
 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3208

ALGORITHM AND IMPLEMENTATION OF DISTRIBUTED CANNY EDGE
DETECTOR ON FPGA

Aravindh G. and Manikandababu C. S.

Department of ECE Sri Ramakrishna Engineering College Coimbatore, India
E-Mail: aravindhvlsi@gmail.com

ABSTRACT
 Edge detection is one of the most commonly used operations in image analysis particularly in the areas of feature
extraction. Edge in an image indicates the boundaries between overlapping objects. An edge represents the boundary
between an object and the image background, hence if the edges are identified with high accuracy in an image then all its
objects can be located and basic properties of an image can also be measured. An edge can also be defined as a set of
connected pixels that forms a boundary between two disjoints regions. Edge detection is a basic method of segmenting an
image into regions of discontinuity. The data which are extracted in edge detection is too large, so to achieve the high
speed of image processing is a difficult task. To solve this problem, a distributed canny edge detection algorithm is
proposed that results in significant reduction of memory requirements with decreased latency and increased throughput
with no loss in edge detection performance as compared to the original canny algorithm. In addition, the new algorithm
uses a non uniform gradient magnitude histogram to compute block-based hysteresis thresholds. The resultant block-based
algorithm has significant reduction in latency and can be easily integrated with other block-based image codecs then it is
made capable of supporting fast edge detection of images and videos with high resolution rate, including full-HD videos as
the latency is changed as a function of the block size instead of the frame size. In addition to that, quantitative conformance
evaluations and subjective tests show that the edge detection performance of the proposed algorithm is better than the
original frame-based algorithm, especially for noisy images. Furthermore, FPGA-based hardware architecture of our
proposed algorithm is presented in this paper and the architecture is synthesized on the Xilinx Virtex-5 FPGA. Simulation
results are dispensed to illustrate the performance of the proposed distributed Canny edge detector. The FPGA simulation
results displays that we can process a 512×512 image in 0.287ms at a clock rate of 100 MHz.

Keywords: canny edge detector, distributed image processing, high throughput, parallel processing, FPGA.

1. INTRODUCTION
 The edge detection process adopts the simplified
analysis of images by drastically reducing the amount of
data to be processed, while at the same time it will
preserve the useful structural information about object
boundaries and features. There is certainly a big deal
related to diversity in the applications of edge detection, as
there are many applications share a common set of
requirements [1]. The Canny edge detector is used in
many real-time applications due to its ability to extract
significant edges with good detection and good localized
features. But unfortunately, the canny edge detection
algorithm contains extensive pre-processing and post-
processing steps so it is computationally complex than
other edge detection algorithms. In a recursively
implementable edge detection algorithm is suggested and
optimized using retiming techniques and its performance
also quite poor in images with low SNRs. The approach
projected in [2] combines both the derivative and
smoothening operations of the Canny algorithm into a
single mask in order to reduce computations. The
pipelined implementation is a kind of block-based
approach in which block-size is 2 rows of pixels. However
it overcomes the dependencies between the blocks by
fixing high and low thresholds to a constant value. In the
above approaches gradient thresholds are not adapted to
the image characteristics; hence their performance is not
guaranteed for blurred images and images with low SNRs
[2]. Canny edge detector a parallel architecture [3] of

simultaneous 4-pixel evaluation is proposed, which in turn
increases the throughput of the design without increasing
hr further need for on-chip cache memories. This design is
further synthesized for low-end and high-end Xilinx
FPGA. However, in [2], the hysteresis thresholds
calculation is based on a very finely and uniformly
quantized 64-bin gradient magnitude histogram, which is
computationally cost effective and further make it difficult
for real-time implementation. The CannyDeriche filter [4]
is a network with four transputers that detect edges in a
256 × 256 image in 6s, far from the requirement for real-
time applications. Although the design in [5] improved the
Canny-Deriche filter implementation of [4] and was able
to process 25 frames/s at 33 MHz, the used off-chip
SRAM memories consist of Last-In First-Out (LIFO)
stacks, which in turn increases the area overhead
compared to [4]. Demigny pro- posed a new organization
of the Canny Deriche filter in [6], which reduces the
memory size and the computation cost by a factor of two.
However, the number of clock cycles per pixel of the
implementation [6] varies with the size of the processed
image, resulting in variable clockcycles/pixel from one
image size to another with increasing processing time as
the image size increases.
 The proposed work is focusing on reducing the
latency and increasing the throughput of the Canny edge
detection algorithm so that it can be used in real-time
processing applications. As a first step, the image can be
partitioned into blocks and the Canny algorithm can be

