
                                        VOL. 10, NO. 6, APRIL 2015                                                                                                                      ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
2378

COMMON RAIL DIESEL-ELECTRIC PROPULSION FOR SMALL 
BOATS AND YACHTS 

 
Luca Piancastelli, Leonardo Frizziero, Giampiero Donnici 

Department of Industrial Engineering, Alma Mater Studiorum University of Bologna, viale Risorgimento, Bologna, Italy 
E-Mail: leonardo.frizziero@unibo.it 

 
ABSTRACT 

The marine propulsion system is the heart of the ship. Its reliability will directly affect the safe navigation and 
operating costs of ship and its overall safety. The individuation of the best propulsive solution is one of the key 
technologies in marine field.  Focusing on the study of comprehensive reliability, this study analyses operation 
environments of the marine propulsion system firstly, and then evaluate the comprehensive reliability of the chosen marine 
propulsion system. According to the fault tree of the marine propulsion system, a CRDID (Common Rail Direct Injection 
Diesel) electric hybrid marine engine system is taken as an example The result shows that a new engine CRDID-hybrid 
system can be reliably installed on small boats and yachts. It is believed that the knowledge gained in this study will 
provide a theoretical reference for research on comprehensive reliability of hybrid marine propulsion systems. 
 
Keywords: diesel electric marine propulsion system, reliability, fault tree analysis, failure probability. 
 
INTRODUCTION 

The propulsion system reliability directly 
determines the safe navigation and operating costs of ship. 
The economy, space requirement, efficiency of propulsion 
and reliability are the most important parameters to the 
marine propulsion system. Generally a marine propulsion 
system includes following main parts: main engine, speed 
reducer, transmission shaft and propeller. The 
transmission shaft plays an important role in transferring 
the energy to the propeller. Its length and position is a 

large constraint in the maritime vehicle design. The faults 
of the marine propulsion system increase seriously, such 
as shaft system fracture, over worn of stern bearing, 
crankshaft failure of main engine (generally torsional 
vibration related), piston ring fracture (generally 
lubrication related), seal failure. A famous shipping 
insurance company in Switzerland has made an 
investigation to the fault accident claims of the ships from 
1998 to 2004 [1]. The compensation rate is shown in 
Table-1 [2]: 

 
Table-1. The statistical result of the marine fault accident claims of the ships which had 

taken service from 1998 to 2004 [2]. 
 

Compensation reason Failure frequency Cost (USD) Average cost (USD) 

Main engine 232 (41.6%) 69774.597 (46%) 300.623 

Manipulate gear 66 (12%) 15636.563(10.3%) 236.918 

Auxiliary diesel engine 120(21.5%) 27257.436(18%) 227.145 

Boiler 65(11.6%) 18128.065(12%) 279.047 

Propulsion shaft 63 (11.3%) 17798.483(12%) 282.275 

Others 12(0.02%) 2559.295(0.01%) 213.275 

Total 558 1551154 270.850 

 
As it can be seen from Table-1, transmission 

related failure amount to 41.6%+12%+11.3%=65% for a 
cost of 46%+10.3%+12%=68.3%. The transformation 
from a mechanical system to an electric one seems to be 
convenient, at least for small vessels, where the generator, 
battery, conversion and driver technology is widely 
available. The average marine gasoline engine runs for 
about 1,500 hours before needing a major overhaul (TBO). 
The average marine diesel engine will have a TBO of 
5000 hours under the same conditions. However, the 
number of hours that a marine engine runs is extremely 
dependent on the usage, the amount and quality of 
maintenance over the years. If frequently used and 

maintained the typical gasoline marine engine will run fine 
for the first 1, 000 hours. It is at this point that the engine 
starts to exhibit small problems. If these small problems 
aren't addressed properly, they can turn into major 
problems which may end engine life prematurely. 
Interestingly, an automobile engine usually runs almost 
twice as long (3, 000 hours) as your marine gasoline 
engine. The reason is that marine engines normally work 
under worse conditions than automobile ones. However, 
many gasoline engines that operate under the most 
atrocious conditions of salt air, damp bilges, intermittent 
operation, and long non-operating periods will certainly 
die early. This is the normal case for small boats, summer 
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yachts and launches, where intermitted, and “short run" 
use is the rule. Diesel engines are built to finer tolerances 
than are gasoline engines. They will accept much more 
abuse and often have a TBO of 10, 000 hours. This fact 
means that, theoretically, a well-maintained diesel may 
last the life of the boat. In fact the average recreational 
boater logs an average of 250 hours per year: the 10, 000 
hour diesel would last 40 years. From these considerations 
and from Table-1 it can be clearly seen that for small boats 
the well maintained diesel engine is not truly important for 
reliability calculations. On the contrary the transmission is. 
This fact is confirmed by the choice made by the Italian 
and German Navy for their newest traditional submarines 
that have single diesel propulsion. 

