
 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3203

FAULT TOLERANT BASED HYPER-HEURISTIC ALGORITHM FOR TASK
SCHEDULING IN CLOUD

R. Priyanka, P. Priyadharsini and M. Nakkeeran

Department of Computer Science, India
E-Mail: preethi.me13@gmail.com

ABSTRACT

 Cloud computing is one of the recent emerging technologies for providing classy services by means of the Internet
based on the requirements of the users. Numerous efficient scheduling algorithms are required to make a valuable use of
terrific capabilities of the cloud environment. The aim of task scheduling is to schedule the tasks within the given deadline
to achieve minimum makespan. The heuristics scheduling algorithm schedules the tasks on cloud by multiple iterations.
The diversity revealing and improvement revealing operators are used to determine which low-level heuristic is to be used
for finding enhanced solutions in task scheduling. The heuristics task scheduling should be fault tolerant to overcome the
failure of tasks. The proposed Fault Tolerant Based Hyper Heuristic Algorithm (FT-HHA) provides fault tolerance in task
scheduling by using task replication and task resubmission. FT-HHA schedules the tasks within the given deadline even in
the occurrence of failures. The experiments were carried out in a simulated cloud computing environment by scheduling
tasks in the existence of malfunction which are generated randomly.

Keywords: cloud computing, diversity revealing fault tolerance, heuristics scheduling, improvement revealing.

1. NTRODUCTION

Cloud computing is the way of using inaccessible
servers on the internet to handle, store and process data
instead of using a workstation. Cloud computing is better
hooked on to three categories: IaaS (Infrastructure as a
Service), PaaS (Platform as a Service), SaaS (Software as
a Service). Iaas provides servers and storage on demand
with the consumer paying accordingly. Paas allows the
users to build and develop the applications within a
providers framework. Saas enables the customers to use an
application on demand through the browser.

Cloud computing allow the users to access the
applications and data from any computer from any
location at any time because they are stored on a remote
server. It trim down the need for companies to acquire top
of the line servers and hardware or engage users to run
them since it is all maintained by a third party. There is no
need for purchasing any software licenses for every user
because the software servers are stored and executed
remotely by the cloud. By means of centralizing
bandwidth, storage, processing and memory in an offsite
environment for a charge, cloud computing can
significantly minimize the costs. The cloud can also store
data therefore companies do not have to residence servers
and databases themselves.
 In cloud computing, scheduling is the progression
of captivating decisions regarding the allocation of
available capacity and/or resources to jobs and/or
customers on time. Millions of user share cloud services
by submitting their millions of computing task to the cloud
computing environment. Scheduling of these millions of
task is a clash to the cloud environment Scheduling
process in cloud is divided into three stages namely;
Resource discovering and filtering, Resource selection,
Task allocation. In Resource discovering and filtering the
datacenter broker discovers the resources present in the
network system and collects status information about the

resources. In Resource selection the target resource is
selected based on the requirements of task and resource.
This is a deciding stage. In task allocation, the task is
allocated to selected resource.

2. JOB SCHEDULING IN CLOUD

 The needs of job scheduling in cloud computing
are load balance, quality of service, economic principles,
best running time, throughput. With computing systems
being shifted to cloud-based systems progressively, one of
the main characteristics is that it works on a pay-as-you-
use basis. Several studies attempted to define the
scheduling problem on cloud systems as the workflow
problem, which can be further classified into two levels:
service-level (platform layer and static scheduling) and
task-level (unified resource layer and dynamic
scheduling). Different from grid computing, the user can
install their programs on the virtual machines (VMs) and
determine how to execute their programs on the cloud
computing system. For these reasons, although both grid
computing and cloud computing are heterogeneous, the
key issues they face are very different. A good example is
the cost and latency of data transfer on these
environments. That is why some studies added more
considerations to their definitions of scheduling on cloud.
For instance, a couple of studies, used directed acyclic
graph (DAG) to define the scheduling problem on cloud.
The basic idea is to use the vertices of a DAG to represent
a set of tasks and the edges between the vertices to
represent the dependencies between the tasks.

