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ABSTRACT  
 Edge detection is one of the most commonly used operations in image analysis particularly in the areas of feature 
extraction. Edge in an image indicates the boundaries between overlapping objects. An edge represents the boundary 
between an object and the image background, hence if the edges are identified with high accuracy in an image then all its 
objects can be located and basic properties of an image can also be measured. An edge can also be defined as a set of 
connected pixels that forms a boundary between two disjoints regions. Edge detection is a basic method of segmenting an 
image into regions of discontinuity. The data which are extracted in edge detection is too large, so to achieve the high 
speed of image processing is a difficult task. To solve this problem, a distributed canny edge detection algorithm is 
proposed that results in significant reduction of memory requirements with decreased latency and increased throughput 
with no loss in edge detection performance as compared to the original canny algorithm. In addition, the new algorithm 
uses a non uniform gradient magnitude histogram to compute block-based hysteresis thresholds. The resultant block-based 
algorithm has significant reduction in latency and can be easily integrated with other block-based image codecs then it is 
made capable of supporting fast edge detection of images and videos with high resolution rate, including full-HD videos as 
the latency is changed as a function of the block size instead of the frame size. In addition to that, quantitative conformance 
evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the 
original frame-based algorithm, especially for noisy images. Furthermore, FPGA-based hardware architecture of our 
proposed algorithm is presented in this paper and the architecture is synthesized on the Xilinx Virtex-5 FPGA. Simulation 
results are dispensed to illustrate the performance of the proposed distributed Canny edge detector. The FPGA simulation 
results displays that we can process a 512×512 image in 0.287ms at a clock rate of 100 MHz. 
 
Keywords: canny edge detector, distributed image processing, high throughput, parallel processing, FPGA. 
 
1. INTRODUCTION 
      The edge detection process adopts the simplified 
analysis of images by drastically reducing the amount of 
data to be processed, while at the same time it will 
preserve the useful structural information about object 
boundaries and features. There is certainly a big deal 
related to diversity in the applications of edge detection, as 
there are many applications share a common set of 
requirements [1]. The Canny edge detector is used in 
many real-time applications due to its ability to extract 
significant edges with good detection and good localized 
features. But unfortunately, the canny edge detection 
algorithm contains extensive pre-processing and post-
processing steps so it is computationally complex than 
other edge detection algorithms. In a recursively 
implementable edge detection algorithm is suggested and 
optimized using retiming techniques and its performance 
also quite poor in images with low SNRs. The approach 
projected in [2] combines both the derivative and 
smoothening operations of the Canny algorithm into a 
single mask in order to reduce computations. The 
pipelined implementation is a kind of block-based 
approach in which block-size is 2 rows of pixels. However 
it overcomes the dependencies between the blocks by 
fixing high and low thresholds to a constant value.  In the 
above approaches gradient thresholds are not adapted to 
the image characteristics; hence their performance is not 
guaranteed for blurred images and images with low SNRs 
[2].  Canny edge detector a parallel architecture [3] of 

