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ABSTRACT 

The Bose-Chaudhuri-Hocquenghem (BCH) codes form a class of random error correcting cyclic codes capable of 
multiple error correction. This paper develops a new high throughput error correction mechanism for NOR flashe 
memories employing BCH codes. The high throughput is achieved by using pipeline architecture for decoding. The 
decoding of BCH codes is a complex process with multiple decoding stages and hence incurs a large decoding time. The 
pipeline mechanism enables multiple decoding stages to run concurrently rather than sequentially, which can in effect, 
significantly increase the throughput. Thus, this paper proposes a novel 2-stage pipeline circuit for the decoder. For 
validating the circuit, this has been compared with the conventional 3-stage pipeline and also with the non-pipeline 
decoding. The decoder area and power are found to be about 30% less than that of the 3-stage pipeline architecture. The 
throughput of the decoder is found to increase from 200Mb/s to 437Mb/s while operating for a clock frequency of 1GHz, 
which is a sweeping increase of about 118%. This significantly improves the system performance and hence, this 
architecture is depicted ideal for the high speed NOR flash memory. 
 
Keywords: Memory testing, BCH codes, pipeline decoder, double error correction, NOR flash memory. 
 
1. INTRODUCTION 

Embedded memories play an important role in 
the semiconductor market primarily because of the fact 
that the system-on-chip market is booming and almost 
every system chip contains some type of embedded 
memory. The impact of technology scaling for high-
density, low voltage levels, small feature size and small 
noise margins has made the memory chips increasingly 
susceptible to soft errors, which can change the logical 
value of a memory cell without damaging it. Memory cells 
are, therefore, affected not only at extreme radiation 
environments but also at normal terrestrial conditions [1]. 
There are various self-diagnostic techniques to test 
embedded memories [2]. Error Correcting Codes (ECC) is 
one of the commonly used methods of mitigating errors in 
memories. Various ECC schemes have been proposed in 
the literature to correct single, double and multiple errors 
[3] - [6]. For low soft error rates, at normal terrestrial 
conditions, the single error correction codes such as the 
Hamming codes are excellent due to their low encoding 
and decoding complexity. The Cyclic codes, with their 
algebraic structure, are highly efficient for single error 
correction, since their encoding and syndrome 
computation circuits can be implemented easily using shift 
registers with feedback connections. The decoder area and 
the decoding latency are found to be much lesser than a 
few other single error correction codes [3]. For superior 
error correction capabilities, more powerful error 
correction codes are needed. Many codes such as the 
Orthogonal Latin Square Code (OLSC) proposed by Hsiao 
M.Y et al. [4], Reed-Solomon (RS) Codes [5] and other 
advanced codes such as Low Density Parity Check 
(LDPC) Codes [6] have been proposed which can correct 
larger number of errors, however, either at the cost of high 

decoding complexity and large overhead or slow decoding 
time and reduced system performance. 

This paper focuses mainly on correction of 
double errors in memory using (15, 7) BCH code. One of 
the main applications of double-error correcting BCH 
codes (DEC-BCH) is in flash memory, particularly the 
NOR flash. Traditional NOR flash memory products use 
Hamming code with only 1-bit error correction capability 
due to its simple decoding algorithm, small circuit area 
and less decoding time. However, as the bit error rate 
(BER) increases, the 2-bit error correcting BCH code 
becomes the preferable ECC. 

Normally, the NOR flash is used for code storage 
and acts as execute in place (XIP) memory where CPU 
fetches instructions directly from memory. The code 
storage requires an exceedingly reliable NOR flash 
memory, since any code error will cause a system fault. In 
addition, the NOR flash memory has fast read access. This 
imposes stringent requirement on the latency of the ECC 
decoder that is inserted between the flash memory and the 
data bus [7]. Hence, the primary concern in using the DEC 
BCH code in NOR flash memory is the decoding latency.  

The decoding of BCH codes is normally done in 
multiple stages. Hence, it is not only complex, but it also 
incurs a longer decoding time in the process. Various 
decoding algorithms and decoding architectures have been 
proposed to reduce the decoding time and the hardware 
complexity of the decoder. The use of a 3-stage pipeline 
structure for the decoder with the 3 stages consisting of 
syndrome computation stage, the Berlekamp-Massey 
(BM) decoding stage and the Chien search stage has been 
discussed in [8]. To reduce the hardware complexity of the 
various decoder stages, group matching scheme has been 
proposed in [9]. A parallel BCH Encoder - Decoder 
architecture using the simplified inverse-free BM 
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algorithm has also been proposed in [10], which focussed 
on reducing the hardware complexity and hence reduced 
decoder power.  

