 For a 233 bit Hybrid Karatsuba multiplication 
algorithm the number of LUT slices utilized is only 17%, 
shown in Figure-16 and the maximum delay obtained is 
13.678ns on a Xilinx Vertex 5 FPGA.  

 The simulation of 233 bit Hybrid Karatsuba 
Multiplier is performed in ISim Simulator and it is shown 
in Figure-15 and its RTL schematic is shown in Figure-17. 
 

 
 

Figure-15.  Simulation result of Karatsuba multiplication. 
 

 
 

Figure-16.  LUT Utilization. 
 

 
 

Figure-17.  RTL schematic of Karatsuba multiplication. 
 

 The comparison of different multiplier designs 
based on estimated LUT slices utilization and delay is 
given in    TABLE I. The hybrid Karatsuba multiplier uses 
less LUT slices than other two designs but the delay is 
more than bit parallel FFM. 

 

Table-1. Comparison table. 
 

 LUT slices  Delay (ns) 
Massey Omura 
[20] 

127 % 15.91 

Bit parallel FFM 
based on KOM 
[19] 

39 % 7.68 

Hybrid Karatsuba 
multiplier

17 % 13 

 
6. CONCLUSIONS AND FUTURE WORK 
 

a) Conclusions 
 Elliptic Curve Cryptography is an efficient public 
key cryptography with minimum key size. The elliptic 
curve encryption has been implemented using Elliptic 
Curve Scalar Multiplication (ECSM). The finite field 
operations such as multiplication, squaring and inversion 
have been implemented in FPGA. The Hybrid Karatsuba 
multiplier combines the merits of the Simple and the 
General Karatsuba algorithms. This resulted in lesser 
hardware requirements on a FPGA but the delay is more. 
Delay can be reduced by bit parallel mechanism. The basic 
operations for ECSM and encryption are point addition 
and point doubling which have been implemented. ECSM 
and elliptic curve encryption algorithm have been 
implemented using point addition and point doubling. 
 Elliptic curve cryptographic operations have been 
programmed and synthesised in ISE Design Suite 14.6. 
Simulations have been done by ISim Simulator. The 
designs have been implemented in Virtex-5 FPGA board. 
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b) Future work 

 Future work is to make comparative analysis of 
different ECSM algorithms based on hardware utilization 
and optimizing ECC operations using Elliptic Curve 
Cryptographic algorithms and VLSI Techniques. 
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