simultaneous 4-pixel evaluation is proposed, which in turn 
increases the throughput of the design without increasing 
hr further need for on-chip cache memories. This design is 
further synthesized for low-end and high-end Xilinx 
FPGA. However, in [2], the hysteresis thresholds 
calculation is based on a very finely and uniformly 
quantized 64-bin gradient magnitude histogram, which is 
computationally cost effective and further make it difficult 
for real-time implementation. The CannyDeriche filter [4] 
is a network with four transputers that detect edges in a 
256 × 256 image in 6s, far from the requirement for real- 
time applications. Although the design in [5] improved the 
Canny-Deriche filter implementation of [4] and was able 
to process 25 frames/s at 33 MHz, the used off-chip 
SRAM memories consist of Last-In First-Out (LIFO) 
stacks, which in turn increases the area overhead 
compared to [4]. Demigny pro- posed a new organization 
of the Canny Deriche filter in [6], which reduces the 
memory size and the computation cost by a factor of two. 
However, the number of clock cycles per pixel of the 
implementation [6] varies with the size of the processed 
image, resulting in variable clockcycles/pixel from one 
image size to another with increasing processing time as 
the image size increases.  
      The proposed work is focusing on reducing the 
latency and increasing the throughput of the Canny edge 
detection algorithm so that it can be used in real-time 
processing applications. As a first step, the image can be 
partitioned into blocks and the Canny algorithm can be 
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applied to each of the blocks in parallel. Each block can be 
processed simultaneously it reduces the latency 
significantly. Further it allows the block-based Canny 
edge detector to be pipelined very easily with existing 
block-based codecs, thereby improving the timing 
performance of image/video processing systems. Most 
importantly, conducted conformance evaluations and 
subjective tests evaluates that, the proposed algorithm 
reveals better edge detection results for both clean and 
noisy images when compared to frame-based Canny edge 
detector. The block-based Canny edge detection algorithm 
is mapped onto an FPGA-based hardware architecture. 
The architecture is flexible enough to handle different 
image sizes, block sizes and gradient mask sizes. It 
consists of 32 computing engines configured into 8 groups 
with 4 engines per group. All 32 computing engines work 
in parallel lending to a 32-fold decrease in running time 
without any change in performance when compared with 
the frame-based algorithm. The architecture has been 
synthesized on the Xilinx Virtex-5.  
     In this paper, FPGA synthesis results, including 
the resource utilization, execution time, and comparison 
with existing FPGA implementations are presented. The 
other contents of the paper are organized as follows. 
Section 2 reveals a brief overview of the related work. 
Section 3 presents the proposed distributed Canny edge 
detection algorithm which includes the adaptive threshold 
selection algorithm and a non-uniform quantization 
method to compute the gradient magnitude histogram. 
Quantitative conformances as well as subjective testing 
results are presented in Section 4 in order to illustrate the 
edge detection performance of the proposed distributed 
Canny algorithm as compared to the original Canny 
algorithm for clean as well as noisy images. In addition, 
the effects of the gradient mask size and the block size on 
the performance of the proposed distributed Canny edge 
detection scheme are discussed and illustrated in Section 
4. The proposed hardware architecture and the FPGA 
implementation of the proposed algorithm are described in 
Section 5. The FPGA synthesis results and comparisons 
with other implementations are presented in Section 6. 
Finally, conclusions and results are presented in Section 7. 
 
2. RELATED WORK 
      R. Ponneela Vignesh et al. in [7] implemented 
the Canny edge detection algorithm in FPGA device, and 
it is applicable for image segmentation, image tracking, 
image coding etc. In this paper Canny edge algorithm 
reduces memory requirements, decreased latency, 
increased through output with no loss in edge detection 
performance and Canny edge detection algorithm use 
probability for finding error rate localization and response 
in various images. Chandrashekar N.S et al. in [8] explains 
the distributed Canny edge detection algorithm that results 
in significant reduction in memory requirements with 
decreased latency and increased throughput with no loss in 
edge detection performance as compared to the original 
Canny algorithm. Tejaswini H.R et al. in [9] explains that 
the edge detection is an eloquent step in image processing 

and in object recognition. The Canny edge detection is 
called as optimal detection due to its good performance. 
Samina Jafar et al in [10] explains the edge detection is 
one of the key stages in image processing and objects 
reorganization. The Canny Edge Detection is one of the 
most widely used edge detection algorithm due to its good 
performance.  
     T. Rupalatha et al in [11] explains edge detection 
is one of the basic operation carried out in image 
processing and object identification. In this paper, the 
distributed Canny edge detection algorithm that results in 
significant reduction in memory consumption with no loss 
in edge detection performance as compared to the original 
Canny algorithm. In [12] a long standing challenge in the 
field of image processing is that intensive computation 
power is required to achieve high accuracy and real-time 
performance. Recently, GPU has evolved into an 
extremely powerful computation resource. For example, 
NVIDIA GTX 280 with 240 processing cores at 
602MHzand 1GB of GDDR3running through a 512-bit 
memory bus performs 933 GFLOPS in its peak 
performance. As a comparison, 3.2 GHz Intel Core2 
Extreme (QX9775) operates at roughly 51.2 GFLOPS. 
The selected algorithms are parallelized efficiently on the 
GPU. A set of metrics was proposed to parameterize 
quantitatively the characteristics of parallel 
implementation of selected algorithms.  
     These results can be shared and employed by 
other researchers to predict the appropriateness of their 
algorithm for parallel implementation [13]. In [14] 
Modern image processing applications demonstrate an 
increasing demand for computational power and memory 
space. Because of its algorithmic efficiency and 
applicability many Canny implementations have been 
proposed. In this novel implementation of a Canny edge 
detector that takes advantage of 4-pixel parallel 
computation. It is a pipelined architecture that uses on-
chip BRAM memories to cache data between the different 
stages. The continuous usage of both hardware parallelism 
and pipelining creates a very efficient design that has the 
same memory requirements as a design without 
parallelism in pixel computation. In this paper a parallel 
design of a real-time Canny implementation is presented. 
This design has been achieve a rate of 240 frames per 
second for 1Mpixel image on sparttan -3E occupying a 
28% of the area on chip [15]. 
 
