
 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3397

PIPELINE ARCHITECTURE FOR FAST DECODING OF BCH CODES
FOR NOR FLASH MEMORY

Sunita M.S.1,2, ChiranthV.2, Akash H.C.2 and Kanchana Bhaaskaran V.S.1

1VIT University, Chennai Campus, India
2PES Institute of Technology, Bangalore, India

E-Mail: sunitha@pes.edu

ABSTRACT

The Bose-Chaudhuri-Hocquenghem (BCH) codes form a class of random error correcting cyclic codes capable of
multiple error correction. This paper develops a new high throughput error correction mechanism for NOR flashe
memories employing BCH codes. The high throughput is achieved by using pipeline architecture for decoding. The
decoding of BCH codes is a complex process with multiple decoding stages and hence incurs a large decoding time. The
pipeline mechanism enables multiple decoding stages to run concurrently rather than sequentially, which can in effect,
significantly increase the throughput. Thus, this paper proposes a novel 2-stage pipeline circuit for the decoder. For
validating the circuit, this has been compared with the conventional 3-stage pipeline and also with the non-pipeline
decoding. The decoder area and power are found to be about 30% less than that of the 3-stage pipeline architecture. The
throughput of the decoder is found to increase from 200Mb/s to 437Mb/s while operating for a clock frequency of 1GHz,
which is a sweeping increase of about 118%. This significantly improves the system performance and hence, this
architecture is depicted ideal for the high speed NOR flash memory.

Keywords: Memory testing, BCH codes, pipeline decoder, double error correction, NOR flash memory.

1. INTRODUCTION

Embedded memories play an important role in
the semiconductor market primarily because of the fact
that the system-on-chip market is booming and almost
every system chip contains some type of embedded
memory. The impact of technology scaling for high-
density, low voltage levels, small feature size and small
noise margins has made the memory chips increasingly
susceptible to soft errors, which can change the logical
value of a memory cell without damaging it. Memory cells
are, therefore, affected not only at extreme radiation
environments but also at normal terrestrial conditions [1].
There are various self-diagnostic techniques to test
embedded memories [2]. Error Correcting Codes (ECC) is
one of the commonly used methods of mitigating errors in
memories. Various ECC schemes have been proposed in
the literature to correct single, double and multiple errors
[3] - [6]. For low soft error rates, at normal terrestrial
conditions, the single error correction codes such as the
Hamming codes are excellent due to their low encoding
and decoding complexity. The Cyclic codes, with their
algebraic structure, are highly efficient for single error
correction, since their encoding and syndrome
computation circuits can be implemented easily using shift
registers with feedback connections. The decoder area and
the decoding latency are found to be much lesser than a
few other single error correction codes [3]. For superior
error correction capabilities, more powerful error
correction codes are needed. Many codes such as the
Orthogonal Latin Square Code (OLSC) proposed by Hsiao
M.Y et al. [4], Reed-Solomon (RS) Codes [5] and other
advanced codes such as Low Density Parity Check
(LDPC) Codes [6] have been proposed which can correct
larger number of errors, however, either at the cost of high

decoding complexity and large overhead or slow decoding
time and reduced system performance.

This paper focuses mainly on correction of
double errors in memory using (15, 7) BCH code. One of
the main applications of double-error correcting BCH
codes (DEC-BCH) is in flash memory, particularly the
NOR flash. Traditional NOR flash memory products use
Hamming code with only 1-bit error correction capability
due to its simple decoding algorithm, small circuit area
and less decoding time. However, as the bit error rate
(BER) increases, the 2-bit error correcting BCH code
becomes the preferable ECC.

Normally, the NOR flash is used for code storage
and acts as execute in place (XIP) memory where CPU
fetches instructions directly from memory. The code
storage requires an exceedingly reliable NOR flash
memory, since any code error will cause a system fault. In
addition, the NOR flash memory has fast read access. This
imposes stringent requirement on the latency of the ECC
decoder that is inserted between the flash memory and the
data bus [7]. Hence, the primary concern in using the DEC
BCH code in NOR flash memory is the decoding latency.

