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ABSTRACT 

Computed Tomography (CT) images have been widely used for diagnosis of liver disease and volume 
measurement for liver surgery or transplantation. The approach is presented with respect to liver segmentation, but it can 
be easily extended to any other soft tissue by setting appropriately the values of the parameters for the splitting and 
merging algorithm and for the region growing refinement step. Sparse coding with data-adapted dictionaries has been 
successfully employed in several image recovery and vision problems. A novel, automated segmentation technique for 
detecting affected region in liver was proposed in this paper. In the new approach, we constructed ensemble kernel 
matrices using the pixel intensities and their spatial locations, and obtained kernel dictionaries for sparse coding pixels in a 
non-linear feature space. The resulting sparse codes were used to train an Extreme Learning Machine (ELM) classifier that 
determines if a pixel in the image belongs to an affected region. From the experimental results using ten test datasets 
distributed for the competition, it was confirmed that our method kernel sparse coding based liver segmentation performs 
better than previous methods or models.    
 
Keywords: liver disease, segmentation, auto-context model (ACM), kernel sparse coding automated approach, ELM. 
 
INTRODUCTION 

In recent years, medical image segmentation has 
become an active area of research and it attracts more and 
more researchers for novel innovations. Image 
segmentation automatically explores the internal structures 
of the patient, which may be anatomical (organs) and 
pathological (lesions). Automatic segmentation of lesions 
in a large image database has attracted the attention of 
several researchers as it assists in diagnosis [1], by 
identifying possibly forgotten lesions, and also to speed up 
the process of analysis. Liver is one of the most important 
organs of the human body. When it is affected by a 
tumoral pathology, it is possible to operate it by cutting the 
damaged portion. But the segmentation has to be done 
with the rules of volumetric and very specific 
vascularization. The medical imaging is then used to 
detect and visualize the internal structures. These 
structures do not appear in a single image, but need several 
acquisitions which will therefore be compared. The 
tumoral or hepatic volumetric is possible only after a 
period of segmentation of these images. Liver analysis 
plays a vital role in the therapeutic strategy for hepatic 
diseases. Therefore, the automatic segmentation of the 
liver has influenced a number of researchers with its 
importance and it assists in diagnosis of liver diseases such 
as steatosis, fibrosis, etc. Segmentation of a liver from a 
three dimensional CT volume serves as the initial process 
in image-based hepatic investigations [2, 3]. Even though 
a number of techniques have been developed and available 
in the literature, fully automatic liver segmentation from a 
3D volume is still a challenging factor due to the large 
variations in liver shapes and in the intensity pattern inside 
and along liver boundaries. 

The main aim of the present research work is to 
develop a novel approach for automatic liver segmentation 

to obtain its internal structures and tumors in a more 
efficient manner. Auto-Context Model (ACM) has been 
used in the automatic liver segmentation approach. The 
present research work extends the approach of HongweiJi 
in [14] which used the ACM model for segmentation. The 
present research work uses kernel Sparse Coding 
Automated approach for liver segmentation which 
overcomes the limitations in ACM approach. 
 
PREVIOUS WORKS 

Max-Flow/Min-Cut method [4] this approach is a 
semi-automatic segmentation of the liver depending on 
graph theory and more particularly on the "Graph Cuts". In 
this scenario, the issue of segmentation is regarded the 
separation of an image into two classes "object" and 
"bottom". This approach for semi-automatic segmentation 
integrates some of the voxels of the volume to one of these 
two classes. This initial association acts then as base of 
training for the ultimate segmentation of the volume. This 
technique implements an energy minimization approach 
based on partitioning a graph into two sub-graphs by 
cutting minimum capacity. 