Although diesels can add considerable cost to a 
boat, they should be seriously considered because of their 
durability, economy of operation and safety concerns. 
Diesel fuel has a much higher flash point than gasoline 
and does not present the same threat of explosion that 
gasoline fumes carry. 
 
Operational conditions and installation 

Engines like to run long and steady. The shorter 
the running time between stops, the fewer the hours they 
will deliver before needing major repairs. The adverse 
operating conditions have a great deal to do with their 
longevity. Marine engine manufacturer recommend that 
engine compartments should be supplied with lots of dry, 
cool (15°C), clean air. As a rule of the thumb, the very 
minimum fresh air vent area (in square meters) for natural 
ventilation can be calculated by dividing engine 
horsepower by 5, 000. Automotive engines usually operate 
at a temperature of 90°C, for this reason they can resist to 
worse environmental condition than the maritime engine 
design. However, for corrosion resistance such high 
temperatures should be avoided. Air intake should be as 
cool as possible in order to obtain the best efficiency. 

The hybrid CRDID installation example: actual 
situation. The boat under consideration is a racing sailboat 
fitted with two inboard diesel engines. An APU (Auxiliary 
Power Unit), powered by an engine (Volvo Penta D1 30) 
with a displacement 1, 130cc, a dry mass of 157 kg and a 
maximum output power of 27HP@2800rpm is installed 
for electric power generation. The main propulsion engine 
is a Volvo Penta D2 75 with a displacement of 2, 200cc, a 
dry mass of 264 kg and a maximum output power of 
72HP@2700rpm. This engine can also work as an APU 
with its 1.4kW generator. The transmission to the 
propeller is of the stern drive (S-drive) type. A high 
capacity, maintenance free, lead battery complete the 

installation. Fuel consumption is 18 l/h for the main 
engine and 6.8 l/h for the APU. With the new proposal, as 
will be highlighted in the following, the reliability of the 
propulsion and power generation system will increase 
significantly, by an ambivalence of the tasks performed by 
the two engines.  
 
Issues identified  

The dry mass of 421 kg for the two engines 
appeared immediately noticeable. In fact, we find 
ourselves in front of a boat for extreme sport activity, 
where performance is required. Then a weight reduction is 
highly desirable. Also the fact that only one motor is 
intended for the propulsion does not guarantee a high 
reliability level. Even if the Volvo Penta D2-75 is an 
extremely reliable engine, accidental events during use are 
common and a failure of the unit may be caused by 
external factors. In this case the sailboat must rely to sail 
for docking. This practice may be not allowed in the 
desired port. 

In addition, the current position of the two 
combustion engines is quite close to the stern of the boat, 
even if this is not a particularly convenient installation 
point. With the new more compact and lightweight 
CRDID, it will be possible to lower the center of gravity 
and to advance it of a few inches. This fact will improve 
the navigability and the performances.  
 
New installation specifications 

It is estimated a possible reduction of total mass 
down about 250 kg with simplified installation being the 
propeller(s) powered by electric motor(s). The reliability 
in the complex should increase because each of the two 
combustion engines will be able to generate and amount of 
electrical power sufficient to drive the electric motor. The 
new CRDID engines should also have and higher 
efficiency and reduced emissions. The reduction of fuel 
tank capacity will also contribute to a further reduction in 
weight.  
 
CRDIDs available 

Several CRDID conversions for the marine 
application are available on the market; however for this 
specific application a "direct conversion" was preferred. A 
few CRDID from the automotive market are known to the 
authors, their performances are summarized in Table-1. 
These engines have been originally converted to aircraft 
use. Of these conversions only the modifications on the 
engines and the new FADEC are kept, being in this case 
the direct transmission to the propeller unnecessary. 
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Table-2. CRDIDs from the automotive field. 
 