The decoding of BCH codes is normally done in
multiple stages. Hence, it is not only complex, but it also
incurs a longer decoding time in the process. Various
decoding algorithms and decoding architectures have been
proposed to reduce the decoding time and the hardware
complexity of the decoder. The use of a 3-stage pipeline
structure for the decoder with the 3 stages consisting of
syndrome computation stage, the Berlekamp-Massey
(BM) decoding stage and the Chien search stage has been
discussed in [8]. To reduce the hardware complexity of the
various decoder stages, group matching scheme has been
proposed in [9]. A parallel BCH Encoder - Decoder
architecture using the simplified inverse-free BM

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3398

algorithm has also been proposed in [10], which focussed
on reducing the hardware complexity and hence reduced
decoder power.

In this paper, we have developed a 2-stage
pipelined architecture for the DEC BCH (15, 7) code.
Furthermore, a high speed decoder is designed for the
NOR flash memory aiming at reduction of the decoding
latency, such that the faster read access ability of the NOR
flash memory remains unaffected.

The remainder of this paper is organized as
follows. Section 2 describes the encoding of data using
(15, 7) BCH code for double error correction. Section 3
describes the decoding algorithm of the BCH code.
Section 4 deals with the 3-stage pipeline architecture for
the decoder. The newly developed 2-stage pipeline
architecture is described in Section 5. The implementation
method is explained in Section 6. Section 7 presents the
results and discussion. Section 8 concludes the paper.

2. BCH ENCODING FOR DOUBLE ERROR
CORRECTION

Binary BCH codes belong to the class of cyclic
codes with the following parameters

Block length: n = 2m - 1
Number of parity - check bits: n - k ≤ mt
Minimum distance: dmin ≥ 2t + 1

This code is capable of correcting any
combination of t or fewer errors in a block of n bits. Here,
k represents the number of data bits and m is a positive
integer (m ≥ 3). Double error correction is achieved by
using a code whose (n, k) = (15, 7). Thus m = 4 and t = 2
for this code. Therefore, this method is capable of
correcting a maximum of 2 errors in a code of length of 15
bits and has a minimum distance of exactly 5 [5].

Encoding involves multiplying the data
polynomial d(x) = d0 + d1x + d2x2 +…... + d6x6 with the
generator polynomial g(x) = g0 + g1x + g2x2 + …….+ g8x8
to obtain the code polynomial c(x) = c0 + c1x + c2x2 +
…+ c14x14. The encoding and decoding of the binary BCH
code is based on binary Galois field represented by
GF(2m). The generator polynomial for the (15, 7) BCH
code is specified in terms of its roots from the Galois field
GF(24). If α is a primitive element in GF (24), then g(x) is
the lowest degree polynomial over the binary Galois field
GF(2) that has α, α2, α3, …… α2t as its roots. For t = 2, the
roots are α, α2, α3and α4. However, since α2 and α4 are
conjugates of α, they are the roots of the same minimal
polynomial given by equation (1).

Φ1(x) = Φ2(x) = Φ4(x) = X4 + X + 1 (1)

The minimal polynomial Φ3(x) of α3 is given by
equation (2).

Φ3(x) = X4 + X3 + X2 + X + 1 (2)

Hence, g(x) = Φ1(x) Φ3(x) = X8 + X7 + X6 + X4 + 1 (3)

Perl script was used to generate the Verilog
source code for the encoder. The values of n, k, t and m
along with the exponents of the primitive polynomial were
given as an input to the Perl script. The Perl code was
written to calculate the minimal polynomials and hence
obtain the generator polynomial. The generator
polynomial was multiplied by the data polynomial to
obtain the Verilog source code for the encoder. The code
obtained is that of a combinational logic consisting of
XOR gates and buffers.

This implementation has a time complexity of
O(1). A simpler implementation would have required the
use of a sequential multiplier with a time complexity of
O(n). Thus, the delay of the encoder is significantly
reduced with this implementation. The code obtained
using this encoder is in the non-systematic form.

3. DECODING ALGORITHM OF BCH DECODER

The 15 - bit code word, consisting of the data bits
and the check bits, stored in memory is susceptible to soft
errors. Decoding is the process of detecting and correcting
the errors present in the stored code word and finally,
extracting the data from the error-free code word. Upon
receiving the read signal, the memory starts the decoding
process.