3. PROPOSED DISTRIBUTED CANNY EDGE 

DETECTION ALGORITHM  
       The superior performance of the frame-based 
Canny algorithm is due to the fact that it computes the 
gradient thresholds by analyzing the histogram of the 
gradients at all the pixel locations of an image. Though it 
is purely based on the statistical distribution of the 
gradient values, it produces better results on natural 
images which consist of three regions namely smooth, 
texture regions and high-detailed regions [16]. Directly 
applying the frame-based Canny at a block-level would 
fail because such a mix of regions may not be available 
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locally in every block of the frame. This would lead to 
excessive edges in texture regions and loss of significant 
edges in high detailed regions. Figure-1 represents the 
block diagram of the canny edge detection algorithm. 
 

 
 

Figure-1. Block diagram of the existing Canny edge 
detection. 

      
 The Canny edge detection algorithm operates on 
the whole image and has a latency that is proportional to 
the size of the image mean while performing the original 
Canny edge detection algorithm at the block level would 
speed up the operations, it would result in loss of 
important edges in high-detailed regions and excessive 
edges in texture regions. Basically natural images consist 
of a mix of three regions namely smooth, texture and high-
detailed regions and such a mix of regions may not be 
available locally in every block of the entire image. The 
Canny edge detection algorithm operates on the whole 
image and has a latency that is proportional to the size of 
the image. While performing the existing Canny edge 
algorithm at the block-level would speed up the 
operations, but there are significant loss of edges in high-
detailed regions and excessive edges in texture regions. 
Natural images comprise of three regions namely smooth, 
texture and high-detailed regions and such a mix of 
regions may not be available locally in every block of the 
entire image. In [17], we proposed a distributed Canny 
edge detection algorithm, which takes off the dependency 
between the various blocks so that the image can be 
divided into blocks and each block can be processed in 
parallel. The input image is divided into  

overlapping blocks. The adjacent blocks overlap by  

pixels for a  gradient mask. However, for each of the 
block, only edges in the central n× n (where n = m + L − 
1) non-overlapping region are included in the final edge 
map. Steps followed in 1 to 4 and in Step 6 of the 
distributed Canny algorithm are the same as in the original 
Canny algorithm except that these are now applied at the 
block level. The step 5, is the calculation of hysteresis, 
high and low thresholds calculation, is modified to enable 
parallel processing. In [17], a parallel hysteresis 
thresholding algorithm was proposed based on the 
observation that a pixel with a gradient magnitudes that 
are calculated in 2, 4 and 6 corresponds to blurred edges in 
an image, deliriously visual edges and very sharp 
significant edges, respectively. In order to evaluate the 

high and low hysteresis thresholds, we compute very 
finely and uniformly quantized 64-bin gradient magnitude 
histograms over overlapped blocks. The 64-bin uniform 
discrete histogram is used for the high threshold 
calculation, this entails performing 64 multiplications and 

 comparisons. 
 

 
Figure-2(a). Original 512×512 House image; (b) 

Histogram of the gradient magnitude after non-maximal 
suppression of the House image. 

 
      As in [18], it was observed that the largest peak 
in the gradient magnitude histograms after NMS of the 
Gaussian smoothed natural images occurs near the origin 
and corresponds to low-frequency content, while edge 
pixels form a continuous series of smaller peaks where 
each peak corresponds to a class of edges having similar 
gradient magnitudes. Subsequently, the high threshold 
values should be selected between the largest peak and the 
second largest edge peak. 
 

 
 

Figure-3. Reconstruction values and quantization levels; 
min and max representation. 