3. HYPER HEURISTICS
Hyper-heuristics aim to discover some algorithms

that are capable of solving a whole range of problems,
with little or non-direct human control. Heuristic
techniques are often referred to as “search algorithms”.
The problems are solved by discovering a solution from

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3204

the set of all possible solutions for a given problem, which
is regarded as the “search space”[1]. Non-deterministic
search techniques such as simulated annealing method,
local search methods, evolutionary algorithm and other
search algorithms offer an alternative approach to an
exhaustive search to solve complicated computational
problems within a sensible amount of time. These methods
guarantee for finding a solution at any time, but it may not
be optimum.
 Hyper-heuristics must positively influence the
selection of heuristics. The optimized heuristics for a
given problem should compute high quality solutions. The
learning point should refine the algorithms, so that the
algorithm solutions subsequently meet the needs of the
training set and problems of a certain class can be solved
more efficiently. The response mechanism should move
towards optimum algorithm solutions in the workspace, as
it guides the selection of heuristic. The Algorithm
Selection Problem represents in a three-dimensional
coordinate system namely the relationship between a
problem instance, an algorithm solution and its
performance. Comparatively, the two-level model offers a
clear separation between the optimization of an algorithm
and the optimization process of a specific problem.

4. RELATED WORK
 The basic idea of heuristics is to use three key
operators—transition, evaluation, and determination [2]—
to “search” for the possible solutions on the convergence
process. t denotes the iteration number; tmax the maximum
number of iterations or the stop criteria. More precisely,
the transition operator creates the solution s, by using
methods which could be either perturbative or constructive
or both; the evaluation operator measures the fitness of s
by using a predefined measurement; and then the
determination operator determines the next search
directions based on the s from the transition operator and
the evaluation operator.

Figure-1. Outline of Heuristics.

The basic idea of [5] hybrid-heuristic algorithm is
to combine heuristic algorithms to perform the transition
(T), evaluation (E), and determination (D) at each
iteration, where Hi denotes one of the heuristic algorithms.
This kind of integration may compensate for the intrinsic
weak points of specific heuristic algorithms. A critical
problem is that although the hybrid-heuristic may have a
higher chance to find a better result than a single heuristic
does, it generally takes a longer computation time than
heuristics at each iteration of the convergence process.

Figure-2. Outline of Hybrid Heuristics.

They are simple and easy to implement. Some

rule based deterministic algorithms can find acceptable
solutions quickly. Most of them are compatible to each
other, so some studies have tried to integrate two or more
non-metaheuristic algorithms to solve the scheduling. The
most algorithms, such as the well-known branch-and-
bound and dynamic programming, are normally time
consuming because the number of checks they have to
perform is very large. The deterministic algorithms, while
they are very fast and easy to implement, they are easily
falling into local optima. The results obtained by these
algorithms may be far from optimal or even acceptable.

5. THE PROPOSED ALGORITHM

a) Fault tolerant based Hyper Heuristic scheduling

algorithm
A high-performance hyper-heuristic algorithm is

proposed for scheduling the jobs on cloud computing
systems to shrink the makespan. From the pool of
candidate heuristics, one of the heuristic algorithms will be
picked by the low-level heuristic (LLH) selection operator
as the heuristic algorithm that is to be performed. Two

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3205

revealing operators one for diversity revealing and one for
enhancement revealing are proposed for the proposed
algorithm to regulate the effectiveness to employ the low-
level heuristic algorithm. The suggested algorithm can be
useful to both sequence-dependent and sequence-
independent scheduling problems.