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3209

applied to each of the blocks in parallel. Each block can be
processed simultaneously it reduces the latency
significantly. Further it allows the block-based Canny
edge detector to be pipelined very easily with existing
block-based codecs, thereby improving the timing
performance of image/video processing systems. Most
importantly, conducted conformance evaluations and
subjective tests evaluates that, the proposed algorithm
reveals better edge detection results for both clean and
noisy images when compared to frame-based Canny edge
detector. The block-based Canny edge detection algorithm
is mapped onto an FPGA-based hardware architecture.
The architecture is flexible enough to handle different
image sizes, block sizes and gradient mask sizes. It
consists of 32 computing engines configured into 8 groups
with 4 engines per group. All 32 computing engines work
in parallel lending to a 32-fold decrease in running time
without any change in performance when compared with
the frame-based algorithm. The architecture has been
synthesized on the Xilinx Virtex-5.
 In this paper, FPGA synthesis results, including
the resource utilization, execution time, and comparison
with existing FPGA implementations are presented. The
other contents of the paper are organized as follows.
Section 2 reveals a brief overview of the related work.
Section 3 presents the proposed distributed Canny edge
detection algorithm which includes the adaptive threshold
selection algorithm and a non-uniform quantization
method to compute the gradient magnitude histogram.
Quantitative conformances as well as subjective testing
results are presented in Section 4 in order to illustrate the
edge detection performance of the proposed distributed
Canny algorithm as compared to the original Canny
algorithm for clean as well as noisy images. In addition,
the effects of the gradient mask size and the block size on
the performance of the proposed distributed Canny edge
detection scheme are discussed and illustrated in Section
4. The proposed hardware architecture and the FPGA
implementation of the proposed algorithm are described in
Section 5. The FPGA synthesis results and comparisons
with other implementations are presented in Section 6.
Finally, conclusions and results are presented in Section 7.

2. RELATED WORK
 R. Ponneela Vignesh et al. in [7] implemented
the Canny edge detection algorithm in FPGA device, and
it is applicable for image segmentation, image tracking,
image coding etc. In this paper Canny edge algorithm
reduces memory requirements, decreased latency,
increased through output with no loss in edge detection
performance and Canny edge detection algorithm use
probability for finding error rate localization and response
in various images. Chandrashekar N.S et al. in [8] explains
the distributed Canny edge detection algorithm that results
in significant reduction in memory requirements with
decreased latency and increased throughput with no loss in
edge detection performance as compared to the original
Canny algorithm. Tejaswini H.R et al. in [9] explains that
the edge detection is an eloquent step in image processing

and in object recognition. The Canny edge detection is
called as optimal detection due to its good performance.
Samina Jafar et al in [10] explains the edge detection is
one of the key stages in image processing and objects
reorganization. The Canny Edge Detection is one of the
most widely used edge detection algorithm due to its good
performance.
 T. Rupalatha et al in [11] explains edge detection
is one of the basic operation carried out in image
processing and object identification. In this paper, the
distributed Canny edge detection algorithm that results in
significant reduction in memory consumption with no loss
in edge detection performance as compared to the original
Canny algorithm. In [12] a long standing challenge in the
field of image processing is that intensive computation
power is required to achieve high accuracy and real-time
performance. Recently, GPU has evolved into an
extremely powerful computation resource. For example,
NVIDIA GTX 280 with 240 processing cores at
602MHzand 1GB of GDDR3running through a 512-bit
memory bus performs 933 GFLOPS in its peak
performance. As a comparison, 3.2 GHz Intel Core2
Extreme (QX9775) operates at roughly 51.2 GFLOPS.
The selected algorithms are parallelized efficiently on the
GPU. A set of metrics was proposed to parameterize
quantitatively the characteristics of parallel
implementation of selected algorithms.
 These results can be shared and employed by
other researchers to predict the appropriateness of their
algorithm for parallel implementation [13]. In [14]
Modern image processing applications demonstrate an
increasing demand for computational power and memory
space. Because of its algorithmic efficiency and
applicability many Canny implementations have been
proposed. In this novel implementation of a Canny edge
detector that takes advantage of 4-pixel parallel
computation. It is a pipelined architecture that uses on-
chip BRAM memories to cache data between the different
stages. The continuous usage of both hardware parallelism
and pipelining creates a very efficient design that has the
same memory requirements as a design without
parallelism in pixel computation. In this paper a parallel
design of a real-time Canny implementation is presented.
This design has been achieve a rate of 240 frames per
second for 1Mpixel image on sparttan -3E occupying a
28% of the area on chip [15].

