
 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2509

AN AGENT BASED SIMULATION STUDY OF ASSOCIATION AMONGST
CONTESTANTS IN CROWDSOURCING SOFTWARE DEVELOPMENT

THROUGH PREFERENTIAL ATTACHMENT

Nitasha Hasteer1, Abhay Bansal1 and B. K. Murthy2

1Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
2Centre for Development of Advanced Computing, Noida, India

E-Mail: nitasha78@gmail.com

ABSTRACT

Software development is creative, challenging and ever evolving. With the increasing deployment of cloud
technologies and benefits of crowdsourcing, an emerging form of software development is Software Crowdsourcing. The
members of the crowd use various platforms to participate in competitions of software design and development to earn
reputation and reward. In this paper we analyze and model the association amongst contestants in a software
crowdsourcing platform to earn reputation. Agent based modelling is being used to simulate actions of agents (contestants)
and measure the resulting system behaviour and outcomes over time. We model the preferential attachment behavior
amongst the contestants and analyze the data retrieved from a crowdsourced software platform. This research proposes that
agents that compete together for a certain task are more likely to be associated with each other for future competitions.

Keywords: crowdsourcing, software development process, agent based modelling, preferential attachment.

INTRODUCTION

Software development has always been creative,
challenging and ever evolving. Organizations use various
software development process models and methodologies
for developing software. Crowdsourcing is an emerging
form of outsourcing software development. It is a name
given to a revolution that marks the rise of online
community composed of like minded enthusiasts who
work together, creating innovative solutions and lowering
the production cost [1]. According to a report on ‘Top Ten
Technology Predictions’ by Gartner, more than half of
consumer goods manufacturers will receive 75 percent of
their consumer innovation and research and development
capabilities from crowdsourced solutions by 2017 [2].
Crowdsourcing in software development implies that
services of voluntary online community are taken to build
software in place of taking the services of traditionally
employed workers. The objective of software
crowdsourcing is to produce high quality and low cost
software products by harnessing the power of the crowd.
Almost all software development tasks can be crowd
sourced. Software crowdsourcing practices blur the
distinction between end users and developers, and allow
the co-creation principle. A regular end user co designs
and co creates the software [3].

Enterprises can outsource the task of developing
software to the general crowd in either collaborative or
competitive manner [3, 4]. In a collaborative
crowdsourcing environment, people collaborate to produce
software products [5]. Appstori.com is a collaborative
crowdsourcing environment where people cooperate with
each other on various aspects of mobile application
development. Competitive crowdsourcing on the other
hand is reward based. Topcoder.com is a crowd sourcing
platform on which enterprises deliver their software
development tasks and crowd members compete with each

other to obtain solutions to the given problem and the
winning crowd participant is rewarded. This environment
promotes innovative ideas and obtains diverse solutions to
the problems. The reward and the reputation earned by the
winning participant is a driving factor for continuous
contributions and addiction towards completion of the
tasks [6]. To analyze the participation pattern of the
contestants in various competitions, we model the
preferential attachment behavior amongst them in a
crowdsourced software development platform.

Software Process Simulation is a well established
technique used to study behavior patterns, predicting
future events, performing what-if and trend analysis and
thereby improving software development. Agent-based
modeling and simulation (ABMS) is an approach to model
systems comprised of autonomous, interacting agents.
Agent-based simulation of processes provides a natural
way to describe communication between individuals,
model their characteristics and can be implemented using
various tools [7, 8, 9]. NetLogo, a programmable
modeling environment is well suited for modeling
complex systems developing over time. Modelers can give
instructions to hundreds or thousands of ‘agents’ all
operating independently. This makes it possible to explore
the connection between the micro-level behavior of
individuals and the macro-level patterns that emerge from
their interaction [10].

In this paper we model the ‘preferential
attachment’ interconnection amongst the contestants in a
crowd sourced software development environment with
the help of agent based modelling. A preferential
attachment process is any process in which some quantity
(some form of wealth or credit), is distributed among a
number of individuals or objects according to how much
they already have, so that those who are already wealthy
receive more than those who are not. The principal reason

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2510

for scientific interest in preferential attachment is that it
can, under suitable circumstances, generate power
law distributions [11]. The rest of the paper is organised as
follows: Literature Review section reviews the general
crowdsourcing work; Crowdsourced software
development section describes the software development
process of TopCoder as a case study; Contestant
Collaboration Network Model section lays out the Model;
Model implementation sections sets the rules and
simulates the model in NetLogo; Results and Discussions
section shows the results and Conclusion and future work
section concludes the paper and highlights the future
research directions.