Bae et al. [5] used simple thresholding and logic 
functions to attain the sketch of the liver before smoothing 
the boundary using B-splines. Gao et al. [3] extended the 
work through mathematical morphology on the threshold 
image to partition the liver from other organs, before 
refining the obtained contour with a Fourier-based 
deformable contour model. The drawback of both of these 
techniques is in the initial thresholding step where it is 
tough to set upper and lower threshold limits that separate 
the liver effectively, without taking into account the 
neighboring tissues such as the kidneys and the spleen. 
Thus, the initial starting point for the boundary refinement 
process is based on the inaccurate thresholding step.  
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Shimizu et al. [6] used the equivalent CT values 
from four different input images of the same liver to attain 
the rough contour. The main limitation of this approach is 
that four complete datasets are needed for effective 
segmentation of one liver. This needs four different CT 
scans of the same patient in succession, and 
computationally it requires four times the memory and 
processing power that is used when analyzing a single 
dataset. Computer-Aided Diagnosis (CAD) is being 
widely used to improve the interpretation components of 
medical imaging [7, 8]. Moreover, Computer-Aided 
Surgery (CAS) is carried out on computerized surgical 
planning and image-guided surgery by examining the 
Region-Of-Interest (ROI) in the medical image. Volume 
measurement is also of major significance in different 
fields of medical imaging where doctors need some 
assessments for surgical decisions. 

Seoa multi-stage automatic hepatic tumor 
segmentation approach is presented [9]. It initially 
segments the liver, and eliminates hepatic vessels from the 
liver. Then, a hepatic tumor is segmented through the 
optimal threshold value with minimum total probability 
error. Active contour algorithm has been widely used in 
tumor segmentation. Yim et al. used watershed and active 
contour algorithms for volumetric investigation on ten 
hepatic metastatic lesions in 36 CT slices [10]. Lu et al. 
also used the active contour with aspecific initial contour 
to attain the tumor boundary [11]. Zhao et al. developed a 
region growing algorithm through intensity distributions 
of the seed ROI offered by users to delineate liver 
metastases. Particular shape constraints have been used to 
prevent the region growing from leaking into surrounding 
tissues [12]. But, there are certain drawbacks in the above 
said existing techniques. Most of the above said 
approaches segment the tumor in 2D. When considering 
CT volumetric data, segmentation is carried out slice by 
slice, and then the 2D results are integrated into a volume. 
Moreover, these techniques were tested on different data 
sets and evaluated using different standards. Hence it is 
difficult to compare their performance. To benchmark 3D 
liver tumor segmentation methods, the organizer of “3D 
Liver Tumor Segmentation Challenge 2008”[13] provided 
CT scans of livers from four patients with ten lesions 
manual segmented as training data, together with other six 
CT scans of livers with ten lesions (not segmented) as the 
testing data. 
 

 
 

Figure-1. Segmentation of results. 

Figure-1 Shows the segmentation process of the 
liver image. That perform the process of marked the 
region, then enhance the image after the do the 
segmentation process. 
 Hongwei et al. [14] presented an Auto-context 
Model (ACM) based automatic liver segmentation 
algorithm, which integrates ACM, multi-atlases and mean-
shift techniques to segment liver from 3D CT images. This 
algorithm is learning based approach and can be 
categorized into two stages. At the initial training stage, 
ACM learns a series of classifiers in each atlas space. 
Through multiple atlases, multiple sequences of ACM-
based classifiers are attained. In the second segmentation 
stage, the test image will be segmented in each atlas space 
through each sequence of ACM-based classifiers. The 
ultimate segmentation result will be attained by fusing 
segmentation results from all atlas spaces through a multi-
classifier fusion approach. Even though ACM based liver 
segmentation is effective, it has some limitations: 
 
 The features on the context information are still 

somewhat limited. 
 Different auto-context models require to be trained for 

different applications. 
 The algorithm is a supervised approach and thus needs 

a set of well-annotated ground truth data, which might 
not always be available or can be difficult to obtain.  

 Method is a supervised learning technique, it needs a 
set of manual reference segmentations (ground-truth 
data), which is sometimes difficult to obtain.  

 
 The limitation of Mean-shift method is that, it is a 
time consuming image segmentation algorithm. In order to 
overcome these problems, kernel sparse coding 
segmentation algorithm is used for liver segmentation in 
the present research work. 
 
METHODOLOGY 

The main contribution of the present research 
work is threefold. Initially, the pre processing is done 
followed by segmentation and classification. In 
segmentation we use kernel sparse coding for liver 
segmentation initially, dictionary design through kernel 
similarities, representation of test samples and finally 
discrimination of resultant codes. 