3. PROPOSED DISTRIBUTED CANNY EDGE

DETECTION ALGORITHM
 The superior performance of the frame-based
Canny algorithm is due to the fact that it computes the
gradient thresholds by analyzing the histogram of the
gradients at all the pixel locations of an image. Though it
is purely based on the statistical distribution of the
gradient values, it produces better results on natural
images which consist of three regions namely smooth,
texture regions and high-detailed regions [16]. Directly
applying the frame-based Canny at a block-level would
fail because such a mix of regions may not be available

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3210

locally in every block of the frame. This would lead to
excessive edges in texture regions and loss of significant
edges in high detailed regions. Figure-1 represents the
block diagram of the canny edge detection algorithm.

Figure-1. Block diagram of the existing Canny edge
detection.

 The Canny edge detection algorithm operates on
the whole image and has a latency that is proportional to
the size of the image mean while performing the original
Canny edge detection algorithm at the block level would
speed up the operations, it would result in loss of
important edges in high-detailed regions and excessive
edges in texture regions. Basically natural images consist
of a mix of three regions namely smooth, texture and high-
detailed regions and such a mix of regions may not be
available locally in every block of the entire image. The
Canny edge detection algorithm operates on the whole
image and has a latency that is proportional to the size of
the image. While performing the existing Canny edge
algorithm at the block-level would speed up the
operations, but there are significant loss of edges in high-
detailed regions and excessive edges in texture regions.
Natural images comprise of three regions namely smooth,
texture and high-detailed regions and such a mix of
regions may not be available locally in every block of the
entire image. In [17], we proposed a distributed Canny
edge detection algorithm, which takes off the dependency
between the various blocks so that the image can be
divided into blocks and each block can be processed in
parallel. The input image is divided into

overlapping blocks. The adjacent blocks overlap by

pixels for a gradient mask. However, for each of the
block, only edges in the central n× n (where n = m + L −
1) non-overlapping region are included in the final edge
map. Steps followed in 1 to 4 and in Step 6 of the
distributed Canny algorithm are the same as in the original
Canny algorithm except that these are now applied at the
block level. The step 5, is the calculation of hysteresis,
high and low thresholds calculation, is modified to enable
parallel processing. In [17], a parallel hysteresis
thresholding algorithm was proposed based on the
observation that a pixel with a gradient magnitudes that
are calculated in 2, 4 and 6 corresponds to blurred edges in
an image, deliriously visual edges and very sharp
significant edges, respectively. In order to evaluate the

high and low hysteresis thresholds, we compute very
finely and uniformly quantized 64-bin gradient magnitude
histograms over overlapped blocks. The 64-bin uniform
discrete histogram is used for the high threshold
calculation, this entails performing 64 multiplications and

 comparisons.

Figure-2(a). Original 512×512 House image; (b)

Histogram of the gradient magnitude after non-maximal
suppression of the House image.

 As in [18], it was observed that the largest peak
in the gradient magnitude histograms after NMS of the
Gaussian smoothed natural images occurs near the origin
and corresponds to low-frequency content, while edge
pixels form a continuous series of smaller peaks where
each peak corresponds to a class of edges having similar
gradient magnitudes. Subsequently, the high threshold
values should be selected between the largest peak and the
second largest edge peak.

Figure-3. Reconstruction values and quantization levels;
min and max representation.