The proposed algorithm use the multiplicity

revealing and enhancement revealing operators to balance
the escalation and diversification in the search of the
solutions during the convergence process. As far as the
proposed algorithm described herein is concerned, the
low-level heuristic candidate pool consists of particle
swarm optimization, genetic algorithm, ant colony
optimization and simulated annealing. The selected
enhanced hyper-heuristic algorithm will then be performed
repeatedly until the termination criterion is met. More
specifically, the selected LLH will evolve the solution for
iterations by using the determine function to balance the
escalation and diversification of the search directions,
which in turn rely on the information provided by the
enhancement detection operator.

b) The improvement revealing operator

A simple random method is used to select the
low-level heuristic Hi from the candidate pool H.
According to the observation, the best so far makespan
(BSFMK) for both SA and GA could continue to improve
the results at early iterations (e.g., less than 250 iterations),
but it is difficult to improve the results at later iterations
(e.g., after 800 iterations), especially when the search
directions converge to a small number of directions. If the
selected Hi cannot improve the BSFMK after a row of ϕni
iterations, the improvement revealing operator will return
a false value to the high level hyper center to indicate that
it should pick up a new LLH. The improvement revealing
operator will return a false value in three cases: the
maximum number of iterations ϕmax is reached, the number
of iterations ϕni the solutions are not improved is reached,
and when the stop condition is reached.

c) The diversity revealing operator

In addition to the improvement revealing
operator, the diversity revealing operator is used by HHSA
to decide “when” to change the low-level heuristic
algorithm Hi. The diversity of the initial solution D(A0)
will be used as a threshold Ѳ, i.e., Ѳ = D(A0). The
diversity of the current solution D(AZ) is computed as the
average of the task distances between individual solutions.
If a task in two different individuals is assigned to the
same VM, the task distance is 0; otherwise, the task
distance is 1. If the diversity of the current solution D(A) is
less than the threshold Ѳ (the diversity of the initial
solution), this operator will return false, and algorithm will
then randomly select a new LLH.

Algorithm

[1] Set up parameters.

[2] Input the scheduling problem.
[3] Initialize the population of solutions A= {a1,a2,

..., aN}.
[4] Randomly select a heuristic algorithm Hi from the

candidate pool H.
[5] While the termination criterion is not met

a. Update the population of solutions A by using the
selected algorithm Hi.

b. F1=improvement_revealing(A).
c. F2=diversity_revealing(A).
d. If Ψ(Hi, F1, F2)
i. Randomly select a new Hi.

ii. Schedule(t, Hi)
e. End.

[6] End.
[7] Output the best so far solution as the final solution

d) Preprocessing module (PM)

The main functionality of preprocessing module
is to calculate all the parameters like threshold, heuristic
metric, deadline of each task etc., which are required in the
process of scheduling tasks. The PM accepts the data
required for the task from the user in the form of an
abstract data structure template.

e) Replication based scheduling module (RSM)

RSM module sorts all tasks in the ready queue as
in QWS algorithm based on Instructions time ratio and
Number of services. Instruction time ratio is the ratio
between the deadline of the task and the number of
instructions in the task. The tasks with less instruction
time ratio are scheduled first. If a task requires further
number of services, it may block the tasks which require
less services and thereby increasing the waiting time of
these tasks. So the task with less service is scheduled first.
After sorting all the tasks in the ready queue, it checks
whether the task requires any additional computation
services or storage services. If the task is allied to storage
service, then the task is mapped to the storage server.

The tasks in ready queue are mapped with the
available number of services in the datacenter by means of
the information that is present in registry. If any of the
services that are available in a datacenter are busy, then it
will check for the other datacenters and then it assigns to
the next server that is free. If all datacenters are busy, then
it will be mapped to the wait queue of the datacenter
which has fewer load when compared to others.

f) Resubmission based executor module(REM)
` REM sends all mapped tasks to the relevant
datacenter and also it has to wait for the acceptance and
reply from the datacenter. The datacenter can allow the
task or decline the task based on excess information. If the
datacenter accepts the task, then REM sends the task to the
datacenter by assigning a sole version identity to the task
and then waits for the result.

While sending the task it also starts a timer by
spawning the thread with the expected time to execute the

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3206

task. REM waits till the timer expiry or till the result
comes back. Once REM gets the result, it checks for the
correctness of a task by checking the given version id and
the obtained version id. If the completed task is correct
then, it sends the signal to the node where the task was
executed to update the datasets in data store and also to
stop all the other replicas. REM sends the result to
preprocessor which masks the dependencies of all its child
tasks.

g) Task scheduler(TS)

Tasks may be replicated in different nodes so all
those nodes may access the similar set of datasets.
Consequently the datasets are replicated. The management
of these data sets is done by the TS. The strategy is to
maintain two copies of the datasets namely local copy and
primary copy. After getting the datasets from the data
store to the node the copy of datasets in node becomes as a
local copy. All the changes done by the node are modified
locally. Once the signal comes from the REM, the updated
datasets are sent to the data store and also TS invalidates
all the local copies in other nodes. TS maintain a table to
keep track of all the replica information which helps in
invalidating the datasets.