 
 A sample gradient magnitude histogram is 
represented in Figure-2(b) for the 512×512 House image 
Figure-2(a). Based on the above observation, we design a 
non-uniform quantizer to discretize the gradient magnitude 
histogram. Peculiarly, the quantizer needs to have more 
quantization levels in the region between the largest peak 
A and the second largest peak B and few quantization 
levels in other parts. Figure-3 reveals the schematic 
diagram of the designed quantizer. As a result, n 
reconstruction levels can be computed as follows: 

 where min 

and max values represent, the minimum and maximum 
values of the gradient magnitude after NMS, and  is the 
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reconstruction level. The proposed distributed Canny edge 
thresholds selection algorithm is represented in Fig. 4. Let 

 be the set of pixels with gradient magnitudes greater 
than a threshold , and let  for t = 2, 4, 6, be the 
number of corresponding gradient elements in the set . 
Using , an intermediate classification threshold C is 
calculated to indicate whether the considered block is 
high-detailed region, moderately edged region, blurred or 
textured region, as represented in Figure-4. 
      Consequently, the set  can be selected for 
computing the high and low thresholds. The calculation of 
high threshold is based on the histogram of the set  such 
that 20% of the total pixels of the block would be 
identified as strong edges. The lower threshold is the 40% 
percentage of the higher threshold as in the original Canny 
algorithm. The comparison is made for the high threshold 
value that is calculated using the proposed distributed 
algorithm based on an 8-bin non-uniform gradient 
magnitude histogram with the value obtained when using a 
16-bin non-uniform gradient magnitude histogram. The 
above two high thresholds values are similar. Therefore, 
we can make use of the 8-bin non-uniform gradient 
magnitude histogram in our implementation. The pseudo-
code of the block classification technique and the 
proposed adaptive threshold selection algorithm is shown 
as follows. 
 

Pseudo-code for the proposed block classification 

 
 
 
 
 
 
 
 

Pseudo-code for the Proposed Adaptive Threshold 
Selection Scheme 

 
4. PROPOSED DISTRIBUTED CANNY 

ALGORITHM IMPLEMENTATION ON FPGA  
      In this section, we describe the hardware 
implementation of our proposed distributed Canny edge 
detection algorithm on the Xilinx Spartan-3E FPGA.  
 
a) Architecture overview  
       Depending on the available FPGA resources, the 
image has to be sub-divided into q sub-images and each 
sub-image is further divided into p m x m blocks. The 
proposed architecture, represented in Figure-4, inheres of 
q processing units in the FPGA and some Static RAMs 
(SRAM) organized into q memory banks to store the 
image data, where q corresponds to the image size divided 
by the SRAM size. Each processing unit processes a sub-
image and reads/writes data from/to the SRAM through 
ping -pong buffers that are implemented on the FPGA 
with the use of dual port Block RAMs (BRAM). As 
represented in Figure-4, each processing unit (PU) consists 
of p computing engines (CE), where each CE detects the 
edge map of an  block image. Thus,  blocks 
can be processed at the same time and the processing time 
for an  image is reduced, in the best case, by a factor 
of p x q. 

 
 

Figure-4. The architecture of the proposed distributed 
Canny algorithm. 
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Figure-5. Block diagram of the CE (compute engine) for 

the proposed distributed Canny edge detection. 
       
 The specific values of p and q depend on the 
processing time of each PE, the loading time of the data 
from the SRAM to the local memory and the interface 
between FPGA and SRAM, similar to the total pins on the 
FPGA, the width of the data bus, the width of the address 
bus and the maximum system clock of the SRAM. In our 
processing application, we choose p = 2 and q = 8. In the 
proposed distributed Canny edge detection architecture, 
each CE consists of the following units, as represented in 
Figure-5. 
 
b) Image smoothening  
 The input image is smoothened using a 3×3 
Gaussian mask, as represented in Figure-6(a). The 
Gaussian filter Figure-6(a) is separable and, thus, the 
implementation of the 2-D convolution with the 3×3 
Gaussian mask is achieved using row and column 1- D 
convolutions. The put forwarded architecture for the 
smoothening unit is represented in Figure-6(b). 
 

 
(a) 

 
(b) 

 
Figure-6. (a) Mask for the low pass Gaussian filter with p 

= 0.0437; q = 0.9947; (b) Pipelined image smoothening 
unit. 

