
 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3178

A NOVEL APPROACH FOR A HIGH PERFORMANCE LOSSLESS CACHE
COMPRESSION ALGORITHM

K. Janaki1, K. Indhumathi2, P. Vijayakumar3 and K. Ashok Kumar4

1Department of Electronics and Communication Engineering, Prathyusha Institute of Technology and Management, Thiruvallur, India
2Department of Electronics, Prathyusha Institute of Technology and Management, India

3Department of Electrical and Electronics Engineering, Karpagam College of Engineering, Coimbatore, India
4Department of Electronics, SNR Sons College, Coimbatore, India

ABSTRACT
 Speed is one of the major issues for any electronic component. Speed based microprocessor system mainly
depends on speed of the microprocessor and memory access time. The off-chip memory takes more time for accessing than
on-chip memory. For these reasons, microprocessor system designers find cache compression is such a technique to
increase the speed of a microprocessor based system, as it increases the cache capacity and off-chip bandwidth. Previous
work on cache compression has made unsubstantiated assumptions about performance, power consumption and area
overheads of the proposed compression algorithm and hardware. In this work we propose a lossless compression algorithm
that has been designed for high performance, fast on-line data compression and particularly for cache compression. This
algorithm has a number of novel features tailored for this application, including combining pairs of compressed lines into
one cache line and allowing parallel compression of multiple words while using a single dictionary and without
degradation in compression ratio.

Keywords: cache compression, on-line data compression, parallel compression.

1. INTRODUCTION
 Nowadays microprocessor speeds have been
increasing faster than off chip memory speed. Because
today’s microprocessors have on-chip cache hierarchies
which has several megabytes of storage. When the system
design utilizes the multiprocessor, it requires more access
to memory [1]. Thus it rears a wall between the processor
and memory, which results in fortifying the off chip
communication. Microprocessor researchers found that a
techniques that reduces the communication between the
offchip which does not affecting the performance have
capable to alleviate this problem. Cache compression is
such a technique that reducing the off chip misses and
improving the performance.

The challenges over cache compression are:

1. Compression and decompression should be very
fast.

2. The hardware should occupy less area.

3. The algorithm should compress small block without
losses. E.g. 64-byte cache lines when maintaining a
good compression ratio (the ratio between the sizes
of the compressed data over uncompressed data).

4. Cache compression should reduce the power
consumption.

2. RELATED WORK AND CONTRIBUTIONS
 The X-Match algorithm [3] is a dictionary based
compression algorithm mainly depends on previous data
and strives to match the current data element with the
dictionary entries. The entries of each word in the
dictionary are 4-bytes wide and many types of matches are
possible. The bytes which do not match with the

dictionary are sent separately. This partial match concept
refers to the procedure ‘X-Match’. The dictionary uses
Move to front strategy (MTF), where new tuple is placed
at the front of the dictionary while the remaining words or
tuples are move down to one position. This MTF strategy
generates a Least Replacement Policy (LRU). So the
dictionary size tuples in the last position are used as a
compression process. When the dictionary becomes full
which is in the last position is worn-out and the leaving the
place for a new one. A match coding function requires to
code these three separate fields:

 Match location
 Match type
 Any extra characters

 The X-Match algorithm was done in FPGA.
Though it is appropriate for compressing main memory,
hardware has very large block size which is difficult for
compressing the cache lines.
 Frequent pattern Compression (FPC) technique
compresses the cache line by storing a frequently
appearing word patterns [4]. Each cache line is
compressed on a word by word basis and is splitted into a
32-bit word. Each 32-bit word is encoded as a 3-bit prefix
and data shown in table 1. If the word matches with any of
the patterns given in Table 1, then each word in the cache
line is encoded into a compressed format. If theword does
not match with any of these patterns, then it is stored in its
original 32-bit format i.e. the whole word is stored with
the prefix ‘111’.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3179

Table-1.

