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ABSTRACT 
 Speed is one of the major issues for any electronic component. Speed based microprocessor system mainly 
depends on speed of the microprocessor and memory access time. The off-chip memory takes more time for accessing than 
on-chip memory. For these reasons, microprocessor system designers find cache compression is such a technique to 
increase the speed of a microprocessor based system, as it increases the cache capacity and off-chip bandwidth. Previous 
work on cache compression has made unsubstantiated assumptions about performance, power consumption and area 
overheads of the proposed compression algorithm and hardware. In this work we propose a lossless compression algorithm 
that has been designed for high performance, fast on-line data compression and particularly for cache compression. This 
algorithm has a number of novel features tailored for this application, including combining pairs of compressed lines into 
one cache line and allowing parallel compression of multiple words while using a single dictionary and without 
degradation in compression ratio. 
 
Keywords: cache compression, on-line data compression, parallel compression. 
 
1. INTRODUCTION 
 Nowadays microprocessor speeds have been 
increasing faster than off chip memory speed. Because 
today’s microprocessors have on-chip cache hierarchies 
which has several megabytes of storage. When the system 
design utilizes the multiprocessor, it requires more access 
to memory [1]. Thus it rears a wall between the processor 
and memory, which results in fortifying the off chip 
communication. Microprocessor researchers found that a 
techniques that reduces the communication between the 
offchip which does not affecting the performance have 
capable to alleviate this problem. Cache compression is 
such a technique that reducing the off chip misses and 
improving the performance. 
 
The challenges over cache compression are: 
 

1. Compression and decompression should be very 
fast. 

2. The hardware should occupy less area. 
 

3. The algorithm should compress small block without 
losses. E.g. 64-byte cache lines when maintaining a 
good compression ratio (the ratio between the sizes 
of the compressed data over uncompressed data). 

4. Cache compression should reduce the power 
consumption.   
 

2. RELATED WORK AND CONTRIBUTIONS 
 The X-Match algorithm [3] is a dictionary based 
compression algorithm mainly depends on previous data 
and strives to match the current data element with the 
dictionary entries. The entries of each word in the 
dictionary are 4-bytes wide and many types of matches are 
possible. The bytes which do not match with the 

dictionary are sent separately. This partial match concept 
refers to the procedure ‘X-Match’. The dictionary uses 
Move to front strategy (MTF), where new tuple is placed 
at the front of the dictionary while the remaining words or 
tuples are move down to one position. This MTF strategy 
generates a Least Replacement Policy (LRU). So the 
dictionary size tuples in the last position are used as a 
compression process. When the dictionary becomes full 
which is in the last position is worn-out and the leaving the 
place for a new one. A match coding function requires to 
code these three separate fields: 
 

 Match location 
 Match type 
 Any extra characters 

 
 The X-Match algorithm was done in FPGA. 
Though it is appropriate for compressing main memory, 
hardware has very large block size which is difficult for 
compressing the cache lines. 
  Frequent pattern Compression (FPC) technique 
compresses the cache line by storing a frequently 
appearing word patterns [4]. Each cache line is 
compressed on a word by word basis and is splitted into a 
32-bit word. Each 32-bit word is encoded as a 3-bit prefix 
and data shown in table 1. If the word matches with any of 
the patterns given in Table 1, then each word in the cache 
line is encoded into a compressed format. If theword does 
not match with any of these patterns, then it is stored in its 
original 32-bit format i.e. the whole word is stored with 
the prefix ‘111’.  
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Table-1. 
 