 A sample gradient magnitude histogram is
represented in Figure-2(b) for the 512×512 House image
Figure-2(a). Based on the above observation, we design a
non-uniform quantizer to discretize the gradient magnitude
histogram. Peculiarly, the quantizer needs to have more
quantization levels in the region between the largest peak
A and the second largest peak B and few quantization
levels in other parts. Figure-3 reveals the schematic
diagram of the designed quantizer. As a result, n
reconstruction levels can be computed as follows:

 where min

and max values represent, the minimum and maximum
values of the gradient magnitude after NMS, and is the

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3211

reconstruction level. The proposed distributed Canny edge
thresholds selection algorithm is represented in Fig. 4. Let

 be the set of pixels with gradient magnitudes greater
than a threshold , and let for t = 2, 4, 6, be the
number of corresponding gradient elements in the set .
Using , an intermediate classification threshold C is
calculated to indicate whether the considered block is
high-detailed region, moderately edged region, blurred or
textured region, as represented in Figure-4.
 Consequently, the set can be selected for
computing the high and low thresholds. The calculation of
high threshold is based on the histogram of the set such
that 20% of the total pixels of the block would be
identified as strong edges. The lower threshold is the 40%
percentage of the higher threshold as in the original Canny
algorithm. The comparison is made for the high threshold
value that is calculated using the proposed distributed
algorithm based on an 8-bin non-uniform gradient
magnitude histogram with the value obtained when using a
16-bin non-uniform gradient magnitude histogram. The
above two high thresholds values are similar. Therefore,
we can make use of the 8-bin non-uniform gradient
magnitude histogram in our implementation. The pseudo-
code of the block classification technique and the
proposed adaptive threshold selection algorithm is shown
as follows.

Pseudo-code for the proposed block classification

Pseudo-code for the Proposed Adaptive Threshold
Selection Scheme

4. PROPOSED DISTRIBUTED CANNY

ALGORITHM IMPLEMENTATION ON FPGA
 In this section, we describe the hardware
implementation of our proposed distributed Canny edge
detection algorithm on the Xilinx Spartan-3E FPGA.

a) Architecture overview
 Depending on the available FPGA resources, the
image has to be sub-divided into q sub-images and each
sub-image is further divided into p m x m blocks. The
proposed architecture, represented in Figure-4, inheres of
q processing units in the FPGA and some Static RAMs
(SRAM) organized into q memory banks to store the
image data, where q corresponds to the image size divided
by the SRAM size. Each processing unit processes a sub-
image and reads/writes data from/to the SRAM through
ping -pong buffers that are implemented on the FPGA
with the use of dual port Block RAMs (BRAM). As
represented in Figure-4, each processing unit (PU) consists
of p computing engines (CE), where each CE detects the
edge map of an block image. Thus, blocks
can be processed at the same time and the processing time
for an image is reduced, in the best case, by a factor
of p x q.

Figure-4. The architecture of the proposed distributed
Canny algorithm.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3212

Figure-5. Block diagram of the CE (compute engine) for

the proposed distributed Canny edge detection.

 The specific values of p and q depend on the
processing time of each PE, the loading time of the data
from the SRAM to the local memory and the interface
between FPGA and SRAM, similar to the total pins on the
FPGA, the width of the data bus, the width of the address
bus and the maximum system clock of the SRAM. In our
processing application, we choose p = 2 and q = 8. In the
proposed distributed Canny edge detection architecture,
each CE consists of the following units, as represented in
Figure-5.

b) Image smoothening
 The input image is smoothened using a 3×3
Gaussian mask, as represented in Figure-6(a). The
Gaussian filter Figure-6(a) is separable and, thus, the
implementation of the 2-D convolution with the 3×3
Gaussian mask is achieved using row and column 1- D
convolutions. The put forwarded architecture for the
smoothening unit is represented in Figure-6(b).

(a)

(b)

Figure-6. (a) Mask for the low pass Gaussian filter with p

= 0.0437; q = 0.9947; (b) Pipelined image smoothening
unit.