LITERATURE REVIEW

There are studies on various aspects of
crowdsourcing that have been undertaken in the past.
Many researchers have analyzed the economics of
crowdsourcing contests. Huberman et al. demonstrated
through an analysis of a massive data set from YouTube
that the productivity exhibited in crowdsourcing exhibits a
strong positive dependence on attention, measured by the
number of downloads [6]. In his work Vukoic. M
presented a sample crowdsourcing scenario in software
development domain to derive the requirements for
delivering a general-purpose crowdsourcing service in the
Cloud. He proposed taxonomy for categorization of
crowdsourcing platforms, and evaluates a number of
existing systems against the set of identified features [12].
DiPalantino and Vojnović modeled crowdsourcing as
business auction and leverage the research of auction
theory to build models for reward system and effective
strategies for crowdsourcing participants [13]. Archak
presented an empirical analysis of determinants of
individual performance in multiple simultaneous
crowdsourcing contests for the portal TopCoder.com [14].
Zhenghui H. and Wu W. applied the famous game theory
to model the 2-player algorithm challenges on TopCoder.
They demonstrated that if a competitor’s probability to
make a successful challenge exceeds some certain value,
then he will always choose to challenge the opponent [15].
LaToza et al. developed an approach to decompose
programming work into micro tasks for crowdsourced
software development and implemented it in CrowdCode
[16]. In their work Stol and Fitzgerald presented an in-
depth industry case study of crowdsourcing software
development at a multinational Corporation and
highlighted the challenges of the same [17].

Most of the research in this area has been on the
studying the mechanism of crowdsourcing systems, like
pricing, bidding strategies, rewarding rules etc. Since the
creative work like software development requires a large
degree of knowledge integration, coordinated effort and
interaction among workers, this work focuses on
modelling the association amongst the contestants with the
help of agents to simulate real world competitions on a
crowd sourced platform.

CROWDSOURCED SOFTWARE DEVELOPMENT
Software crowdsourcing is becoming

increasingly popular with many portals like
TopCoder.com; AppStori.com; uTest.com; mob4hire.com
getting thousands of enthusiasts who are collaborating or
competing to develop software. As a case study, we have
analyzed the world’s largest competitive software
development portal, TopCoder. The portal reports 700,
000 registered workforces at the site. The site hosts
competitions and challenges under graphics design,
software development and data science tracks. The
graphics design and software development challenges are
of different types varying from idea generation and
conceptualization to component development and
generating test scenarios. The software development
process at this portal is a simplified process wherein the
company interacts directly with the client company to
formulate application requirements, timelines and budgets.
Once the application requirements are defined, the
application enters the architecture phase and is split into a
set of components. Any registered contestant who satisfies
the minimum legal requirements can submit a design to
any posted design competition. Winning design
submission goes as input into the development
competition, which has a similar structure. Output from
development competitions is assembled together into a
single application, which is later delivered to the customer.
Each hosted competition belongs to some catalog and has
two associated deadlines: the registration deadline and the
submission deadline [14]. Figure-1 shows the TopCoder
development process.

Figure-1. TopCoder development process.

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2511

The requirement analysis phase precedes
specification phase and broadly consists of
conceptualization, studio ideation and developing a GUI
interface of the application. The platform allows the
contestants to engage in wireframes or storyboards
competitions to quickly create new ideas and express them
in the form of mockups, thereby stimulating crowd
creativity. The detailed requirement specifications are
produced during the application specification phase based
on the inputs from the earlier phases. The design
documents are completed and the application’s
architecture is developed in the architecture phase. During
the component design and development phase, contestants
compete to convert the set of architecture documents into
component specification documents and develop the
application. All developed components are then linked
together with the application flow and the application is
delivered to the customer [18]. Figure-2 shows the tasks
undertaken for developing software at the TopCoder
portal.

Figure-2. Tasks undertaken for developing software
at TopCoder.