Let the erroneous code word r(x) and the error
pattern e(x) be represented by equations (4) and (5)
respectively.

r(x) = r0 + r1x + r2x2 + ……+ r14x14 (4)

e(x) = e0 + e1x + e2x2 + ……+ e14x14 (5)

Then, r(x) = c(x) + e(x) (6)

Decoding the code involves the following steps:

a) Determine the syndrome vectors S1, S2 and S3 from

the 15-bit code vector read from memory.
 The syndrome is a 2t-tuple for a t-error-correcting
code. Thus, for a double-error-correcting code, the
syndrome is a 4-tuple represented by S = (S1, S2, S3, S4).
The syndrome component Si is obtained by dividing the
erroneous code word r(x) by the corresponding minimal
polynomial Φi(x) of αi and obtaining the remainder
polynomial bi(x). The syndrome component is then given
by Si = bi (αi). Syndrome computation can be implemented
using simple linear feedback shift register.

b) Determine the coefficients σ1 and σ2 of the error

polynomial from the syndrome vectors.
 The error location polynomial is given by
equation (7).

σ(x) =σ0+σ1x+σ2x

2 (7)

The error co-efficient σ0 = 1 and the other error
coefficients σ1 and σ2 are determined using the

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3399

Berlekamp’s iterative decoding algorithm. They are given
by equations (8) and (9).

σ1 = S1 (8)

σ2 = S3S1

-1 + S2 (9)

c) Run an exhaustive search for the roots of the error

polynomial equation.
 On obtaining σ1 and σ2, the roots of the error
location polynomial are determined by running an
exhaustive search. This is done by checking if any of the
4-tuples of the Galois field from 0001 to 1111 satisfy the
error polynomial equation.

d) Determine the error location positions from the

inverse of the roots.

e) Obtain the error vector and thus the corrected

code vector.
 For example, if the 4-tuples 0101 and 1011
satisfy the equation, then the roots of the equation are α9
and α13 which are the elements of GF (24). The inverse of
the roots are α15-9 and α15-13. This gives the error locations
as 6 and 2. The error vector can then be identified to be
000000001000100. This error vector is then added in
modulo-2 addition (XOR) with the erroneous code vector
to produce the correct code vector c’(x). Thus c’(x) = r(x)
+ e(x).

f) Extract the 7-bit data from the corrected code
 The 7-bit data vector is extracted from the
corrected code vector by dividing it by the generator
polynomial. Thus, d(x) = c’(x) / g(x). The division is

carried out by using a circuit similar to the syndrome
calculator circuit, in which the shift register circuit is built
using the generator polynomial.

4. 3-STAGE PIPELINE ARCHITECTURE OF THE
DECODER
 This section presents the pipeline architecture of
the decoder. In order to implement the pipeline
architecture, the decoding process has been divided into 3
stages as shown below:

a) Stage 1 consists of determining the syndrome vectors

from the 15-bit erroneous code vector followed by the
determination of the error polynomial coefficients σ1
and σ2 from the syndrome vectors obtained.

b) Stage 2 consists of determining the roots of the error
location polynomial, determining the error vector
from the inverse of the roots and finally obtaining the
corrected vector.

c) Stage 3 consists of extracting the data from the
corrected code vector.

 The first step in implementing the pipeline
effectively was to ensure that every decoding stage
involves the equal time interval. It was found that the time
required in determining σ2was large since the Galois field
multiplier used in multiplying S3 and S1

-1 was found
consuming more time. Hence, the original circuit
consisting of the shift registers was replaced by a
combinational circuit, which does the same multiplication
within one clock cycle. It was found that each stage then
required n+1 clock cycles. Thus, for the (15, 7) code, 16
clock cycles were required. The division of time interval
for each stage is shown in Table-1.

Table-1.Time division in each stage.

Decoder
stage

16 clock cycles

15 clock cycles 1 clock cycle

Stage 1
Determination of syndrome

vectors
Determination of σ1 and σ2 from

the syndrome vectors

Stage 2
Determination of the roots

of the error location
polynomial

Determination of the inverse of
roots and obtaining the corrected

vector

Stage 3 Extraction of data

The pipeline mechanism is as illustrated in the block diagram shown in Figure-1.