Preprocessing the computed tomography images 
are preprocessed because of the high intensity between the 
liver tissue and adjacent organs, presence of several 
pathologies, varying shape of the liver. The normal 
segmentation algorithm is not enough for the best 
segmentation results because the edges of the liver are not 
clear and high intensities of the image. The preprocessing 
stage is used to overcome these problems by applying the 
filtering techniques such as Gaussian filter, sticks filter. In 
this paper, the combination of Laplacian filter and stick 
filter technique is used for better results and it removes the 
noises before the main segmentation. Stick filtering 
technique is one of the powerful techniques in image 
processing and filtering. It is mainly used for removing the 
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noise, image contrast and improves the boundaries of the 
liver.  It is used for separating the liver image from 
adjacent organs by improving the boundaries. The second 
step of the proposed preprocessing technique is applying 
the laplacian filtering technique and it is mainly focused 
on the image intensity changes and used for improving the 
edges of the liver. In this paper it is combined with the 
stick filter for best results and the kernel of the Laplacian 
filter can be calculated as given equation.  
 

                                    
(I) 

 
Sparse Coding and Dictionary Learning Sparse 

models have been widely used in image analysis as several 
naturally occurring images can be efficiently formulated as 
a sparse linear combination of elementary features [15]. 
The elementary features are normalized to unit norm 
and stacked together to form the dictionary matrix. Given 
a sample y , and a dictionary  the generative 
model for sparse coding is given as , where 

 is the sparse code with a small number of non-zero 
coefficients and n is the noise component [16]. The sparse 
code can be computed by solving the convex problem  
 

                                                 (1) 
 

Where indicates the  norm, and is a convex 
surrogate for the norm which counts the number of 
non-zero elements in a vector [17]. Some of the 
approaches used to solve (1) include the basis pursuit [18]; 
feature-sign search [19] and the least angle regression 
algorithm with the LASSO modification (LARS-LASSO) 
[20]. When presented with a adequately large set of 
training data samples, , the dictionary can be 
learned, and the corresponding sparse codes can be 
obtained by solving equation (2). 
 

                                          (2) 
 

Where  and  denotes the Frobenius 
norm of the matrix. Equation (2) can be solved as an 
alternating minimization problem, where the dictionary is 
learned by fixing the sparse codes, and the sparse codes 
are obtained by fixing the dictionary. Dictionaries fixed to 
the data provide superior performance when compared to 
predefined dictionaries in a number of applications [21, 
14]. Moreover, being valuable in data representation 
issues, there has been a recent surge of interest in using 
sparse models in several supervised, semi-supervised and 
unsupervised learning tasks such as clustering [22] and 
classification [23]. 

Kernel Sparse Coding for Liver Segmentation 
Sparse coding algorithms are mostly used for vectorized 
patches or feature vectors extracted from the images, 
through an over complete dictionary. It is typical in 

machine learning techniques to utilize the kernel function 
to learn linear models in a feature space that captures the 
non-linear similarities. Kernel functions map the non-
linear separable features into a feature space  using a 
transformation  in which similar features are grouped 
together. By carrying out sparse coding in the feature 
space , highly discriminative codes can be obtained for 
samples from different classes [16, 24, and 25].  

Kernel Sparse Coding with the feature mapping 
function  the generative model in F for kernel 
sparse coding is given by . The data 
sample y in the feature space is represented as  and 
the dictionary by the 
kernel similarities 

 and 
can be calculated through pre-

defined kernel functions. All further computations in the 
feature space will be carried out exclusively using kernel 
similarities. The problem of sparse coding in (1) can be 
posed in the feature space as 
 

                                         (3) 
 

Expanding the objective in (3), the following 
equation is obtained 
 

 

                                        (4) 
 
denotes the element  vector 

containing the elements 
 matrix 

containing the kernel similarities between the dictionary 
atoms. The kernel sparse coding problem can be 
efficiently solved through the feature-sign search 
algorithm. However, it is essential that the computation of 
kernel matrices incurs additional complexity. As the 
dictionary is fixed in (4), denotes computed only once 
and the complexity of computing alters as  

Kernel Dictionary Design Optimization of 
dictionaries in the feature space can be performed out by 
reposing the dictionary learning process through kernel 
similarities. These non-linear dictionaries provide compact 
representations, when compared to kernel PCA, and in 
modeling the non-linearity present in the training samples. 
The joint problem of dictionary learning and sparse coding 
is a generalization of 1-D subspace clustering [26]. In 
order to design the dictionary , equation (2) is adapted to 
the feature space; with the constraint that only one element 
in the sparse code can be non-zero. This form of the kernel 
dictionary learning was proposed by Nguyen et al [27]. 
This is equivalent to the kernel version of K-lines 
clustering, which tries to fit K 1-D subspaces to the 
training data in  [26]. Though sophisticated kernel 
dictionaries can be designed, utilizing dictionaries 
obtained using this simple clustering process results in 
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significant performance. The clustering problem can 
therefore be posed as  
 