 The main components of the architecture consist
of a 1-D finite impulse filter (FIR) to process the data and
the on-chip Block RAM (BRAM) to store the data. In our
proposed design, we take up the Xilinx’s pipelined FIR IP
core, which dispenses a highly parameterizable, efficient
in area, high-performance FIR filter utilizing the structure
characteristics in the coefficient set, such as symmetry and
conjugacy .By exploiting the symmetry of the Gaussian
filter, the architecture make use of two multipliers to
perform the 1-D convolution using a 3-tap filter. The
address controller bring in the input image data from the
local memory into the FIR core and, after the computation,
it stores the results back in the BRAM.

c) Gradients and gradient magnitude calculation of

an image
 This stage calculates the vertical and horizontal
gradients using convolution kernels. The kernels vary in

size from 3×3 to 9×9, depending on the sharpness of the
image. The Xilinx FIR IP core, which is able to support up
to 256 sets of coefficients with 2 to 1024 coefficients per
set, is further used to implement the kernels. The entire
design is pipelined, and the corresponding output is
generated for every clock cycle. This output is made as an
input to the magnitude calculation unit which computes
the values at each location of pixels and the gradient
magnitude from the pixel’s horizontal and vertical
gradients.

Figure-7. Gradient and magnitude calculation unit.

 The architecture of this unit is represented in
Figure-7. The gradient calculation architecture of an image
contains two 1-D FIR models and the corresponding local
memory. The filters that are used for computing the
horizontal and vertical gradient elements can process data
in parallel. The gradient magnitude computation comprises
of two multipliers and one square- root computation
module that are implemented by the Xilinx Math Function
IP cores.

d) Directional non maximum suppression
 Figure-8 shows the architecture of the directional
non-maximum suppression unit.

Figure-8. Directional non maximum suppression unit.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3213

In order to make access all the pixels’ gradient magnitudes
in the 3×3 window at the same time, two First Input First
Output buffers (FIFO) are employed.

The horizontal gradient and the vertical
gradient control the selector which delivers the gradient
magnitude (marked as M(x, y) in Figure-8) of nearest
values along the direction of the gradient, into an
arithmetic unit.

e) Calculation of the hysteresis threshold values

 Since the low and high thresholds are calculated
based on the gradient histogram values, from that we need
to compute the histogram of the image after it has
undergone directional non-maximum suppression. As
described in Section 3, proceeding 8-step non-uniform
quantizer is employed to obtain the discrete histogram for
each processed block.

Figure-9.The architecture of the Threshold calculation
unit.

f) Thresholding with hysteresis
 Since the output of the non-maximum
suppression unit contains some spurious edges, the method
of finding threshold values with hysteresis is used.

Figure-10. Pipelined architecture of the Thresholding unit.

Two threshold values, high threshold ThH and low
threshold ThL, which are obtained as a result from the
threshold calculation unit, are employed. Let fab(x, y) be
the image obtained from the non maximum suppression
stage, f11(x, y) be the strong edge image and f12(x, y) be
the weak edge image.

5. MATLAB EXPERIMENTAL RESULTS

a) Parametrical analysis
 The performance of the proposed algorithm is
affected by two major parameters, which includes the
mask size and the block size. the size of the gradient mask
is a function of the standard 1) The Effect of Mask Size:
deviation σ of the Gaussian filter, and the best choice of σ
is based on the image characteristics. Canny has shown in
[19] that the optimal operator for detecting step edges in
the presence of noise is the first derivative of the Gaussian
operator. As stated in Section 2, for the original Canny
algorithm as well as the proposed algorithm, this standard
deviation is a parameter that is typically set by the user
based on the knowledge of sensor noise characteristics. It
can also be set by a separate application that estimates the
noise and/orblur in the image. A large value of σ results in
smoothing and improves the edge detector’s resilience to
noise, but it undermines the detector’s ability to detect the
location of true edges.
 In contrast, a smaller mask size (corresponding to
a lower σ) is better for detecting detailed textures and fine
edges but it decreases the edge detector’s resilience to
noise. An L-point even-symmetric FIR Gaussian pulse-
shaping filter design can be obtained by truncating a
sampled version of the continuous-domain Gaussian filter
of standard deviation σ. The size L of the FIR Gaussian
filter depends on the standard deviation σ and can be
determined as follows: where CT represents the cut-off
value in the spatial domain of the continuous-domain
Gaussian function and determines the cut-off error.
Calculation of Block Size: To find out the smallest block
size for which the proposed Canny algorithm can detect all
the psychovisually important edges, the sensed visual
quality of the obtained edge maps was assessed using
visual quality metrics.