 
 
 Cache line compression takes place when data is 
written back from L1 cache to L2 cache. Using a simple 
circuit, a cache line can be compressed easily by checking 
each word for pattern matching. It can be done in a 
memory pipeline. Cache line decompression takes place 
when data is read from the L2 to the L1 cache. 
Compression is faster than the decompression process, 
since prefixes for all words are in series. Here prefix can 
be used to find the length of the encoded word. In this 
technique, no hardware implementation is possible and so 
its exact performance, power consumption and area are 
unknown. 
  Restrictive compression technique is used to 
reduce the cache access latency [5], which results in 
increase in the L1 data cache capacity. The basic 
technique used in this is All Words Narrow (AWN). This 
technique compresses a cache block only if all the words 
in the cache block are of narrow width. If the word can be 
represented using 16 bits, then it is considered as a narrow 
word. This AWN technique alone can be used to increase 
the cache capacity of L1 data by about 21%. The AWN 
technique can be extended by leaving some extra space for 
a few upper half words (AHS) in a cache block. Further 
the AHS technique can be widened to Adaptive AHS 
(AAHS), so that a cache block uses the number of upper 
half words. In the cache, the physical RAM space is 
provided for the cache block named as ‘physical cache 
block’ which holds a normal cache block (width bit=”0”) 
or up to two narrow cache blocks (width bit=”1”). In the 
AWN technique, LRU policy acts as a replacement policy. 
In the cache block the byte offset of each word depends on 
the size of the words that present before it. So to read a 
word from the block, it will need to recalculate the byte 
offset. The drawback of this technique is to reduce the 
cache access latency, it cannot change the byte offset of 
the memory reference.In short cache compression 
hardware performance and low area and power overheads 
is common in cache compression research [2], [7]-[10]. 
In this work we present a c-pack algorithm which is a 
lossless compression algorithm mainly for on-chip cache 
compression. The main contributions of our work follow: 
 

 C-Pack mainly aims on-chip cache compression. It 
allows a good compression ratio even when the 
compression is done on small cache lines. For 

practical use performance, area and power 
consumption are low enough [3]. 

 The performance and power consumption of a 
cache compression algorithm can be easily designed 
and optimized, when implemented using FPGA. 

 C-Pack constitutes a pair of compressed lines to fit 
into a single uncompressed cache line. 

 C-Pack is twice fast when compared to the existing 
hardware implementations that were potentially 
suitable for cache compression. 

 The proposed hardware can be easily amended to 
other high performance lossless compression 
applications. 
 

Cache compression architecture 
 In this work, private on-chip L2 caches can be 
examined, because in contrast to a shared L2 cache, the 
design styles of private L2 caches remain persistent when 
the number of processor core increases. A system 
architecture where compression used is shown in Figure-1. 
Each processor has private L1 and L2 caches. The L2 
cache is divided into two regions: an uncompressed region 
(L2) and compressed region (L2C). For each processor, 
the sizes of the uncompressed region and compressed 
region can be determined statically or adjusted to the 
processor’s needs dynamically. In extreme cases, the 
whole L2 cache is compressed due to capacity 
requirements or uncompressed to minimize access latency. 
We consider a three level cache hierarchy consisting of 
consisting of L1 cache, uncompressed L2 region and 
compressed L2 region. The L1 cache can be used for 
communication purpose i.e. to communicate with the 
uncompressed region of the L2 cache, which in turn swaps 
data with the compressed region through compressor and 
decompressor, i.e. in the compressor the uncompressed 
line can be compressed and placed in the compressed 
region and vice versa. Compressed L2 is inherently a 
virtual layer in the memory hierarchy with larger size, but 
higher access latency than uncompressed L2. For the 
proposed technique i.e. for a shared L2 cache, no 
architectural changes are needed. 
 

 
 

Figure-1. System architecture in which cache compression 
used. 
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3. C-PACK COMPRESSION ALGORITHM 
 This section briefly explains the proposed C-Pack 
compression algorithm and several important features that 
allow an efficient hardware implementation, many of 
which would be challenged for a software implementation. 
 
Design constraints and challenges 
 We first point out several design constraints and 
challenges freaky to the cache compression problem: 
 
 Cache compression requires hardware that can 

de/compress a word in only a few CPU clock 
cycles. This rules out software implementations and 
has great improvement over compression algorithm 
design. 

 To perpetuate the correctness of microprocessor 
operation, cache compression algorithms must be 
lossless. 

 The block size for cache compression is small when 
compared to other compression applications such as 
file and main memory compression. 
 