 Cache line compression takes place when data is
written back from L1 cache to L2 cache. Using a simple
circuit, a cache line can be compressed easily by checking
each word for pattern matching. It can be done in a
memory pipeline. Cache line decompression takes place
when data is read from the L2 to the L1 cache.
Compression is faster than the decompression process,
since prefixes for all words are in series. Here prefix can
be used to find the length of the encoded word. In this
technique, no hardware implementation is possible and so
its exact performance, power consumption and area are
unknown.
 Restrictive compression technique is used to
reduce the cache access latency [5], which results in
increase in the L1 data cache capacity. The basic
technique used in this is All Words Narrow (AWN). This
technique compresses a cache block only if all the words
in the cache block are of narrow width. If the word can be
represented using 16 bits, then it is considered as a narrow
word. This AWN technique alone can be used to increase
the cache capacity of L1 data by about 21%. The AWN
technique can be extended by leaving some extra space for
a few upper half words (AHS) in a cache block. Further
the AHS technique can be widened to Adaptive AHS
(AAHS), so that a cache block uses the number of upper
half words. In the cache, the physical RAM space is
provided for the cache block named as ‘physical cache
block’ which holds a normal cache block (width bit=”0”)
or up to two narrow cache blocks (width bit=”1”). In the
AWN technique, LRU policy acts as a replacement policy.
In the cache block the byte offset of each word depends on
the size of the words that present before it. So to read a
word from the block, it will need to recalculate the byte
offset. The drawback of this technique is to reduce the
cache access latency, it cannot change the byte offset of
the memory reference.In short cache compression
hardware performance and low area and power overheads
is common in cache compression research [2], [7]-[10].
In this work we present a c-pack algorithm which is a
lossless compression algorithm mainly for on-chip cache
compression. The main contributions of our work follow:

 C-Pack mainly aims on-chip cache compression. It
allows a good compression ratio even when the
compression is done on small cache lines. For

practical use performance, area and power
consumption are low enough [3].

 The performance and power consumption of a
cache compression algorithm can be easily designed
and optimized, when implemented using FPGA.

 C-Pack constitutes a pair of compressed lines to fit
into a single uncompressed cache line.

 C-Pack is twice fast when compared to the existing
hardware implementations that were potentially
suitable for cache compression.

 The proposed hardware can be easily amended to
other high performance lossless compression
applications.

Cache compression architecture
 In this work, private on-chip L2 caches can be
examined, because in contrast to a shared L2 cache, the
design styles of private L2 caches remain persistent when
the number of processor core increases. A system
architecture where compression used is shown in Figure-1.
Each processor has private L1 and L2 caches. The L2
cache is divided into two regions: an uncompressed region
(L2) and compressed region (L2C). For each processor,
the sizes of the uncompressed region and compressed
region can be determined statically or adjusted to the
processor’s needs dynamically. In extreme cases, the
whole L2 cache is compressed due to capacity
requirements or uncompressed to minimize access latency.
We consider a three level cache hierarchy consisting of
consisting of L1 cache, uncompressed L2 region and
compressed L2 region. The L1 cache can be used for
communication purpose i.e. to communicate with the
uncompressed region of the L2 cache, which in turn swaps
data with the compressed region through compressor and
decompressor, i.e. in the compressor the uncompressed
line can be compressed and placed in the compressed
region and vice versa. Compressed L2 is inherently a
virtual layer in the memory hierarchy with larger size, but
higher access latency than uncompressed L2. For the
proposed technique i.e. for a shared L2 cache, no
architectural changes are needed.

Figure-1. System architecture in which cache compression
used.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3180

3. C-PACK COMPRESSION ALGORITHM
 This section briefly explains the proposed C-Pack
compression algorithm and several important features that
allow an efficient hardware implementation, many of
which would be challenged for a software implementation.

Design constraints and challenges
 We first point out several design constraints and
challenges freaky to the cache compression problem:

 Cache compression requires hardware that can

de/compress a word in only a few CPU clock
cycles. This rules out software implementations and
has great improvement over compression algorithm
design.

 To perpetuate the correctness of microprocessor
operation, cache compression algorithms must be
lossless.

 The block size for cache compression is small when
compared to other compression applications such as
file and main memory compression.

C-Pack algorithm overview
 C-Pack is a lossless compression algorithm
particularly for high performance hardware based on-chip
cache compression. It achieves a good compression ratio
when used to compress data commonly found in
microprocessor low-level on-chip caches, e.g. L2 caches
[6]. C-Pack achieves compression by two means 1) For
frequently appearing word, it uses statically decided,
compact encodings. 2) For other frequently appearing
words, it encodes using dynamically updated dictionary.
The dictionary supports partial word matching as well as
full word matching. The patterns and coding schemes used
by C-Pack are given in Table-2. The frequently appearing
data is given in pattern column. In that pattern column ‘z’
represents a zero byte, ‘m’ represents a byte matched
against a dictionary entry and ‘x’ represents an unmatched
byte. In the output column, ‘B’ represents a byte and ‘b’
represents a bit.