b) Edge detection performance analysis
 The edge detection result performance of the
proposed split approach is analyzed by comparing the
perceptual significance of its resulting edge map with the
one produced by the original.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3214

(a) (b) (c)

Figure-11. Comparison of the edge maps of noisy images
by using the originalCanny edge detector and the proposed
method: (a) images with Gaussian white noise (σn = 0.01);
edge-maps of (b) the original Canny edge detector, and (c)
the proposed algorithm with a non-overlapping block size
of 64 × 64, using a 9 × 9 gradient mask to noise than the
original frame-based Canny.

 To further assess the performance of the proposed
Split Canny algorithm, similar quantitative evaluations and
subjective tests are performed. The conformance
evaluations aim to evaluate the similarity between edges
detected by the original frame-based Canny algorithm and
the proposed distributed Canny edge detection algorithm,
while the subjective tests aim to validate whether the edge
detection performance of the proposed distributed Canny
is better, worse, or similar to the original frame-based
Canny as perceived by subjects. 1) Conformance
Evaluation: In order to quantify the similarity of two edge
maps, three metrics, Pco (percentage of edge pixels
detected by both implementations) Pnd (percentage of
edge pixels detected by the original Canny edge
detection2) Subjective Testing: 2) Subjective tests: were
conducted by having human subjects evaluate the quality
of the detected edge maps that are generated by the
proposed algorithm and the original Canny for both clean
and noisy images, without the subjects knowing which
algorithm produced which edge maps, using images from
the SIPI Database [20] and the Standard Test Image
Database [21].

c) Synthesis results
 The proposed FPGA-based architecture can
support multiple image sizes and block sizes. To
demonstrate the performance of the proposed system, a
Xilinx Virtex-5 FPGA was used to process grayscale
images with a block size of 64 × 64. The data width is 16
bits (Q8.7) with 8 bits to represent the integer part since
the maximum gray value of the image data is 255, and 7
bits to represent the fractional part since the Gaussian filter
parameters are decimals. Our analysis shows that 7 bits are

sufficient to meet the accuracy requirement of the
Gaussian filter parameters, which is typically in the order
of 0.001. To store grayscale images, we used the SRAM
(CY7C0832BV).

Table-1. Resource utilization on Xc5vsx240t for 1CE.

Block
size

Number
of CE

Occupied
slices

Slice
Reg.

Slice
LUTs

DSP48Es

Total
used

memory
(KB)

64×64 1 747 (2%)
1270
(1%)

2578
(2%)

7 (1%)
217
(1%)

Table-2. Resource utilization on Xc5vsx240t For 1PU.

Block
size

Number
of CE

Occupied
slices

Slice
Reg.

Slice
LUTs

DSP48Es

Total
used

memory
(KB)

64×64 4
2988
(8%)

5080
(4%)

10312
(8%)

28 (3%)
2023
(10%)

Table-3. Resource utilization on Xc5vsx240t for an 8-PU

architecture

Block
size

Number
of CE

Occupied
slices

Slice
Reg.

Slice
LUTs

DSP48Es

Total
used

memory
(KB)

64×64 32
23904
(64%)

40640
(32%)

82496
(65%)

224
(25%)

16184
(87%)

Table-4. Clock cycles for each unit.