C-Pack algorithm overview 
 C-Pack is a lossless compression algorithm 
particularly for high performance hardware based on-chip 
cache compression. It achieves a good compression ratio 
when used to compress data commonly found in 
microprocessor low-level on-chip caches, e.g. L2 caches 
[6]. C-Pack achieves compression by two means 1) For 
frequently appearing word, it uses statically decided, 
compact encodings. 2) For other frequently appearing 
words, it encodes using dynamically updated dictionary. 
The dictionary supports partial word matching as well as 
full word matching. The patterns and coding schemes used 
by C-Pack are given in Table-2. The frequently appearing 
data is given in pattern column. In that pattern column ‘z’ 
represents a zero byte, ‘m’ represents a byte matched 
against a dictionary entry and ‘x’ represents an unmatched 
byte. In the output column, ‘B’ represents a byte and ‘b’ 
represents a bit.  

Table-2. 
 

 
 The C-Pack compression and decompression 
algorithms are illustrated in Figure-2 and 4. Here two 
word input is used per cycle. This algorithm is pertinent 
for more than two words per cycle. During one iteration, 
each word is first compared with patterns “zzzz” and 
“zzzx”. If there is a match against patterns, then the output 

is obtained by combining the corresponding code and 
unmatched bytes as indicated in Table-2. Otherwise the 
word can be compared with all dictionary entries and 
determines the one with the most matched bytes by 
compressor. The compression result is then generated by 
combining code, dictionary entry index and unmatched 
bytes if any. A word which does not match with the 
patterns is pushed into the dictionary. The compression 
result with different input words are shown in Figure-3. 
The code and the dictionary index are enclosed in 
parentheses in each output. In our implementation, though 
we used a 4-word dictionary the size of the dictionary is 
set to64B. 
 During decompression, the decompressor fetches 
the compressed words first and then extracts the codes for 
analyzing the patterns of each word, which are then 
compared against the codes indicated in Table-2. If the 
code indicates a pattern match, the original word is 
recovered by combining zeroes and unmatched bytes, if 
any. Otherwise the decompression output is obtained by 
combining bytes from the input word with bytes from 
dictionary entries. The C-Pack is particularly suitable for 
hardware implementation. 
 

 
 

Figure-2. C-Pack compression. 
 

The advantage of C-Pack is an input word is compared 
with multiple potential patterns and with dictionary entries 
simultaneously. This permits rapid execution with good 
compression ratio in a hardware implementation, but 
might not be suitable for software implementation. C-
Pack’s virtually parallel design allows an efficient 
hardware implementation, in which pattern matching, 
dictionary matching and processing multiple words are all 
executed simultaneously. To reduce hardware complexity, 
various design parameters such as dictionary replacement 
policy and coding scheme were chosen. In the proposed C-
Pack implementation, two words are processed in parallel 
per cycle. Achieving this, while still permitting an 
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accurate dictionary match for the second word is 
challenging. 
 

 
 

Figure-3. Compression examples with different inputs. 
 

4. C-PACK HARDWARE IMPLEMENTATION 
 In this section, we briefly explain the description 
of proposed hardware implementation of C-Pack. Notice 
that though the proposed compressor and decompressor 
mainly target on-line cache compression, it can be used in 
other data compression applications such as memory 
compression and network data compression, with few or 
no modifications. 
 

 
 

Figure-4. C-Pack decompression. 
 
Compression hardware 
 This section describes the design and 
optimization of proposed compression hardware. The 
compressor is splitted into three pipeline stages shown in 
Figure-4. This design supports incremental transmission 
i.e. before the whole block has been compressed, the 
compressed data can be transmitted. So the compression 
latency can be reduced.  
 
Pipeline stage 1 
 This stage can be used for matching purpose i.e. 
it can be used for matching the patterns as well as 
dictionary entries on two uncompressed words in parallel. 
The comparator array 1 is used to match the first word 
against patterns “zzzz” and “zzzx”. Comparator array 2 
matches it with all the dictionary entries (e.g. 