Table-2.

 The C-Pack compression and decompression
algorithms are illustrated in Figure-2 and 4. Here two
word input is used per cycle. This algorithm is pertinent
for more than two words per cycle. During one iteration,
each word is first compared with patterns “zzzz” and
“zzzx”. If there is a match against patterns, then the output

is obtained by combining the corresponding code and
unmatched bytes as indicated in Table-2. Otherwise the
word can be compared with all dictionary entries and
determines the one with the most matched bytes by
compressor. The compression result is then generated by
combining code, dictionary entry index and unmatched
bytes if any. A word which does not match with the
patterns is pushed into the dictionary. The compression
result with different input words are shown in Figure-3.
The code and the dictionary index are enclosed in
parentheses in each output. In our implementation, though
we used a 4-word dictionary the size of the dictionary is
set to64B.
 During decompression, the decompressor fetches
the compressed words first and then extracts the codes for
analyzing the patterns of each word, which are then
compared against the codes indicated in Table-2. If the
code indicates a pattern match, the original word is
recovered by combining zeroes and unmatched bytes, if
any. Otherwise the decompression output is obtained by
combining bytes from the input word with bytes from
dictionary entries. The C-Pack is particularly suitable for
hardware implementation.

Figure-2. C-Pack compression.

The advantage of C-Pack is an input word is compared
with multiple potential patterns and with dictionary entries
simultaneously. This permits rapid execution with good
compression ratio in a hardware implementation, but
might not be suitable for software implementation. C-
Pack’s virtually parallel design allows an efficient
hardware implementation, in which pattern matching,
dictionary matching and processing multiple words are all
executed simultaneously. To reduce hardware complexity,
various design parameters such as dictionary replacement
policy and coding scheme were chosen. In the proposed C-
Pack implementation, two words are processed in parallel
per cycle. Achieving this, while still permitting an

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3181

accurate dictionary match for the second word is
challenging.

Figure-3. Compression examples with different inputs.

4. C-PACK HARDWARE IMPLEMENTATION
 In this section, we briefly explain the description
of proposed hardware implementation of C-Pack. Notice
that though the proposed compressor and decompressor
mainly target on-line cache compression, it can be used in
other data compression applications such as memory
compression and network data compression, with few or
no modifications.

Figure-4. C-Pack decompression.

Compression hardware
 This section describes the design and
optimization of proposed compression hardware. The
compressor is splitted into three pipeline stages shown in
Figure-4. This design supports incremental transmission
i.e. before the whole block has been compressed, the
compressed data can be transmitted. So the compression
latency can be reduced.

Pipeline stage 1
 This stage can be used for matching purpose i.e.
it can be used for matching the patterns as well as
dictionary entries on two uncompressed words in parallel.
The comparator array 1 is used to match the first word
against patterns “zzzz” and “zzzx”. Comparator array 2
matches it with all the dictionary entries (e.g.

AAAAAAAA, 12340000), both in parallel. The same
process is carried out for the second word also. During
dictionary matching, the second word is compared with
the first word as well as with the dictionary entries. The
pattern matching results are then encoded using priority
encoders 2 and 3. The first word and second word are
processed simultaneously to increase the throughput. The
result obtained from the priority encoder is used to
determine whether these two words are used to push into
the FIFO dictionary.
 FIFO dictionary acts as a replacement policy. The
dictionary size of FIFO here is 64 B. When the dictionary
becomes full, it should remove the existing word and leave
a place for a new word. The reading and writing
operations can be performed in the FIFO memory. The
dictionary supports partial word matching as well as full
word matching. The appropriate dictionary content when
processing the second word depends on whether the first
word is matched with a pattern. If there is a match, the
first word will not appear in the dictionary. Otherwise, it
will be in the dictionary and the presence of the first word
can be used to encode the second word.