Engine 
Automotive 
power (HP) 

Naked 
mass (kg) 

Ultimate 
power (HP) 

Crankcase 
BSFC 

gr/HPh 
(Euro 0) 

Audi V12tdi 500@4,000rpm 220 900@5,200rpm CGI 148 

AudiV8tdi 327@4,000rpm 195 600@5,200rpm CGI 148 

Fiat 2000jtd 190@4,500rpm 114 250@5,200rpm Cast Iron 152 

Peugeot 1600 HDI 115@3,800rpm 92 200@5,000rpm All. alloy 151 

Fiat 1300jtd 95@4,400rpm 105 200@6,000rpm Cast Iron 154 

SmartCDI 54@4,400 63 100@5,200rpm All. alloy 160 

 
As it can be seen only the SmartCDI derived 

power unit has an output power compatible with the dual 
engine requirement. The data of this engine in its aircraft 
conversion are summarized in Table-2. The architecture of 
this engine is the type three-cylinder-in-line, cylinder 
block and cylinder head are made of aluminum alloy 
(Table-3). 
 

Table-3. Data of the engine chosen. 
 

Description Data Unit 

Bore 65.5 mm 

Stroke 79 mm 

Displacement 799 cc 

Length 1188 mm 

Width 450 mm 

Height 450 mm 

Dry mass with 70 
HP generator 

103 kg 

Specific fuel 
consumption 

150 gr/HPh 

 
The CRDID can be easily used as an APU; in fact 

the FADEC can be programmed to be used at constant 
rpm up to the maximum output power. 

The racing-derived fully programmable FADEC 
has an additional optional protection up to IP68 
(immersion in water).  
 
The cooling system  

Marine engines generally use two types of 
cooling systems, direct circulation of seawater or indirect 
circulation. In this system the installation includes two 
circuits: the first uses sea water that is not in contact with 
the engine, while the second, with the cooling liquid 
exchange the heat with the sea water one through a liquid-
to-liquid plate unit. It is perfectly possible to use the sea-
water circuit electric pump as a bilge pump in case of 
emergency. The FADEC can also control the cooling 
system. 
 
 
 

Fuel consumption 
The original power plant has an installed power 

of 99.3HP and a maximum fuel consumption of 24.8 l/h. 
With the same power output the CRDID hybrid will need 
only 18 l/h. Even including the electric efficiency of the 
generator and of the electric motor of ηm = ηg = 0.95, the 
power required will be (1) with a fuel consumption of 20.1 
l/h: 
 

 HP
P

P
gm

prop
r 3.110


      (1) 

 
Reliability of the individual components and systems  

Single component reliability in 1,500h is 
summarized in Table-3. The failure probability concept 
can be explained with the following example. To evaluate 
the reliability of a lamp, it is theoretically sufficient to turn 
on 100 lamps at the same time. After 1, 000h the number 
of lamp burnt can be calculated. This number is the 
"failure probability", while the number of the lamps still 
working is the "reliability ".  
 

Table-4. Failure probability of the main components. 
 

Item 
Failure probability in 1, 

000h (%) 

CRDID 10 

Generator 3 

Rectifier 10 

Battery 0.0000001 

Inverter 10 

Electric motor 10 

Wiring 0.0001 

 
The electric motor probability Figure includes its 

driver. The CRDID reliability takes into account the fact 
that the engine is experimental. 
 
Single battery-charger (rectifier) assembly  

In this assembly, each of the two APU is able to 
charge the battery pack or to supply the electrical to the 
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electric motor/propeller. So in case of failure a CRDID, 
the other would still be able to supply electric energy to 
the electric motor propeller. The remaining CRDID can 
also charge the battery. In alternative, at the reduce rate of 
the power required to charge the battery, it is able to 
power the battery that powers the motor/propeller (Figure-
1). 
 

 
 

Figure-1. Single rectifier assembly. 
 

In the assembly of Figure-1 it is possible to 
identify 3 branches.  

The branch that goes from the CRDID to the 
electric motor (2): 
 

88.0))1(1( 2   wiringmotorEgeneratorCRDID PPPPP     (2) 

 
The branch that recharges the battery (3) 
 

88.0))1(1( 2  wiringbatteryrectifiergeneratorCRDID PPPPPP     (3) 

 
The branch that moves the engine through the 

battery alone (reduced autonomy) (5):  
 

81.0 wiringbatteryinverter PPPP       (4) 

 
The branch that moves the engine through the 

battery while it is recharged by the CRDID (limited output 
power) (5): 
 

71.0))1(1( 2  wiringinverterbatteryrectifiergeneratorCRDID PPPPPPP     (5) 

 
The reliability of (3) is too low to be acceptable. 