AAAAAAAA, 12340000), both in parallel. The same 
process is carried out for the second word also. During 
dictionary matching, the second word is compared with 
the first word as well as with the dictionary entries. The 
pattern matching results are then encoded using priority 
encoders 2 and 3. The first word and second word are 
processed simultaneously to increase the throughput. The 
result obtained from the priority encoder is used to 
determine whether these two words are used to push into 
the FIFO dictionary.  
 FIFO dictionary acts as a replacement policy. The 
dictionary size of FIFO here is 64 B. When the dictionary 
becomes full, it should remove the existing word and leave 
a place for a new word. The reading and writing 
operations can be performed in the FIFO memory. The 
dictionary supports partial word matching as well as full 
word matching. The appropriate dictionary content when 
processing the second word depends on whether the first 
word is matched with a pattern. If there is a match, the 
first word will not appear in the dictionary. Otherwise, it 
will be in the dictionary and the presence of the first word 
can be used to encode the second word.  
 
Pipeline stage 2 
 This stagecomputes the total length of the two 
uncompressed and based on this length, it generates the 
control signal. Based on the dictionary matching from the 
stage 1, priority encoder 1 and 4 determines the dictionary 
entries with the most matched bytes. The obtained result is 
then sent to word length generator. Word length generators 
1 and 2 are used to calculate the length of each 
compressed word. The total length calculator can be used 
to add the two lengths and it is represented by signal 
total_length. Then the value of total_length can be added 
to two internal signals, namely sum_partial and 
sum_length by using the length accumulator. Sum_partial 
represents the number of compressed bits stored in register 
array 1that have not been transmitted. If the updated 
sum_partial value is larger than 64 bits, then the 
sum_partial is decreased by 64 and the signal store_flag is 
generated. If the sum_total is larger than the original cache 
line size, then the compressor stops compressing and sends 
back the original cache line stored in the backup buffer. 
Backup buffer can be used to store the cache line.  
 

 
Figure-5. Compressor architecture. 
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Pipeline stage 3 is mainly for packing and shifting. This 
stage produces the compression output by combining 
codes, bytes from input word and bytes from dictionary 
entries depending on the pattern and dictionary matching 
results from the previous stages. Here the challenging is to 
place the compressed pair of words in the right location 
that is in register array 1, which is denoted by Reg1 
[135:0]. It is impossible to pre select the output location, 
since the length of the compressed word differs from word 
to word. Without knowing the shift length, the register 
array 1 should be shifted to fit in the compressed output in 
a single. This problem can be overcome by analyzing the 
output length. Note that a single compressed word can 
have only seven possible output lengths, with maximum 
length of 34 bits. Therefore, we use two 34-bit buffers 
which can be used to store the first and second compressed 
outputs produced by code concatenators 1 and 2 in the 
lower bits, with the high unused bits set tozero. Thetwo 
34-bit buffers can be denoted by A [33:0], B [33:0].  
A barrel shifter can be used shift a data word by a 
specified number of bits in one clock cycle. It can be 
implemented as a sequence of multiplexers (mux). Reg1 
[135:0] is shifted by total length using barrel shifter 2. The 
result obtained by shifting is denoted by Reg1s [135:0]. At 
the same time, A [33:0] is shifted using barrel shifter 1by 
the output length of the second compressed word and the 
result obtained by this shift is denoted by S [65:0], with all 
higher bits set to zero. Because of the maximum total 
output length is 68, Reg1 [135:68] has only one input 
source, i.e., Reg1s [135:68]. But the Reg1 [67:2] have 
multiple sources: B, S and Reg1s [0]. . The unused states 
in the input sources are all initialized to zero, which should 
not affect the OR function. The OR function is used to 
combine the inputs together. When the store flag is 1, then 
the multiplexer array 1 selects the input as Reg2 [135:0] 
which is obtained from the shifting result, otherwise it 
selects the original Reg2 [135:0].  
 Latch is enabled depending on the number of 
compressed bits accumulated in Reg2 [135:0] that have 
not been transmitted. Multiplexer array 3 selects fill_shift 
and the output of latch using fill_flag. Fill_shift represents 
128-bit signal that stores the remaining compressed bits 
that have not been transmitted with zeroes. Fill_flag finds 
whether to select the padded signal. Multiplexer array 2 
chooses the output data depends on the total number of 
compressed words. When the total compressed line has 
beyond the uncompressed line size, the contents in the 
backup buffer are selected as the output. Otherwise the 
multiplexer array 3 output is selected. 
 