The process requires the contestants to compete

during all the phases and after each phase the set of
deliverables are generated. The winning entry serves as an
input to the next phase. The software development tasks
are accomplished through a series of competitions and
matches after breaking down projects into units of work
that consists of the entire build. The community has
Program Managers who oversee customer projects and
choose co-pilots within the community to act as an
interface between customers and developers, and to help
choose winners for the various contests. Co-pilots are
experienced TopCoder community members who have
proven themselves in the past on this platform. They
manage the technical aspects of crafting and running
competitions through to successful delivery [19].

CONTESTANT COLLABORATION NETWORK
MODEL

Real world networks are like open systems that
grow by the continuous addition of new nodes. Starting
from a small nucleus of nodes, the number of nodes
increases throughout the lifetime of a network by the
subsequent addition of new nodes. We consider the
environment of a crowdsourced software development as a
network which grows with the addition of new nodes. This
is a continuously expanding network, with 163, 351 nodes
in 2008 [14], which grew to 450,000 nodes by 2013[18].

As the network grows the new contestants gets associated
with the earlier existing contestants. We construct an
association network model amongst the contestants, the
Contestant Collaboration Network Model (CCNM), where
the nodes are the contestants and two nodes are connected
if the two contestants have competed for a same
competition. This could be represented as a bipartite
graph. Figure-3 shows a schematic representation of a
bipartite graph, the graph of competitions and the
contestants who have competed in them. In this small
graph we have four competitions, labeled 1 to 4, and
eleven contestants, labeled A to K, with edges joining each
competition to the contestant who has competed for it. The
bottom Figure shows the one-mode projection of the graph
for the eleven contestants, [20].

Figure-3. Representation of the competition-contestant
graph and contestant collaboration network.

 In a contestant collaboration network, two nodes
are connected if the contestants have competed for the
same competition. Nodes in a network have varying node
degree depending on the number of edges it has. The
spread in the node degrees is characterized by a
distribution function P (k), which gives the probability that
a randomly selected node has exactly k edges. Earlier
studies have shown that for most large networks, degree
distribution has a power law tail [21] [22]. Such networks
are called scale free networks [23]. A central ingredient of
all models aiming to generate scale-free networks is
preferential attachment, i.e., the assumption that the
likelihood of receiving new edges increases with the
node’s degree. The two ingredients of the Barabasi Albert
(BA) model are growth and preferential attachment. The
power-law scaling in the BA model indicates that growth
and preferential attachment play important roles in
network development [23].

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2512

a) Growth: Starting with a small number of nodes, at
every time step, we add a new node and link it to
different nodes already present in the system

b) Preferential attachment: When choosing the nodes
to which the new node connects, we assume that the
probability that a new node will be connected to node
i depends on the degree ki of node i, such that:

MODEL IMPLEMENTATION

NetLogo is an agent based simulation tool written
in Java language at Northwestern University’s Center for
Connected Learning in Unite States [10]. It can be run on
all major platforms. The environment uses three types of
agents: turtles, patches and observer. Turtles are agents
that move inside the world of bi-dimensional lattice
composed by patches. Observer can be regarded as an
entity that observes the world composed by turtles and
patches. We use NetLogo for implementing our model and
in this section we present how our problem was modeled
and which abstractions were used to achieve it.

As agents, we defined the contestants registered
at the crowd sourcing platform. Patches are stationary and
arranged in a grid and agents move over the patches. They
get connected through links. We set up our model based
on our hypothesis that a contestant is more likely to get a
new link, if it already has more links. For the purpose of
simulation, we start with a fixed number N of contestants
and implement the scenario based on the BA model of
preferential attachment as described in the previous
section. The number N however can be increased to 100 in
our model. When the simulation setup starts, contestants
are distributed over the network. The contestants are then
arranged and laid out in order. Pressing the “go” button
once (one tick), connects two contestants randomly. The
choice of a contestant getting connected to the other is
done stochastically as the simulation progresses. Evolved
on the dimension of time, we simulate the forming and
evolving process of CCNM. Figure-4 shows the interface
at the beginning and at the end of the simulation.

Figure-4. Network simulation.

The degrees of the nodes represented by the
histogram, depicting the result of running the simulation
program in NetLogo are shown in the following Figure-5.

Figure-5. Degree distribution.