So an assembly with two rectifiers is adopted (Figure-2). 
 
Assembly with two rectifiers (Figure-2)  
 

 
 

Figure-2. Two rectifiers (R) are introduced. 
 

The solution proposed in Figure-2 has the 
peculiarity of having two rectifiers connected in parallel. 
This trick increases to an acceptable level the reliability of 
the branch (es) charging the battery (6). 
 

99.0))1(1( 2  wiringbatteryrectifiergeneratorCRDID PPPPPP     (6) 

 
The reliability level of the other branches is 

unchanged. However, has an advantage of the present: in 
case of failure of one of the two APU, unlike the previous 
case, with this solution it is possible to power the electric 
motor and charge the batteries at the same time?  
 

 
 

Figure-2. Fully redundant assembly 
 
Assembly with two independent redundant systems  

The assembly of Figure-3 offers higher reliability 
against higher costs. This assembly solution lends itself 
particularly well to the case of boat type "catamaran" as 
each of the two systems can be installed on a hull. The 
probability of the branch CRDID-electric motor is then 
(7): 
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95.0))1(1( 2  wiringmotorgeneratorCRDID PPPPP     (7) 

 
For the branch CRDID-Battery we have (8): 
 

96.0))1(1( 2  wiringbatteryrectifiergeneratorCRDID PPPPPP     (8) 

 
The reliability of the branch battery-electric 

motor can be calculated with (9). 
  

95.0))1(1( 2  wiringbatteryinvertermotor PPPPP     (9) 

 
The reliability of the three solutions is 

summarized in Table-5. 
 

Table-5. Reliability levels for assemblies of Figure 1, 
2 and 3. 

 

Action Ass. 1 Ass. 2 Ass. 3 

Power to propeller 
from CRDID 

0.88 0.88 0.95 

Battery charging 0.81 0.99 0.96 

Power to propeller 
from battery 

0.88 0.88 0.95 

 
Cost analysis 

The cost analysis is an integral part of the design 
work. An indicative cost of the main components is 
summarized in Table-6. 
 

Table-6. Unitary cost of main components. 
 

Item Unitary cost (€) 

APU 20,000 

Rectifier 250 

Electric motor driver 3,000 

Inverter 1,000 

Wiring (each cable) 30 

 
Depending on the assembly chosen we have the 

different costs summarized in Table-7. 
 

Table-6. Number of items and total cost. 
 

# of items Ass. 1 Ass. 2 Ass. 3 

APU 2 2 2 

Rectifier 1 2 2 

Electric motor+driver 1 1 2 

Inverter 1 1 2 

Wiring (each cable) 9 12 12 

Total cost (€) 44,500 44,860 48,860 

 

As it can be seen the difference between the three 
solutions is not high. It is then convenient to adopt the 
assembly N. 3. 
 
CONCLUSIONS 

The marine propulsion system is the heart of the 
ship. Its reliability will directly affect the safe navigation 
and operating costs of ship and its overall safety. The 
individuation of the best propulsive solution is one of the 
key technologies in marine field.  Focusing on the study of 
comprehensive reliability, this study analyses operation 
environments of the marine propulsion system firstly, and 
then evaluate the comprehensive reliability of the chosen 
marine propulsion system. According to the fault tree of 
the marine propulsion system, a CRDID (Common Rail 
Direct Injection Diesel) electric hybrid marine engine 
system is taken as an example  The result shows that a 
new engine CRDID-hybrid system can be reliably 
installed on small boats and yachts. A fully redundant twin 
system (Figure-3) is the most cost-effective solution. Even 
with the extremely conservative reliability level assumed 
for the calculation the system has an acceptable reliability.  
The reliability value assumed are valid only for the first 
prototype, the serial reliability Figure will be far better. 
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Symbols 
 

Symbol Description Unit 

Pr CRDID(s) max output power HP 

Pprop Power at the propeller HP 

ηm Electric motor efficiency - 

ηg Elecgric generator efficiency - 

P Reliability % 

PCRDID Reliability of CRDID % 

Pgenerator Reliability of the generator % 

Prectifier Reliability of the battery charger % 

Pbattery Reliability of the battery % 

Pwiring Reliability of wiring and switches % 

Pinverter Reliability of the inverter % 

 
 