The algorithm for scheduling and mapping tasks
on services is shown below:

void schedule (t,Hi)
{

while(ready_queue not empty)
{

 t = first task in ready_queue
 s = getservice(t)

send task to the data center by placing in
run queue
dequeue(ready_queue)
make s as busy

}
}
int getservice(t)
{
 Select service s such that
 Executiontime(t) < deadline(t)
 return s
}

h) Failure probability prediction

6. CONCLUSIONS
The proposed algorithm uses two revealing

operators on impulse to define when to variant the low-
level heuristic algorithm. The can not only deliver better
results than the traditional rule-based scheduling
algorithms, it furthermore overtakes the other heuristic
scheduling algorithms, in resolving the workflow
scheduling and map-task scheduling difficulties on cloud
computing environments. The scope is to understand the
type of job failures with the intention of improving the
dependability of the essential cloud infrastructure from the
perspective of cloud providers. Further, the focus is to
explore the potential for failure prophecy and incongruity
revealing in cloud applications in order to avoid wastage
of resources by jobs that fail in due course.

REFERENCES

[1] C. W. Tsai and J. Rodrigues. 2014. “Metaheuristic

scheduling for cloud: A survey”, IEEE Systems
Journal , vol. 8, no. 1, pp. 279–297.

[2] Chun-Wei Tsai, Wei-Cheng Huang, Meng-Hsiu
Chiang, Ming-Chao Chiang and ChuSing Yang. 2014.
“A Hyper-Heuristic Scheduling Algorithm for
Cloud”, IEEE Transactions on Cloud Computing,
January.

[3] S. Abrishami and M. Naghibzadeh. 2012 “Deadline-
Constrained Workflow Scheduling in Software as a
Service Cloud”, Scientia Iranica, Volume 19, Issue 3,
June.

[4] Nanduri. R, Maheshwari. N, Reddyraja. A and arma.
V. 2012, “Job Aware Scheduling Algorithm for
MapReduce Framework”, Cloud Computing
Technology and Science (CloudCom), IEEE Third
International Conference.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3207

[5] M. Rahman, X. Li and H. Palit. 2011. “Hybrid
heuristic for scheduling data analytics workflow
applications in hybrid cloud environment,”
Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing Workshops, pp.
966–974.

[6] Bala and I. Chana. 2011. “A survey of various
workflow scheduling algorithms in cloud
environment,” Proceedings of the National
Conference on Information and Communication
Technology, pp. 26–30.

[7] Suraj Pandey, LinlinWu, Siddeswara Mayura Guru
and Rajkumar Buyya. 2010. “A Particle Swarm
Optimization-based Heuristic for Scheduling
Workflow Applications in Cloud Computing
Environments”, Advanced Information Networking
and Applications (AINA), 24th IEEE International
Conference.

[8] Mohsen Amini Salehi and Rajkumar Buyya. 2010.
“Adapting Market-Oriented Scheduling Policies for
Cloud Computing”, Algorithms and Architectures for
Parallel Processing, Springer, pp 351-362.

[9] Matei Zaharia, Dhruba Borthakur, Joydeep Sen
Sarma, Khaled Elmeleegy, Scott Shenker and Ion
Stoica. 2010. “Delay scheduling: a simple technique
for achieving locality and fairness in cluster
scheduling”, Proceedings of the 5th European
conference on Computer systems, ACM.

[10] D. Laha and U. Chakraborty. 2009. “An efficient
hybrid heuristic for makespan minimization in
permutation flow shop scheduling”, The International
Journal of Advanced Manufacturing Technology, vol.
44, no. 5-6, pp. 559–569.