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3400

Figure-1.Block diagram illustrating the 3-stage pipeline.

5. 2-STAGE PIPELINE ARCHITECTURE OF THE
DECODER

In the 3-stage pipeline architecture, the 3rd stage
involved extracting the data from the corrected code word.
This stage was required for the reason that the code
generated by the encoder is in a non-systematic form. This

stage can be eliminated, if the code generated by the
encoder is made available in systematic form. In this
direction, the systematic encoding of the data vector for
the generator polynomial g(x) = X8 + X7 + X6 + X4 + 1 has
been implemented using the shift register circuit depicted
in Figure-2.

Figure-2.Encoder for the (15, 7) BCH code.

The 7 data bits are appended with 8 zeroes to its
right to form a 15-bit vector. This 15-bit vector is passed
through the shift register starting from the left. After 15
clock cycles, when all bits are shifted in, the contents of
the shift register present the parity bits. These 8 parity bits
are appended to the data bits, forming the 15-bit code
vector.

This can be expressed in polynomial form by
equation (10) as given by

c(x) = d(x)xn-k + Rem[(d(x)xn-k) / g(x)] (10)

where Rem[a(x) / b(x)] is the remainder obtained on
dividing a(x) by b(x)[11]. Since the code obtained with
this encoder is systematic, the last stage of the decoder
shown in Figure-2 can be eliminated to obtain a 2-stage
pipeline structure consisting of the following 2 stages:

a) Stage 1 - Determination of the syndrome vectors from
the 15-bit erroneous code vector followed by the
determination of the error polynomial coefficients σ1
and σ2 from these syndrome vectors obtained.

b) Stage 2 -Determination of the roots of the error
location polynomial, determining the error vector
from the inverse of the roots and in the process,
obtaining the corrected code vector. The first 7 bits of
the code vector from the left denote the data vector.

6. IMPLEMENTATION

The encoding and the decoding algorithms as
described in Sections 2, 3, 4 and 5 were coded in Verilog®
HDL. The functional simulation of the design was carried
out using Xilinx®ISim Simulator. It was tested for its
correct functionality by providing various random inputs
through the test benches. The architectures were
synthesized using the tool Encounter from Cadence® RTL
Compiler using 180nm technology libraries. Area and

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3401

power estimation were done using the Encounter tool of
Cadence.

7. RESULTS AND DISCUSSIONS

This section presents the results and related
inferences. An authentic memory environment in the form
of a memory block consisting of an array of 7-bit data has
been created. To simulate the actual behavior, random data
is generated using a random () function and stored in the
data array. During the memory write operation, when the
write signal wr goes high, the data vectors are encoded
individually and stored in another memory block which
forms the code array. The code vectors are subjected to

errors by deliberately introducing error at two bit
positions. The two error locations are different for each
code vector. During a memory read operation, when the
read signal rd goes high, these code vectors are passed
through a decoder to obtain the corrected data vectors. The
results obtained for the 3-stage and 2-stage pipeline
architectures are discussed in the following sub-sections.

7.1 3-Stagespipeline architecture

A sample of the simulated output of the encoding
and decoding stages of the 3-stage pipeline architecture as
seen on the console window of the simulator is shown in
Figure-3.

Figure-3.Simulation output for the 3-stage pipeline architecture.

The simulated output of the encoder for the 3-stage pipeline architecture is shown in Figure-4.

Figure-4.Simulation output of the encoder for the 3-stage pipeline architecture.

As seen from the markers in Figure-4, encoding
of data occurs instantaneously, since the encoder used is a
combinational circuit. Therefore, a new data is encoded

during every clock cycle. The clk signal employed has a
time period of 1ns and hence, a frequency of 1GHz.

Figure-5 shows the simulated output of the
decoder for the 3-stage pipeline structure.

Figure-5.Simulation output of the decoder for the 3-stage pipeline architecture.