               (5) 
 

Each dictionary atom is equivalent to a cluster 
center and each coefficient vector  encodes the cluster 
association and the weight corresponding to the  pixel. 
The alternating optimization for solving equation (5) 
consists of two steps: (a) cluster assignment, which 
involves finding the association and weight of each 
training vector and hence updating the sets  and (b) 
cluster update, which involves updating the cluster center 
by finding the centroid of training vectors corresponding 
to each set . 

In the cluster assignment step, the correlations of 
a training sample with the dictionary atoms can be 
formulated as . If the  dictionary 
atom results in maximum absolute correlation, the index i 
is placed in set , and the corresponding non-zero 
coefficient is the correlation value itself. For the cluster  
let  be the set of member vectors and  be 
the row of corresponding non-zero weights. The cluster 
update involves solving the equation (6). 
 

                                          (6) 
 
Denoting the singular value decomposition of 
 

                                                            (7) 
 

Rank-1 approximation, which also results in the 
optimal solution for equation (6), is given by 
 

                                                   (8) 
 

Where  is the largest singular value, and  and 
are the columns of  and equivalent to that singular 

value. Equation (8) implies that  and   

Let the Eigen decomposition of  be  and hence 

  assuming the Eigen values are in descending 
order. From equation (7),  Substituting for 

 and , is obtained which 
results in  
 

                                                                (9) 
 

Note that ak completely defines dk. The cluster 
assignment and update steps arerepeated until 
convergence, i.e., when {Ck} K,k=1 does not change over 
iterations. 

Representation Kernel sparse coding is used as an 
alternative to techniques such as kernel PCA for efficient 
data representation. Though, entire reconstruction of the 

fundamental data from the kernel sparse codes need 
computation of pre-images [28], novel test samples can 
also be well approximated using the learned kernel 
dictionaries.  

Discrimination Kernel sparse coding is well 
suited for supervised learning tasks. As the non-linear 
similarities between the training samples are taken into 
consideration while learning the dictionary, the resulting 
codes are highly discriminative. The kernel sparse codes 
are obtained for all the samples and the normalized cross 
correlation are computed between the sparse features. As 
kernel sparse codes promote discrimination, features 
belonging to a class are expected to be highly similar 
when compared with the samples from other classes.  
 
PROPOSED ALGORITHM 

The proposed algorithm is used for liver 
segmentation using Kernel Sparse Coding-Based 
Automated (KSCA) segmentation algorithm. In the 
algorithm the training set of images are taken which is 
used for aligning and segmentation purpose although the 
segmentation is unendorsed learning here we consider it as 
proven.The Kernel Matrix is generated through pixel 
intensities and spatial locations and the kernel dictionaries 
are attained based on kernel dictionary optimization and 
kernel sparse coding for sparse coding pixels in nonlinear 
feature space. The images are partitioned into K subsets by 
using K-line clustering algorithm along with the help of 
kernel sparse dictionary learning. The output of the 
clustering procedure sparse code trains the ELM classifier 
which is used to find the affected regions of the liver based 
on the pixel. 

Combining Multiple Features When compared to 
using a single feature, using multiple features to 
characterize images has been a very successful approach 
for classification tasks. Though this method provides the 
flexibility of choosing features to describe different 
aspects of the underlying data, the result and illustrations 
are high-dimensional and the descriptors could be varied 
diversely. Therefore, there is a need to transform the 
features to a unified space that allows the recognition 
functions, and generate low dimensional compact 
representations for the images in the unified space. A set 
of R diverse descriptors are extracted from a given image. 
As the kernel similarities can be utilized to fuse the 
multiple descriptors, the base kernel matrix is constructed 
for each descriptor. A suitable distance function  is 
given which evaluates the distance between two samples 
for the feature  the kernel matrix can be constructed as  
 

                        (10) 

 
Where  is a positive constant? Given the R base 

kernel matrices, , we can construct the ensemble kernel 
matrix as  
 

                                                           (11) 



                                        VOL. 10, NO. 6, APRIL 2015                                                                                                                      ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
2602

A constructive alternate technique to fuse the 
descriptors is to attain the ensemble kernel matrix as 
 

                                                      (12) 
 
Where ⊙ denotes the Hadamard product between two 
matrices. Sparse codes calculated with the ensemble 
kernel matrices will take all the R features into 
consideration. Note that when combining kernel matrices, 
we need to ensure that the resulting kernel matrix also 
satisfies the Mercer’s conditions. 
 