      
 The main components of the architecture consist 
of a 1-D finite impulse filter (FIR) to process the data and 
the on-chip Block RAM (BRAM) to store the data. In our 
proposed design, we take up the Xilinx’s pipelined FIR IP 
core, which dispenses a highly parameterizable, efficient 
in area, high-performance FIR filter utilizing the structure 
characteristics in the coefficient set, such as symmetry and 
conjugacy .By exploiting the symmetry of the Gaussian 
filter, the architecture make use of two multipliers to 
perform the 1-D convolution using a 3-tap filter. The 
address controller bring in the input image data from the 
local memory into the FIR core and, after the computation, 
it stores the results back in the BRAM.  
 
c) Gradients and gradient magnitude calculation of 

an image 
       This stage calculates the vertical and horizontal 
gradients using convolution kernels. The kernels vary in 

size from 3×3 to 9×9, depending on the sharpness of the 
image. The Xilinx FIR IP core, which is able to support up 
to 256 sets of coefficients with 2 to 1024 coefficients per 
set, is further used to implement the kernels. The entire 
design is pipelined, and the corresponding output is 
generated for every clock cycle. This output is made as an 
input to the magnitude calculation unit which computes 
the values at each location of pixels and the gradient 
magnitude from the pixel’s horizontal and vertical 
gradients. 
 

 
 

Figure-7. Gradient and magnitude calculation unit. 
 
       The architecture of this unit is represented in 
Figure-7. The gradient calculation architecture of an image 
contains two 1-D FIR models and the corresponding local 
memory. The filters that are used for computing the 
horizontal and vertical gradient elements can process data 
in parallel. The gradient magnitude computation comprises 
of two multipliers and one square- root computation 
module that are implemented by the Xilinx Math Function 
IP cores. 
 
d) Directional non maximum suppression  
      Figure-8 shows the architecture of the directional 
non-maximum suppression unit.  

 
 

Figure-8. Directional non maximum suppression unit. 
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In order to make access all the pixels’ gradient magnitudes 
in the 3×3 window at the same time, two First Input First 
Output buffers (FIFO) are employed. 

The horizontal gradient  and the vertical 
gradient  control the selector which delivers the gradient 
magnitude (marked as M(x, y) in Figure-8) of nearest 
values along the direction of the gradient, into an 
arithmetic unit. 
 
e) Calculation of the hysteresis threshold values  

     
 Since the low and high thresholds are calculated 
based on the gradient histogram values, from that we need 
to compute the histogram of the image after it has 
undergone directional non-maximum suppression. As 
described in Section 3, proceeding 8-step non-uniform 
quantizer is employed to obtain the discrete histogram for 
each processed block.   
 

 
 

Figure-9.The architecture of the Threshold calculation 
unit. 

 
f) Thresholding with hysteresis  
     Since the output of the non-maximum 
suppression unit contains some spurious edges, the method 
of finding threshold values with hysteresis is used.  

 
 

Figure-10. Pipelined architecture of the Thresholding unit. 
 
 

Two threshold values, high threshold ThH and low 
threshold ThL, which are obtained as a result from the 
threshold calculation unit, are employed. Let fab(x, y) be 
the image obtained from the non maximum suppression 
stage, f11(x, y) be the strong edge image and f12(x, y) be 
the weak edge image. 
 
5. MATLAB EXPERIMENTAL RESULTS 

 
a) Parametrical analysis  
      The performance of the proposed algorithm is 
affected by two major parameters, which includes the 
mask size and the block size. the size of the gradient mask 
is a function of the standard 1) The Effect of Mask Size: 
deviation σ of the Gaussian filter, and the best choice of σ 
is based on the image characteristics. Canny has shown in 
[19] that the optimal operator for detecting step edges in 
the presence of noise is the first derivative of the Gaussian 
operator. As stated in Section 2, for the original Canny 
algorithm as well as the proposed algorithm, this standard 
deviation is a parameter that is typically set by the user 
based on the knowledge of sensor noise characteristics. It 
can also be set by a separate application that estimates the 
noise and/orblur in the image. A large value of σ results in 
smoothing and improves the edge detector’s resilience to 
noise, but it undermines the detector’s ability to detect the 
location of true edges.  
      In contrast, a smaller mask size (corresponding to 
a lower σ) is better for detecting detailed textures and fine 
edges but it decreases the edge detector’s resilience to 
noise. An L-point even-symmetric FIR Gaussian pulse-
shaping filter design can be obtained by truncating a 
sampled version of the continuous-domain Gaussian filter 
of standard deviation σ. The size L of the FIR Gaussian 
filter depends on the standard deviation σ and can be 
determined as follows: where CT represents the cut-off 
value in the spatial domain of the continuous-domain 
Gaussian function and determines the cut-off error. 
Calculation of Block Size: To find out the smallest block 
size for which the proposed Canny algorithm can detect all 
the psychovisually important edges, the sensed visual 
quality of the obtained edge maps was assessed using 
visual quality metrics.  
 