The 15-bit erroneous code is loaded into the
decoder during every transition of the load signal. The

load signal makes a transition once in 16 clock cycles as
seen from the 1st two markers, which can be observed 16ns

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3402

apart. The data corresponding to the code at the 1st marker
which is at a time instant of 577.5ns is decoded and
available at the output 49ns later, at a time instant of
626.5ns. Since each decoder stage requires 16 clock cycles
and there are 3 stages, a total of 48 clock cycles are
required for decoding and extracting data. The 49th clock
cycle is required to read the data from the buffer register.
Similarly, the data corresponding to the code at the 2nd

marker, which is at the time instant of 593.5ns is decoded
and available at a time instant of 642.5ns, 49 clock cycles
after the code is loaded into the decoder. The decoded data

are available at an interval of 16 clock cycles as seen from
the 3rd and the 4th markers. Thus, once the pipeline is full,
the data are made available at a rate of 16 clock cycles.
The decoder throughput is therefore found to be 437Mb/s
for a clock frequency of 1GHz. This is an increase of
about 118% as compared to the non-pipeline decoding.

7.2 2-Stages pipeline architecture

A sample of the simulated output of encoding and
decoding for the 2-stage pipeline architecture as seen on
the console window of the simulator is shown in Figure-6.

Figure-6.Simulation output of the 2-stage pipeline architecture.

The simulated output of the encoder for the 2-stage pipeline architecture is shown in Figure-7.

Figure-7.Simulation output of the encoder for the 2-stage pipeline architecture.

Data is loaded into the encoder at every transition
of the load signal, which is once in every 16 clock cycles.
As depicted in Figure-7, the data input 1011100 is loaded
into the encoder at time 70.5ns, when load signal goes
high. The corresponding code vector 101110000101001 in
the systematic form is available at the output at 86.5ns, at
which point of time, the load signal goes low and new data

is loaded into the encoder. The value of the code at this
time instant is seen in the ‘value’ window seen on the left
hand side. It can hence be concluded that encoding of data
requires 16 clock cycles.

Figure-8 shows the simulated output of the
decoder for the 2-stage pipeline structure.

Figure-8.Simulation output of the decoder for the 2-stage pipeline architecture.

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3403

The 15-bit erroneous code is loaded into the
decoder during every transition of the load signal which is
once in 16 clock cycles as seen from the 1st two markers
which are 16ns apart. The data corresponding to the code
at the 1st marker which is at the time instant of 534.5ns is
decoded and made available at the output 33ns later, that
is, at the time instant of 567.5ns. Since each decoder stage
requires 16 clock cycles and there are only 2 stages, a total
of 32 clock cycles are required for the decoding and
extracting data processes. The 33rd clock cycle is required
to read the data from the buffer register. Similarly, the

data corresponding to the code at the 2nd marker, which is
at a time instant of 550.5ns is decoded and available at a
time instant of 583.5ns, 33 clock cycles after the code is
loaded into the decoder. The decoded data are available at
an interval of 16 clock cycles as seen from the 3rd and the
4th markers. Thus, once the pipeline is full, data are
available at the rate of 16 clock cycles.

Table-2 shows a comparison of the different
architectures in terms of area, power and memory access
time. The power estimation obtained is dependent on the
synthesized architectures.

Table-2. Comparison of the different architectures.

Architecture

Decoder

Area
μm2

Power (μW) Decoding time
of individual
codes (No. of
clock cycles)

Decoding time of
a code in an
array (No. of
clock cycles)

Leakage
power

Dynamic
power

Total
power

2-stage
pipeline

9,121 0.046 486.46 486.52 32 16

3-stage
pipeline

13,588 0.07 705.40 705.47 48 16

Non-pipeline 21,871 0.10 522.15 522.25 20-120 variable

It may be noted from the Table that the decoding

time is not a constant in the case of non-pipelined
architecture, as it depends on the number of errors and
their positions. If there is no error in the code word, the
syndrome vector is zero. The decoder then skips the
additional steps and extracts the data from the code vector.
Hence, the decoding time becomes less. When there are
errors in the code word, the decoding time can be more.
On the other hand, in the case of the two pipelined
architectures, though the decoding time of individual code
varies, once the pipeline is full, the decoding time of each
code is the same, or equal to 16 clock cycles for both the
architectures. Further, the decoding time of an individual
code is a constant and is independent of the number of
errors and their positions.