RESULTS AND DISCUSSIONS

In order to examine the association amongst the
contestants in a crowdsourced software platform, we
extracted and analyzed the data from the TopCoder web
portal. Apart from design, development and data science
challenges, the TopCoder portal also hosts Single Round
Matches (SRM) every alternate weekend. These matches
are of three hours duration and witness participation of
around 2000 contestants for each match [24]. The
contestants participate in these matches to earn social
incentives like reputation and for fun. One of the key
features of crowdsourcing is that a large number of people
gets attracted to work on problems posted on the web, and
this is consistent with TopCoder data where the platform
shows that many people from different countries
participate in various competitions. The originality of
contestants at TopCoder platform is shown in Figure-6.

Figure-6. Originality of contestants

The dataset that we used for our study included
various Single Round Matches ran by TopCoder from
01/01/2012 to 22/07/2014. There were in total 100 SRMs
that we analyzed. For the purpose of thorough
examination, we grouped the SRMs in four different
groups having uniform number. The descriptive statistics
of the SRMs is as shown in Tables 1 and 2 below:

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2513

Table-1. Statistics of data set.

S. No.
Group
name

Single round
matches

1 SG1 SRM529-SRM553

2 SG2 SRM554-SRM578

3 SG3 SRM579-SRM603

4 SG4 SRM604-SRM628

Table-2. Statistics of data set.

Group
name

Count of
SRMs

Total contestants
(Multiple entries)

SG1 25 42678

SG2 25 38696

SG3 25 42553

SG4 25 41632

We then randomly choose ten contestants, one
each from the top ten countries and analyzed their
participation in various SRM competitions within each
group. We examined the association with regard to their
participation in various SRMs over a period of time. For
the Group SG1, 92 percent of the times, more than 02
contestants out of 10 randomly selected have competed for
the same SRM. For the groups SG2, SG3 and SG4 we
found that 92, 92 and 80 percent of the times respectively
more than two contestants have competed in the same
SRM. Figure-7,8,9 and10 shows the result of the analysis.

In order to investigate the collaboration between
pair of contestants, we did pair wise collaboration analysis
of the contestants competing in various competitions. We
have found that the association of the contestants grows
with time which is an essential feature of scale free
networks. For a random pair chosen the collaboration has
grown from 8 percent of the times in SG1 and SG2 to 20
percent of the times in SG3 and SG4. Figure-11 to Figure-
14 shows the result of analysis for one of random pair
chosen.

Figure-7. Contestant collaboration for SG1.

Figure-8. Contestant collaboration for SG2.

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2514

Figure-9. Contestant collaboration for SG3.

Figure-10. Contestant collaboration for SG4.

Figure-11. Pair collaboration for two random contestants in SG1.

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2515

Figure-12. Pair collaboration for two random contestants in SG2.

Figure-13. Pair collaboration for two random contestants in SG3.

Figure-14. Pair collaboration for two random contestants in SG4.

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2516

CONCLUSION AND FUTURE WORK
The increasing number of crowd workers

registering on the crowdsourcing platform signifies
growth. We find that highly connected contestants
increase their connectivity faster than their less connected
peers subject to the growth of motivation to earn
reputation as seen during various single round matches
held by TopCoder. Crowdsourcing software development
is a distinct and emerging approach to software
development. It is different from the traditional software
development scenario and uses the power of crowd to
obtain solutions to problems. The magnitude and diversity
of the crowd promotes creativity and innovation. This
topic has recently started gaining attention by the software
engineering research community. While the focus in the
literature has been more towards the study of
crowdsourcing mechanism and formation of pricing and
reward rules, this paper contributes towards analyzing the
association of the contestants competing on a software
crowdsourcing platform. The preferential attachment
model used for the study reveals that the contestants who
get associated with each other during a competition, are
more likely to compete together in future competitions to
earn reputation.

Crowdsourcing delivers high quality solutions
and makes the software development process more
effective in terms of time and cost savings as compared to
traditional development. Due to the social or financial
incentive attached to the tasks hosted on to these
platforms, the community of members of crowdsourced
software platforms is bound to increase. Many research
directions are thus possible including the research on
coordination amongst contestants for collaborative
development and the factors on which the productivity of a
crowdsourced software development platform depends.
The approaches and framework of software crowdsourcing
needs to be investigated through multiagent system models
for complex projects involving cross task coordination.