Decompression hardware 
 This section describes the design and 
improvement of the proposed decompression hardware. 
We describe the data flow inside the decompressor and 
point out the challenges specific to the decompressor 
design. 
 
a) Word unpacking: When decompression starts, the 

two codes of the first and second word can be 

extracted by unpacker. Signals first_code and 
second_code represent the first two bits of the codes 
in the two compressed words. Signals first_bak and 
second_bak represent the next two bits following 
first_code and second_code respectively. It is mainly 
useful when the corresponding code is a 4-bit code. 

 
b) Word decompressing: Decoders 1 and 2 can be used 

for comparing the codes of the first and second word 
against the static codes in Table 1 to derive the 
patterns for the two words, which are then 
decompressed by combining zero bytes, bytes from 
FIFO dictionary and bytes from register array 1. To 
produce the decompression results, the bytes are 
mainly depends on the values of the four code related 
signals. If there is no pattern match occurs, then the 
decompressed words are pushed into FIFO dictionary. 

c) Length updating: Length generator can be used to 
derive the compressed lengths of the two words, i.e. 
first_len and second_len, based on the four code- 
related signals. The two lengths are then subtracted 
from chunk_length (denotes the number of the 
remaining bits to decompress in register array 1). The 
subtraction result is then compared with 68, and if the 
length is less than 68 then more data are shifted in and 
combined with the remaining compressed bits in 
register array 1. 
 

5. EXPERIMENTAL RESULT 
 The Compression and decompression outputs 
according to C-Pack algorithm are shown below: 
 
Compression results 
 The value for A is 1010 and the value for B is 
1011. The input value given here is 000000AB. First the 
input is compared with the patterns “zzzz” and “zzzx”. If 
there is a match occurs, then it look up the code and the 
output is obtained by combining the zeroes (0000), code 
(1101), and Aand B shown in below Figure-6(a). 
 

 
 

Figure-6(a). Compression output for 000000AB. 
 
 If there is no pattern match as well as no 
dictionary match, then the output is obtained by combining 
the unmatched bytes (zz),code word (01), and the inputs 
B(1101) and 2022(0010000000100010) shown in below 
Figure-6(b). 
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Figure-6(b). Compression output for BBBB2022 
 
If there is no pattern match and dictionary match is 
possible then the output is obtained by combining the code 
(1110), dictionary entry index (00) and unmatched bytes is 
shown in below Figure-6(c) 
 

 
 

Figure-6(c). Compression output for 123456AA. 
 
Decompression results 
 During decompression the original word is 
recovered. If the extracted code indicates a pattern match, 
then the original word is recovered by combining zeroes 
and it is given in Figure-7(a). 
 

 
 

Figure-7(a). Decompression result for (1100)AB. 
 

The decompression result is mainly depends on the values 
four code related signals. Figure-7(b) shows that it has the 
two code related input, so the output is as like input. 
 

 
 

Figure-7(b). Decompression result for (01)BBBB2022. 
 
If the code indicates that there is no match with the pattern 
but there is match with the dictionary entries then the 
original word is recovered by concatenating the zeroes and 
unmatched bytes, if any shown in Figure-7(c). 
 

 
 

Figure-7(c).Decompression result for (111000)AA. 
 
6. CONCLUSIONS 
 By the implementation of the proposed algorithm, 
it is possible to compress and decompress the data in to the 
cache in an efficient way without altering its performance. 
This method maintains good compression ratio and area 
overhead and thus decreases memory latency and speeds 
up the processor and by making the system to work with 
high speed and thus helpful for mankind. It can also be 
used for other high-performance lossless data compression 
applications with few or no modifications. 
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