Additionally, as seen from Table-2, the decoder
area of the 2-stage pipeline architecture is found to be the
least of the three architectures, which is about 33% less
than the 3-stage architecture and 58% less than the non-
pipeline architecture.

Furthermore, it may be noted that the power
consumed by the 2-stage pipeline decoder is the least,
since only two decoder stages are running concurrently at
any given time. This power is found to be 31% less than
the 3-stage pipeline decoder, which consumes the
maximum power since three decoder stages are running
concurrently at any given time.

8. CONCLUSIONS

In this paper, a novel 2-stage pipeline architecture
has been proposed for the BCH decoder with the two
stages being the Syndrome generation stage and the
Berlekamp-Chien stage. With its low power, small area

and high decoding speed the 2-stage pipeline decoder is
ideally suited for high speed NOR flash memory.

Though this work is limited to double error
detection and correction using (15, 7) BCH code, it may
be extended for higher (n, k) values. Thus for a (31, 21)
BCH code with double error correction capability, 32
clock cycles would be required to decode each code which
gives a decoder throughput of 656Mb/s. For a (63,51)
BCH code, 64 clock cycles would be required to decode
each code to give a throughput of 796Mb/s for a clock of
frequency 1GHz. Thus, higher the (n, k) values, more is
the throughput.

REFERENCES

[1] R. C. Baumann. 2005. Radiation-induced soft errors in

advanced semiconductor technologies. IEEE Trans.
Device Mater. Reliabil. 5(3): 301-316.

[2] Sunita M.S, Kanchana Bhaaskaran V.S. 2013. Matrix
Code based multiple error correction technique for n-
bit memory data. Intl. Journal of VLSI Design and
Communication Systems (VLSICS). 4(1):29-37.

[3] S.M. Sunita, V. S. KanchanaBhaaskaran,
DeepakakumarHegde and PavanDhareshwar. 2013.
Error Detection and Correction in Embedded
Memories using Cyclic Code. Proceedings of
International Conference on VLSI, Communication,
Advanced Devices, Signals and Systems and
Networking (VCASAN-2013), Bangalore, India, July,
2013, Lecture Notes in Electrical Engineering. 258:
109-116.

 VOL. 10, NO. 8, MAY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

3404

[4] Hsiao M.Y, Bossen D.C, Chien R.T. 1970.

Orthogonal Latin Square Codes. IBM Journal of
Research and Development. 14: 390-394.

[5] S. Lin and D. J. Costello. 2011. Error Control Coding.
2ndedition, Pearson Education.

[6] S. Ghosh and P. D. Lincoln. 2007. Dynamic low-
density parity check codes for fault-tolerant nano-
scale memory.Presented at the Foundations Nanosci.
(FNANO), Snowbird, Utah.

[7] Xueqiang Wang, Guiqiang Dong, Liyang Pan and
Runde Zhou. 2011. Error Correction Codes and Signal
Processing in Flash Memory, Flash Memories, Prof.
Igor Stievano (Ed.), ISBN: 978-953-307-272-2,
InTech, DOI: 10.5772/19083.

[8] Kijun Lee, Sejin Lim, Jaehong Kim. 2012. Low-cost,
low-power and high-throughput BCH decoder for
NAND Flash Memory. 2012 IEEE International
Symposium on Circuits and Systems (ISCAS), May
20-23, Seoul, South Korea.

[9] Y. Chen and K. K. Parhi. 2004. Area efficient parallel
decoder architecture for long BCH codes. Proc. IEEE
Int. Conf. Acoustics, Speech and Signal Processing.
pp. V-73-V-76.

[10] Wei Liu, Junrye Rho, and Wonyong Sung. 2006.
Low-Power High-Throughput BCH Error Correction
VLSI Design for Multi-Level Cell NAND Flash
Memories. Proc. IEEE Workshop Signal Processing
Systems Design and Implementation. pp. 303-308.

[11] Xinmiao Zhang and Keshab K. Parhi. 2004. High-
speed Architectures for Parallel Long BCH Encoders.
GLSVLSI’04, April 26-28, Boston, Massachusetts,
USA.