b) Edge detection performance analysis  
       The edge detection result performance of the 
proposed split approach is analyzed by comparing the 
perceptual significance of its resulting edge map with the 
one produced by the original. 
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(a) (b) (c) 

Figure-11. Comparison of the edge maps of noisy images 
by using the originalCanny edge detector and the proposed 
method: (a) images with Gaussian white noise (σn = 0.01); 
edge-maps of (b) the original Canny edge detector, and (c) 
the proposed algorithm with a non-overlapping block size 
of 64 × 64, using a 9 × 9 gradient mask to noise than the 
original frame-based Canny. 
      
 To further assess the performance of the proposed 
Split Canny algorithm, similar quantitative evaluations and 
subjective tests are performed. The conformance 
evaluations aim to evaluate the similarity between edges 
detected by the original frame-based Canny algorithm and 
the proposed distributed Canny edge detection algorithm, 
while the subjective tests aim to validate whether the edge 
detection performance of the proposed distributed Canny 
is better, worse, or similar to the original frame-based 
Canny as perceived by subjects. 1) Conformance 
Evaluation: In order to quantify the similarity of two edge 
maps, three metrics, Pco (percentage of edge pixels 
detected by both implementations) Pnd (percentage of 
edge pixels detected by the original Canny edge 
detection2) Subjective Testing: 2) Subjective tests: were 
conducted by having human subjects evaluate the quality 
of the detected edge maps that are generated by the 
proposed algorithm and the original Canny for both clean 
and noisy images, without the subjects knowing which 
algorithm produced which edge maps, using images from 
the SIPI Database [20] and the Standard Test Image 
Database [21]. 
 
c) Synthesis results  
       The proposed FPGA-based architecture can 
support multiple image sizes and block sizes. To 
demonstrate the performance of the proposed system, a 
Xilinx Virtex-5 FPGA was used to process grayscale 
images with a block size of 64 × 64. The data width is 16 
bits (Q8.7) with 8 bits to represent the integer part since 
the maximum gray value of the image data is 255, and 7 
bits to represent the fractional part since the Gaussian filter 
parameters are decimals. Our analysis shows that 7 bits are 

sufficient to meet the accuracy requirement of the 
Gaussian filter parameters, which is typically in the order 
of 0.001. To store grayscale images, we used the SRAM 
(CY7C0832BV).  
 

Table-1. Resource utilization on Xc5vsx240t for 1CE. 
 

Block 
size 

Number 
of CE 

Occupied 
slices 

Slice 
Reg. 

Slice 
LUTs 

DSP48Es 

Total 
used 

memory 
(KB) 

64×64 1 747 (2%) 
1270 
(1%) 

2578 
(2%) 

7 (1%) 
217 
(1%) 

 

Table-2. Resource utilization on Xc5vsx240t For 1PU. 
 

Block 
size 

Number 
of CE 

Occupied 
slices 

Slice 
Reg. 

Slice 
LUTs 

DSP48Es 

Total 
used 

memory 
(KB) 

64×64 4 
2988 
(8%) 

5080 
(4%) 

10312 
(8%) 

28 (3%) 
2023 
(10%) 

 
Table-3. Resource utilization on Xc5vsx240t for an 8-PU 

architecture 
 

Block 
size 

Number 
of CE 

Occupied 
slices 

Slice 
Reg. 

Slice 
LUTs 

DSP48Es 

Total 
used 

memory 
(KB) 

64×64 32 
23904 
(64%) 

40640 
(32%) 

82496 
(65%) 

224 
(25%) 

16184 
(87%) 

 
Table-4. Clock cycles for each unit. 