REFERENCES

[1] J. Howe. 2006. The rise of crowdsourcing,” Wired

Magazine, 2006.

[2] Gartner. 2014. Top 10 Technology Predictions for
2014.

[3] W.-T. Tsai, W. Wu and M. N. Huhns. 2014. Cloud-
Based Software Crowdsourcing. Internet Comput.
18(3): 78-83.

[4] L. Hoffmann. 2009. Crowd Control. Communications
of the ACM. 52(3): 16-17.

[5] X. Peng, M. A. Babar and C. Ebert. 2014.
Collaborative Software Development Platforms for
Crowdsourcing. Software. 31(2): 30-36.

[6] B. A. Huberman, D. M. Romero and W. F. 2009.
Crowdsourcing, attention and productivity. J. Inf. Sci.
35(6): 758-765.

[7] A. T. Crooks and A. J. Heppenstall. 2011. Introduction
to Agent Based Modelling. in Agent-Based Models of
Geographical Systems. 164(2011): 85-105.

[8] T. Wickenberg and P. Davidsson. 2003. On Multi
Agent Based Simulation of Software Development
Processes. in Multi Agent Based Simulation. II, pp.
171-180.

[9] W. N. Robinson and Y. Ding. 2010. A survey of
customization support in agent-based business process
simulation tools. ACM Trans. Model. Comput. Simul.
209(3): 1-29.

[10] U. Wilensky. 1999. NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer Based Modeling
Northwestern University Evanston IL. [Online].
Available: http://ccl.northwestern.edu/netlogo/.

[11] A. Capocci, V. D. P. Servedio, F. Colaiori, L. S.
Buriol, D. Donato, S. Leonardi and G. Caldarelli.
2008. Preferential attachment in the growth of social
networks: the case of Wikipedia. Phys. Rev. E. 74: 1-
5.

[12] M. Vukovi. 2009. Crowdsourcing for Enterprises
Maja Vukovi. in Congress on Services-I. pp. 686-692.

[13] D. Dipalantino and M. Vojnovic. 2009.
Crowdsourcing and All-Pay Auctions. in EC’09. pp.
119-128.

[14] N. Archak. 2010. Money, Glory and Cheap Talk:
Analyzing Strategic Behavior of Contestants in
Simultaneous Crowdsourcing Contests on TopCoder.
Com. in WWW 2010. pp. 21-30.

[15] Z. Hu and W. Wu. 2014. A Game Theoretic Model of
Software Crowdsourcing. in Service Oriented System
Engineering (SOSE), 2014 IEEE. pp. 446-453.

[16] T. D. Latoza, W. Ben Towne, C. M. Adriano and A.
Van Der Hoek. 2014. Microtask Programming:
Building Software with a Crowd. in User Interface
Software and Technology Symposium. pp. 43-54.

[17] K. Stol and B. Fitzgerald. 2014. Researching
Crowdsourcing Software Development: Perspectives
and Concerns. in CSI-SE. pp. 7-10.

[18] W. Wu, W. Tsai and W. Li. 2013. Creative software
crowdsourcing: from components and algorithm
development to project concept formations. Int. J.
Creat. Comput. 1(1): 57-91.

 VOL. 10, NO. 6, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

2517

[19] K. Stol and B. Fitzgerald. 2014. Two’s Company,
Three’s a Crowd: A Case Study of Crowdsourcing
Software Development. in ICSE 2014. pp. 187-198.

[20] M. E. J. Newman, S. H. Strogatz and D. J. Watts.
2001. Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E. 64:
1-17.

[21] R. Albert and H. Jeong. 1999. Diameter of the World-
Wide Web. Nature. Vol. 401, no. September, pp. 398-
399.

[22] H. Jeong, Z. Neda and A. L. Barabasi. 2003.
Measuring Preferential Attachment for Evolving
Networks. Europhys. Lett. 61(4): 567-572.

[23] R. Albert and B. Albert-Laszlo. 2002. Statistical
mechanics of complex networks. Rev. Mod. Phys. vol.
74, January.

[24] A. Begel, J. Bosch and M.-A. Storey. 2013. Social
Networking Meets Software Development:
Perspectives from GitHub, MSDN, Stack Exchange
and TopCoder. Software. 30(1): 52-66.