 
 

Figure-2. The figure depicts the proposed algorithm for 
automated liver segmentation. 

 
Figure-2 Shows For a set of training samples, the 

ensemble kernel dictionary is obtained using Kernel K-
lines clustering procedure and ELM classifier is used to 
classify the pixels.4.2. Algorithm 

The proposed algorithm of this research work is 
Kernel Sparse Coding-based Automated (KSCA) 
segmentation algorithm. The kernel matrix  is 
computed using RBF kernel on pixel intensity values for 
the subset of pixels T. in order obtain the ensemble kernel 
matrix, the fusion of intensity and spatial location matrix 
is take place.  
 

                                                             (13) 
 

The sparse codes attained with a dictionary 
learned in the ensemble feature space model the 
similarities of pixels according to both intensity and 
location of pixels. A group of training images, with active 
tumor regions, are utilized to learn a kernel dictionary with 
the kernel K-lines clustering process. Using the kernel 
sparse codes belonging to affected and non-affected 
regions, ELM classifier is used to classify the affected 
regions based on the pixel. For a test image, the required 
ensemble kernel matrices are obtained and the kernel 
sparse codes using the learned dictionary are computed.  
 
ELM Description 

ELM is a unified Single hidden Layer Feed 
forward Neural network (SLFN) with randomly generated 

hidden nodes independent of the training data [29, 30]. For 
N arbitrary distinct samples 

 and 
 (n is the number of dimensions of 

input x, m is the number of classes of data). So a given set 
of training samples the output of a 
SLFN with L hidden nodes can be represented by 
 

                   (14) 
 
where  and  are the parameters of hidden node which 
could be randomly generated. is the output of the 
hidden node with respect to the input x. And bi is the 

weight connecting the  hidden node to the output node. 
Equation (1) can be written compactly as  
 

                                                                       (15) 
 

 

 

 
 
is the transpose of a matrix or vector . H is called the 

hidden layer output matrix of the network [30]; the  
column of H is the  hidden node’s output vector with 
respect to inputs : and the  row of  is the 
output vector of the hidden layer with respect to input . It 
has been proved in theory [29, 30] that SLFNs with 
random hidden nodes have the universal approximation 
capability, and the hidden nodes can be randomly 
generated independent of the training data. 

After the hidden nodes are randomly generated 
and given the training data, the hidden-layer output matrix 
H is known and need not be tuned. Thus, training SLFNs 
simply amounts to getting the solution of a linear system 
(2) of output weights according to Bartlett’s theory [30] 
for feed forward neural networks, in order to get the better 
generalization performance, ELM not only tries to reach 
the smallest training error but also the smallest norm of 
output weights. 

 

 
 
And 
 

 
In the case of binary classification, Huang et al. 

[31] proved that to minimize the norm of the output 
weights kbk is actually to maximize the distance of the 
separating margins of the two different classes 2=kbk in 
ELM feature space.  
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Under the constraint of equation (5), a simple 
representation of the solution of the system (2) is given 
explicitly by Huang et al. [31] as  
 

                                                                      (16) 
 
Where the Moore-Penrose is generalized inverse of the 
hidden-layer output matrix H. If the N training data are 
distinct, H is column full rank with high probability 
when . In real applications, the number of hidden nodes 
is always less than the number of training data . Thus 
 

 
 
Huang et al. [31] have proved SLFNs with a wide type of 
random computational hidden nodes. Additive and RBF 
hidden nodes are used often in applications. For example, 
additive hidden node with the activation function 

(e.g., sigmoid, threshold, sin/cos, etc.), is 
given by  
 

 
 

Where alpha is the weight vector connecting the 
input layer to the  hidden node and is the bias of 
the hidden node. denotes the inner product of 
vectors  The three-step simple learning 
algorithm can be summarized as follows: 
 
Algorithm 1 
Given a training set  , the hidden-node 
output function  and hidden-node number L: 
Step 1: Randomly assign hidden-node parameters    

 
Step 2: Calculate the hidden-layer output matrix H; 
Step 3: Calculate the output weight vector  
In this paper ELM is used as classifier to identify the 
pixels belonging to affected region of liver.  
 