Pipeline stage 2
 This stagecomputes the total length of the two
uncompressed and based on this length, it generates the
control signal. Based on the dictionary matching from the
stage 1, priority encoder 1 and 4 determines the dictionary
entries with the most matched bytes. The obtained result is
then sent to word length generator. Word length generators
1 and 2 are used to calculate the length of each
compressed word. The total length calculator can be used
to add the two lengths and it is represented by signal
total_length. Then the value of total_length can be added
to two internal signals, namely sum_partial and
sum_length by using the length accumulator. Sum_partial
represents the number of compressed bits stored in register
array 1that have not been transmitted. If the updated
sum_partial value is larger than 64 bits, then the
sum_partial is decreased by 64 and the signal store_flag is
generated. If the sum_total is larger than the original cache
line size, then the compressor stops compressing and sends
back the original cache line stored in the backup buffer.
Backup buffer can be used to store the cache line.

Figure-5. Compressor architecture.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3182

Pipeline stage 3 is mainly for packing and shifting. This
stage produces the compression output by combining
codes, bytes from input word and bytes from dictionary
entries depending on the pattern and dictionary matching
results from the previous stages. Here the challenging is to
place the compressed pair of words in the right location
that is in register array 1, which is denoted by Reg1
[135:0]. It is impossible to pre select the output location,
since the length of the compressed word differs from word
to word. Without knowing the shift length, the register
array 1 should be shifted to fit in the compressed output in
a single. This problem can be overcome by analyzing the
output length. Note that a single compressed word can
have only seven possible output lengths, with maximum
length of 34 bits. Therefore, we use two 34-bit buffers
which can be used to store the first and second compressed
outputs produced by code concatenators 1 and 2 in the
lower bits, with the high unused bits set tozero. Thetwo
34-bit buffers can be denoted by A [33:0], B [33:0].
A barrel shifter can be used shift a data word by a
specified number of bits in one clock cycle. It can be
implemented as a sequence of multiplexers (mux). Reg1
[135:0] is shifted by total length using barrel shifter 2. The
result obtained by shifting is denoted by Reg1s [135:0]. At
the same time, A [33:0] is shifted using barrel shifter 1by
the output length of the second compressed word and the
result obtained by this shift is denoted by S [65:0], with all
higher bits set to zero. Because of the maximum total
output length is 68, Reg1 [135:68] has only one input
source, i.e., Reg1s [135:68]. But the Reg1 [67:2] have
multiple sources: B, S and Reg1s [0]. . The unused states
in the input sources are all initialized to zero, which should
not affect the OR function. The OR function is used to
combine the inputs together. When the store flag is 1, then
the multiplexer array 1 selects the input as Reg2 [135:0]
which is obtained from the shifting result, otherwise it
selects the original Reg2 [135:0].
 Latch is enabled depending on the number of
compressed bits accumulated in Reg2 [135:0] that have
not been transmitted. Multiplexer array 3 selects fill_shift
and the output of latch using fill_flag. Fill_shift represents
128-bit signal that stores the remaining compressed bits
that have not been transmitted with zeroes. Fill_flag finds
whether to select the padded signal. Multiplexer array 2
chooses the output data depends on the total number of
compressed words. When the total compressed line has
beyond the uncompressed line size, the contents in the
backup buffer are selected as the output. Otherwise the
multiplexer array 3 output is selected.

Decompression hardware
 This section describes the design and
improvement of the proposed decompression hardware.
We describe the data flow inside the decompressor and
point out the challenges specific to the decompressor
design.

a) Word unpacking: When decompression starts, the

two codes of the first and second word can be

extracted by unpacker. Signals first_code and
second_code represent the first two bits of the codes
in the two compressed words. Signals first_bak and
second_bak represent the next two bits following
first_code and second_code respectively. It is mainly
useful when the corresponding code is a 4-bit code.

b) Word decompressing: Decoders 1 and 2 can be used

for comparing the codes of the first and second word
against the static codes in Table 1 to derive the
patterns for the two words, which are then
decompressed by combining zero bytes, bytes from
FIFO dictionary and bytes from register array 1. To
produce the decompression results, the bytes are
mainly depends on the values of the four code related
signals. If there is no pattern match occurs, then the
decompressed words are pushed into FIFO dictionary.

c) Length updating: Length generator can be used to
derive the compressed lengths of the two words, i.e.
first_len and second_len, based on the four code-
related signals. The two lengths are then subtracted
from chunk_length (denotes the number of the
remaining bits to decompress in register array 1). The
subtraction result is then compared with 68, and if the
length is less than 68 then more data are shifted in and
combined with the remaining compressed bits in
register array 1.