Clock
Cycles

9248 16 20 4630 4634

This is a dual ported SRAM with 110 pins. The Xilinx
Virtex-5 FPGA (XC5VSX240T) has 960 I/O pins and so,
to satisfy the I/O pin constraint, the maximum number of
PUs is 8 (q = 8). The local memory on the FPGA for a
block size of 64 × 64, which is needed to support 8 PUs, is
equal to 7 pqm2b = 4046 p Kbits, for q = 8, m = 68 (for a
64 × 64 block size and A 3 × 3 gradient mask size), and b
= 16. Since the available memory resource on the FPGA is
18,576 Kbits, the p value using the memory constraint is
determined to be 4. The p value could have also been
constrained by the number of available slices. Since the
number of slices for the considered FPGA is very large
(37440) and since each CE only utilizes a small slice
percentage, the local memory resource in each PU
constrains p, the number of CEs in each PU, and not the
numbers of slices. Taking all this into consideration, our
design has q = 8Pus and each PU has p = 4 CEs. This
design is coded in Verilog and synthesized on a Xilinx
Virtex-5 device (XC5VSX240T) using the Xilinx’s ISE
software and verified using Modelsim. According to the
‘Place and Route’ synthesis report, our implementation
can achieve an operating frequency of 250 MHz. But we
choose 100 MHz to support a pipelined implementation of
SRAM read/write and CE processing.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3215

d) Experimental results
 We present the following experiments to evaluate
the effectiveness of the new distributed Canny edge
detector that is proposed in this paper.

Figure-12. Floating-point Matlab simulation results for
the 512×512 House image: (a) Edge map of the original

Canny edge detector; (b) Edge map of the algorithm of [4]
with a 3×3 gradient mask and a block size of 64; (c) Edge
map of our proposed algorithm with a 3×3 gradient mask

and a block-size of 64.

e) Evaluation of fixed-point Mat lab and FPGA

simulation results

Figure-13. (a) Edge map of Mat lab implementation; (b)

Edge map of FPGA implementation.

 Figure-13 shows the fixed-point Mat lab
implementation software result and the FPGA
implementation generated result for the 512×512 House
image using the proposed distributed Canny edge detector
with block size of 64×64 and a 3×3gradient mask. The
FPGA result is obtained using Model Sim. Hence it is
evaluation results shows that the hardware implementation
of our proposed algorithm can successfully detect
significant edges and results in edge maps that are similar
to the ones that are obtained using the fixed-point Mat lab
simulation. Furthermore, for a 100MHz clock rate, the
total time required by the process for running using the
FPGA implementation is 0.28ms for a 512×512 image.

6. CONCLUSIONS
 The original Canny algorithm relies on frame-
level statistics to predict the high and low thresholds and
thus has latency proportional to the frame size. In order to
reduce the large latency and meet real-time requirements,
we presented a novel Split Canny edge detection algorithm
which has the ability to compute edges of multiple blocks
at the same time. To support this, an adaptive threshold
selection method is proposed that predicts the high and
low thresholds of the entire image while only processing
the pixels of an individual block. This results in three
benefits: 1) a significant reduction in the latency; 2) better
edge detection performance; 3) the possibility of
pipelining the Canny edge detector with other block-based

image codecs. In addition, a low complexity non-uniform
quantized histogram calculation method is proposed to
compute the block hysteresis thresholds. The proposed
algorithm is scalable and has very high detection
performance. We show that our algorithm can detect all
psycho-visually important edges in the image for various
block sizes. Finally, the proposed algorithm is mapped
onto a Xilinx Virtex-5 FPGA platform and tested using
ModelSim. The synthesized results show 64% slice
utilization and 87% BRAM memory utilization. The
proposed FPGA implementation takes only 0.721ms
(including the SRAM read/write time and the computation
time) to detect edges of 512 × 512 images in the USC SIPI
database when clocked at 100 MHz. Thus the proposed
implementation is capable of supporting fast real-time
edge detection of images and videos including those with
full-HD content.

REFERENCES

[1] J. Canny. 1986. “A computational approach to edge

detection,” IEEE Trans. PAMI, vol. 8, no. 6, pp. 679 –
698, November.

[2] Xu, Qian, Chaitali Chakrabarti and Lina J. Karam.
2011. "A distributed Canny edge detector and its
implementation on FPGA." In Digital Signal
Processing Workshop and IEEE Signal Processing
Education Workshop (DSP/SPE), 2011 IEEE, pp.
500-505. IEEE.

[3] Gentsos, Christos, C-L. Sotiropoulou, Spiridon
Nikolaidis, and Nikolaos Vassiliadis. 2010. "Real-
time canny edge detection parallel implementation for
FPGAs." In Electronics, Circuits, and Systems
(ICECS), 2010 17th IEEE International Conference
on, pp. 499-502. IEEE.