EXPERIMENTS 

The results are compared to manual 
segmentations performed by a radio-oncology specialist, 
based on both the subjective visual quality and 
quantitative standards such as Accuracy (Acc) and 
Correspondence Ratio (CR). The learning-based liver 
segmentation technique is evaluated based on the training 
and testing datasets of MICCAI 2007 liver segmentation 
challenge (http://www.sliver07.org). There are 20 
contrast-enhanced abdominal CT images in the training 
datasets and 10 in the testing datasets. All images have a 
spatial resolution of  pixels in each transversal 
slice and the pixel spacing varies from 0.55 to 0.9mm. The 
inter-slice distance varies from 0.5 to 5mm. In this paper, 
10 CT images from the training datasets (denoted as 
“TrainIM”) are randomly chosen for learning.  

The remaining 10 CT images in the training 
datasets (represented as“TestIM1”) and 10 CT images in 
the testing datasets (represented as “TestIM2”) are used 

for evaluation. The MICCAI 2007 workshop provides 
manual liver labels only for the training datasets, not for 
the testing datasets. Thus do “TestIM1” for quantitative 
evaluation and then both “TestIM1” and “TestIM2” for 
equality evaluation. 

 

 
 

Figure-3. Liver segmentation using Kernel sparse coding 
based automated segmentation algorithm. 

 
In this Figure the input image is procured from 

the testing datasets and a precise area is blotted. Now the 
discernible location is stipulated with a landmark and a 
new shape model is being engendered in a graphical genre. 
This graphic sculpt is then employed to   augment the 
renowned area. 
 
RESULT 

Simulations are executed for both the semi-
automated and automated algorithms for every axial slice. 
For both of the proposed algorithms, the parameter γ for 
the RBF kernel was set to 0.3, and the dictionary size was 
fixed at 256.In the automated approach, the ensemble 
kernel is evaluated for 15, 000 randomly chosen pixels 
from the training set. The performance of the proposed 
approach is compared based on metrics such as Accuracy 
(Acc) and Correspondence Ratio (CR) computed as [34]. 
 

  (19) 

And 
 

 
 

Where TP indicates the number of true positives 
(the pixels indicated as affected regions by the ground 
truth and our algorithm), and FP represents the number of 
false positives (pixels indicated as non-affected by the 
ground truth, but affected by this algorithm). 
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Table-1. Performance evaluation comparison. 
 

 
 

Table-1 shows the performance comparison of 
the proposed Kernel sparse coding based Automated 
Segmentation algorithm with other existing algorithms 
such as Heiman’s approach [33], Zhang’s approach [34], 
ACM multi-atlas approach and ACM multi-atlas with 
mean-shift approach [35]. 

The parameters taken for consideration are 
volumetric Overlap Error (OE) in percentage, Signed 
relative Volume Difference (SVD) in percentage, Average 
symmetric surface Distance (DAvg) in (MM), Root Mean 
Square symmetric surface distance (DRMS) and Maximum 
symmetric Surface Distance (DMax), run time in minutes 
and the Accuracy of the image. 

Volumetric Overlap Error (OE) (percent): 
This is the quantity of voxels in the meeting point of 
segmentation and reference divider by the number of 
voxels in the combination of segmentation and reference, 
subtracted from 1 and multiplied by 100. Relative absolute 
volume difference (percent): The total volume difference 
of the segmentation to the reference is separated by the 
entire quantity of the reference. The result is multiplied by 
100. This signed number is reported in the Tables of the 
papers in these proceedings, so one can recognize under 
segmentations by negative values and over segmentation 
by positive values. To compute a score, the absolute value 
is taken. 

Average symmetric surface distance 
(millimeters): The border voxels of segmentation and 
reference are determined. These are defined as those 
voxels in the object that have at least one neighbor (of 
their 18 nearest neighbors) that does not fit into the object. 
For each voxel along one border, the closest voxel along 
the other border is determined using Euclidean distance, 
not signed, and real world distances. All these distances 
are accumulated, for border voxels from both reference 
and segmentation. The average of all these distances gives 
the average symmetric absolute surface distance. This 
value is 0 for a perfect segmentation. 