5. EXPERIMENTAL RESULT
 The Compression and decompression outputs
according to C-Pack algorithm are shown below:

Compression results
 The value for A is 1010 and the value for B is
1011. The input value given here is 000000AB. First the
input is compared with the patterns “zzzz” and “zzzx”. If
there is a match occurs, then it look up the code and the
output is obtained by combining the zeroes (0000), code
(1101), and Aand B shown in below Figure-6(a).

Figure-6(a). Compression output for 000000AB.

 If there is no pattern match as well as no
dictionary match, then the output is obtained by combining
the unmatched bytes (zz),code word (01), and the inputs
B(1101) and 2022(0010000000100010) shown in below
Figure-6(b).

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3183

Figure-6(b). Compression output for BBBB2022

If there is no pattern match and dictionary match is
possible then the output is obtained by combining the code
(1110), dictionary entry index (00) and unmatched bytes is
shown in below Figure-6(c)

Figure-6(c). Compression output for 123456AA.

Decompression results
 During decompression the original word is
recovered. If the extracted code indicates a pattern match,
then the original word is recovered by combining zeroes
and it is given in Figure-7(a).

Figure-7(a). Decompression result for (1100)AB.

The decompression result is mainly depends on the values
four code related signals. Figure-7(b) shows that it has the
two code related input, so the output is as like input.

Figure-7(b). Decompression result for (01)BBBB2022.

If the code indicates that there is no match with the pattern
but there is match with the dictionary entries then the
original word is recovered by concatenating the zeroes and
unmatched bytes, if any shown in Figure-7(c).

Figure-7(c).Decompression result for (111000)AA.

6. CONCLUSIONS
 By the implementation of the proposed algorithm,
it is possible to compress and decompress the data in to the
cache in an efficient way without altering its performance.
This method maintains good compression ratio and area
overhead and thus decreases memory latency and speeds
up the processor and by making the system to work with
high speed and thus helpful for mankind. It can also be
used for other high-performance lossless data compression
applications with few or no modifications.

REFERENCES

[1] A. R. Alameldeen and D. A. Wood. 2004. “Adaptive

cache compression for high-performance processors,”
in Proc. Int. Symp. Computer Architecture, Jun. pp.
212–223.

[2] E. G. Hallnor and S. K. Reinhardt. 2004. “A

compressed memory hierarchy using an indirect index
cache,” in Proc. Workshop Memory Performance
Issues, pp. 9–15.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3184

[3] J. L. Núñez and S. Jones. 2003. “Gbit/s lossless data
compression hardware,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., Vol. 11, no. 3, pp. 499–
510, June.

[4] A. Alameldeen and D. A. Wood. 2004. “Frequent

pattern compression: A significance-based
compression scheme for 12 caches,” Dept. Comp.
Scie. , Univ. Wisconsin-Madison, Tech. Rep. 1500,
April.

[5] P. Pujara and A. Aggarwal. 2005. “Restrictive

compression techniques to increase level 1 cache
capacity,” in Proc. Int. Conf. Computer Design, Oct.
pp. 327–333.

[6] L. Yang, H. Lekatsas and R. P. Dick. 2006. “High-

performance operating system controlled memory
compression,” in Proc. Design Automation Conf., Jul.
pp. 701–704.

[7] J.-S. Lee et al. 2002. “Design and evaluation of a
selective compressed memory system,” in Proc. Int.
Conf. Computer Design, October 1999, pp. 184–191.

[8] N. S. Kim, T. Austin, and T. Mudge, “Low-energy data

cache using sign compression and cache line
bisection,” presented at the Workshop on Memory
Performance Issues, May.

[9] K. S. Yim, J. Kim and K. Koh. 2004. “Performance

analysis of on-chip cache and main memory
compression systems for high-end parallel
computers,” in Proc. Int. Conf. Parallel Distributed
Processing Techniques Appl., Jun. pp. 469–475.

[10] N. R. Mahapatra et al. 2005. “A limit study on the

potential of compression for improving memory
system performance, power consumption, and cost,”
J. Instruction-Level Parallelism, vol. 7, pp. 1–37, July.