[4] R. Deriche. 1987. “Using canny criteria to derive a
recursively implemented optimal edge detector,” Int.
J. Comput. Vis., vol. 1, no. 2, pp. 167–187.

[5] L. Torres, M. Robert, E. Bourennane and M.
Paindavoine. 1995. “Implementation of a recursive
real time edge detector using retiming technique,” in
Proc. Asia South Pacific IFIP Int. Conf. Very Large
Scale Integr. pp. 811–816.

[6] F. G. Lorca, L. Kessal and D. Demigny. 1997.
“Efficient ASIC and FPGA implementation of IIR
filters for real time edge detection,” in Proc. IEEE
ICIP, vol. 2. October. pp. 406–409.

[7] R. Ponneela Vignesh and R. Rajendran. 2012.
“Performance and Analysis of Edge Detection Using
FPGA Implementation”. nternational Journal of
Modern Engineering Research (IJMER) Vol.2,
Issue.2, March-April. pp-552-554.

 VOL. 10, NO. 7, APRIL 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3216

[8] Chandrashekar N.S and Dr. K.R. Nataraj. 2012. “A
Distributed Canny Edge Detection and Its
Implementation on FPGA” International Journal of
Computational Engineering Research
(ijceronline.com) Vol. 2 Issue.7. ISSN 2250-
3005(online) November.

[9] Tejaswini H.R, Vidhya N, Swathi R Varma and
Santhosh B. 2013. “An Implementation of Real Time
Optimal Edge Detection and VLSI Architecture”.
International conference on electronics and
communication engineering, 28th April, bengaluru,
isbn: 978-93- 83060-04-7.

[10] Samina Jafar and Anupsingh Ramprakashsingh
Rajput. 2013. “Improved Distributed Canny Edge
Detection In VHDL”. VSRD International Journal of
Electrical, Electronics & Communication
Engineering, Vol. 3 No. 6, June.

[11] T. Rupalatha, Mr. C. Leelamohan and Mrs. M.
Sreelakshmi. 2013. “Implementation of Distributed
Canny Edge Detection On FPGA”. International
Journal of Innovative Research in Science,
Engineering and Technology, Vol. 2, Issue7, July.

[12] N. D. Narvekar and L. J. Karam. 2011. “A no-
reference image blur metric based on the cumulative
probability of blur detection (CPBD),” IEEE Trans.
Image Process., vol. 20, no. 9, pp. 2678–2683,
September.

[13] Gentsos, C. Sotiropoulou, S. Nikolaidis and N.
Vassiliadis. 2010. “Real-time canny edge detection
parallel implementation for FPGAs,” in Proc. IEEE
ICECS, December. pp. 499–502.

[14] H. Zeljko, V. Suzana and H. Verica. 2006. "Improved
Canny Edge Detector in Ceramic Tiles Defect
Detection, "IEEEIndustrialElectronics, IECON 2006 -
32nd Annual Conference, pp. 3328-3331, November.

[15] W. He and K. Yuan. 2006. “An improved canny edge
detector and its realization on FPGA,” in Proc. IEEE
7th WCICA, Jun. 2008, pp. 6561–6564.IEEE
Industrial Electronics, IECON 2006 - 32nd Annual
Conference , pp. 3328- 3331, November.

[16] S. Varadarajan, C. Chakrabarti, L. J. Karam and J.
M.Bauza. 2010. A distributed psycho-visually
motivated Canny edge detector,ǁ IEEE ICASSP, pp.
822 –825, Mar.

[17] S. Varadarajan, C. Chakrabarti, L. J. Karma and J.
M.Bauza. 2010. “A distributed psycho-visually
motivated Canny edge detector,” IEEE ICASSP, pp.
822 –825, March.

[18] W. He and K. Yuan. 2008. “An improved Canny edge
detector and its realization on FPGA,” WCICA, pp.
6561 –6564, June.

[19] S. Nercessian. 2009. “A new class of edge detection
algorithms with performance measure,” M.S. thesis,
Dept. Electr. Eng., Tufts Univ., Medford,MA, USA,
May.

[20] W. He and K. Yuan. 2008. “An improved Canny edge
detector and its Realization on FPGA,” WCICA, pp.
6561 –6564, June.