Root Mean Square (RMS) symmetric surface 
distance (millimeters): This measure is similar to the 
previous measure, but stores the squared distances 
between the two sets of order voxels. Subsequent to 
averaging the squared values, the root is extracted to give 
the symmetric RMS surface distance.  

Maximum symmetric surface distance 
(millimeters): This measure is similar to the previous two, 
but in this case the maximum of all voxel distances is 

taken as an alternative to the average. This rate is 0 for a 
perfect segmentation.  

Table-1 clearly indicates that the proposed Kernel 
sparse coding based Automated Segmentation algorithm 
provides significant results when compared with the other 
existing approaches taken into consideration. 
 

 
 

Figure-4. OE graph for proposed approach. 
 

Figure-4 shows the OE comparison of the 
proposed Kernel sparse coding approach and the existing 
approaches such as Heiman, Zhang, ACM+multi-atlas and 
ACM+multi-atlas+mean-shift. It is observed that the 
proposed approach attains 5% OE, whereas the other 
approaches attain higher values than proposed approach. 
 

 
 

Figure-5. SVD comparison. 
 

Figure-5 shows the SVD comparison graph. The 
SVD value attained by the proposed Kernel sparse coding 
approach is 2.8% whereas the existing approaches such as 
Heiman, Zhang, ACM+multi-atlas and ACM+multi-
atlas+mean-shift attains the SVD values of 1.7%,  0.7%, 
2.1% and 2.7% respectively. Thus the proposed approach 
outperforms the other approaches. 
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Figure-6. DAvg comparison. 
 

DAvg comparison is shown in Figure-6. It is 
observed from the Figure that the proposed Kernel sparse 
coding approach attains 2% DAvg whereas the existing 
approaches such as Heiman, Zhang, ACM+multi-atlas and 
ACM+multi-atlas+mean-shift attains the DAvg values of 
1.4%, 0.9%, 1.3% and 1.5% respectively. Thus the 
proposed approach outperforms the other approaches. 
 

 
 

Figure-7. Drms comparison    Figure-8. D-max     
                                                             Comparison. 
 

Figure 7 and 8 shows the performance 
comparison of the Drms and D-max.  It is clearly observed 
from the results that the proposed approach outperforms 
the existing approaches in terms of Drms and D-max. The 
values of Drms and D-max of the proposed kernel sparse 
approach is 2 MM and 25 MM, respectively which is 
lower than the existing approaches. 
 

 
 

Figure-9. Runtime comparison. Figure 10. Accuracy   
                                       comparison. 

 
Figures 9 and 10 show the performance 

comparison of runtime and accuracy for different 

approaches. It is observed from the Figures that the 
proposed Kernel sparse coding approach attains  91% 
accuracy whereas the existing approaches such as Heiman, 
Zhang, ACM+multi-atlas and ACM+multi-atlas+mean-
shift attains the accuracy of 70%, 74%, 79% and 82% 
respectively. Thus the proposed approach outperforms the 
other approaches. The run time taken by the proposed 
kernel sparse coding approach is lower than ACM mulit-
atlas mean shift approach. This research work performs 
fairly in terms of runtime. The future work is to lessen the 
time consumed by the proposed approach. 
 
CONCLUSIONS 

Accurate segmentation of liver tissue from 
medical images has become an active area of research in 
medical image processing. This research work aims to 
develop an efficient liver segmentation approach for 
computer aided liver disease diagnosis and surgical 
planning. This paper proposes an efficient kernel sparse 
coding approach for liver segmentation. The two metrics 
are used to construct kernel matrices they are pixel 
intensities and their spatial locations. The intensity matrix 
and spatial location matrix are combined to construct the 
ensemble kernel matrix. The kernel dictionary for sparse 
coding pixels in a nonlinear feature space is also obtained 
from the kernel matrix. The linear classifier is used to 
classify the affected regions in the liver. The experimental 
result shows that the proposed kernel sparse coding 
technique performs better than other liver segmentation 
techniques such as Heimen, Zhang, ACM+Multiclass and 
ACM+Multiclass+Meanshift approach. 
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