 

   
Clock 
Cycles 

9248 16 20 4630 4634 

 
This is a dual ported SRAM with 110 pins. The Xilinx 
Virtex-5 FPGA (XC5VSX240T) has 960 I/O pins and so, 
to satisfy the I/O pin constraint, the maximum number of 
PUs is 8 (q = 8). The local memory on the FPGA for a 
block size of 64 × 64, which is needed to support 8 PUs, is 
equal to 7 pqm2b = 4046 p Kbits, for q = 8, m = 68 (for a 
64 × 64 block size and A 3 × 3 gradient mask size), and b 
= 16. Since the available memory resource on the FPGA is 
18,576 Kbits, the p value using the memory constraint is 
determined to be 4. The p value could have also been 
constrained by the number of available slices. Since the 
number of slices for the considered FPGA is very large 
(37440) and since each CE only utilizes a small slice 
percentage, the local memory resource in each PU 
constrains p, the number of CEs in each PU, and not the 
numbers of slices. Taking all this into consideration, our 
design has q = 8Pus and each PU has p = 4 CEs. This 
design is coded in Verilog and synthesized on a Xilinx 
Virtex-5 device (XC5VSX240T) using the Xilinx’s ISE 
software and verified using Modelsim. According to the 
‘Place and Route’ synthesis report, our implementation 
can achieve an operating frequency of 250 MHz. But we 
choose 100 MHz to support a pipelined implementation of 
SRAM read/write and CE processing. 
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d) Experimental results 
      We present the following experiments to evaluate 
the effectiveness of the new distributed Canny edge 
detector that is proposed in this paper. 
 

  
 

Figure-12. Floating-point Matlab simulation results for 
the 512×512 House image: (a) Edge map of the original 

Canny edge detector; (b) Edge map of the algorithm of [4] 
with a 3×3 gradient mask and a block size of 64; (c) Edge 
map of our proposed algorithm with a 3×3 gradient mask 

and a block-size of 64. 
 
e) Evaluation of fixed-point Mat lab and FPGA 

simulation results  
 

 
 
Figure-13. (a) Edge map of Mat lab implementation; (b) 

Edge map of FPGA implementation. 
 
 Figure-13 shows the fixed-point Mat lab 
implementation software result and the FPGA 
implementation generated result for the 512×512 House 
image using the proposed distributed Canny edge detector 
with block size of 64×64 and a 3×3gradient mask. The 
FPGA result is obtained using Model Sim. Hence it is 
evaluation results shows that the hardware implementation 
of our proposed algorithm can successfully detect 
significant edges and results in edge maps that are similar 
to the ones that are obtained using the fixed-point Mat lab 
simulation. Furthermore, for a 100MHz clock rate, the 
total time required by the process for running using the 
FPGA implementation is 0.28ms for a 512×512 image. 
 
6. CONCLUSIONS 
     The original Canny algorithm relies on frame-
level statistics to predict the high and low thresholds and 
thus has latency proportional to the frame size. In order to 
reduce the large latency and meet real-time requirements, 
we presented a novel Split Canny edge detection algorithm 
which has the ability to compute edges of multiple blocks 
at the same time. To support this, an adaptive threshold 
selection method is proposed that predicts the high and 
low thresholds of the entire image while only processing 
the pixels of an individual block. This results in three 
benefits: 1) a significant reduction in the latency; 2) better 
edge detection performance; 3) the possibility of 
pipelining the Canny edge detector with other block-based 

image codecs. In addition, a low complexity non-uniform 
quantized histogram calculation method is proposed to 
compute the block hysteresis thresholds. The proposed 
algorithm is scalable and has very high detection 
performance. We show that our algorithm can detect all 
psycho-visually important edges in the image for various 
block sizes. Finally, the proposed algorithm is mapped 
onto a Xilinx Virtex-5 FPGA platform and tested using 
ModelSim. The synthesized results show 64% slice 
utilization and 87% BRAM memory utilization. The 
proposed FPGA implementation takes only 0.721ms 
(including the SRAM read/write time and the computation 
time) to detect edges of 512 × 512 images in the USC SIPI 
database when clocked at 100 MHz. Thus the proposed 
implementation is capable of supporting fast real-time 
edge detection of images and videos including those with 
full-HD content. 
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