In this paper, we have developed a 2-stage 
pipelined architecture for the DEC BCH (15, 7) code. 
Furthermore, a high speed decoder is designed for the 
NOR flash memory aiming at reduction of the decoding 
latency, such that the faster read access ability of the NOR 
flash memory remains unaffected. 

The remainder of this paper is organized as 
follows. Section 2 describes the encoding of data using 
(15, 7) BCH code for double error correction. Section 3 
describes the decoding algorithm of the BCH code. 
Section 4 deals with the 3-stage pipeline architecture for 
the decoder. The newly developed 2-stage pipeline 
architecture is described in Section 5. The implementation 
method is explained in Section 6. Section 7 presents the 
results and discussion. Section 8 concludes the paper. 
 
2. BCH ENCODING FOR DOUBLE ERROR  
CORRECTION 

Binary BCH codes belong to the class of cyclic 
codes with the following parameters 
 
Block length:    n = 2m - 1 
Number of parity - check bits:    n - k ≤ mt 
Minimum distance:    dmin ≥ 2t + 1 
 

This code is capable of correcting any 
combination of t or fewer errors in a block of n bits. Here, 
k represents the number of data bits and m is a positive 
integer (m ≥ 3). Double error correction is achieved by 
using a code whose (n, k) = (15, 7). Thus m = 4 and t = 2 
for this code. Therefore, this method is capable of 
correcting a maximum of 2 errors in a code of length of 15 
bits and has a minimum distance of exactly 5 [5].  

Encoding involves multiplying the data 
polynomial d(x) = d0 + d1x + d2x2 +…... + d6x6 with the 
generator polynomial g(x) = g0 + g1x + g2x2 + …….+ g8x8 
to obtain the code polynomial  c(x) = c0 + c1x + c2x2 + 
…+ c14x14. The encoding and decoding of the binary BCH 
code is based on binary Galois field represented by 
GF(2m). The generator polynomial for the (15, 7) BCH 
code is specified in terms of its roots from the Galois field 
GF(24). If α is a primitive element in GF (24), then g(x) is 
the lowest degree polynomial over the binary Galois field 
GF(2) that has α, α2, α3, …… α2t as its roots. For t = 2, the 
roots are α, α2, α3and α4. However, since α2 and α4 are 
conjugates of α, they are the roots of the same minimal 
polynomial given by equation (1). 
 
Φ1(x) = Φ2(x) = Φ4(x) = X4 + X + 1                            (1) 
 

The minimal polynomial Φ3(x) of α3 is given by 
equation (2). 
 
Φ3(x) = X4 + X3 + X2 + X + 1                                      (2) 
 
Hence, g(x) = Φ1(x) Φ3(x) = X8 + X7 + X6 + X4 + 1   (3) 

Perl script was used to generate the Verilog 
source code for the encoder. The values of n, k, t and m 
along with the exponents of the primitive polynomial were 
given as an input to the Perl script. The Perl code was 
written to calculate the minimal polynomials and hence 
obtain the generator polynomial. The generator 
polynomial was multiplied by the data polynomial to 
obtain the Verilog source code for the encoder. The code 
obtained is that of a combinational logic consisting of 
XOR gates and buffers. 

This implementation has a time complexity of 
O(1). A simpler implementation would have required the 
use of a sequential multiplier with a time complexity of 
O(n). Thus, the delay of the encoder is significantly 
reduced with this implementation. The code obtained 
using this encoder is in the non-systematic form. 
 
3. DECODING ALGORITHM OF BCH DECODER 

The 15 - bit code word, consisting of the data bits 
and the check bits, stored in memory is susceptible to soft 
errors. Decoding is the process of detecting and correcting 
the errors present in the stored code word and finally, 
extracting the data from the error-free code word. Upon 
receiving the read signal, the memory starts the decoding 
process. 

Let the erroneous code word r(x) and the error 
pattern e(x) be represented by equations (4) and (5) 
respectively. 
 
r(x) = r0 + r1x + r2x2 + ……+ r14x14                             (4) 
 
e(x) = e0 + e1x + e2x2 + ……+ e14x14                            (5) 
 
Then, r(x) = c(x) + e(x)                                                (6) 
 
Decoding the code involves the following steps: 
 
a) Determine the syndrome vectors S1, S2 and S3 from 

the 15-bit code vector read from memory. 
 The syndrome is a 2t-tuple for a t-error-correcting 
code. Thus, for a double-error-correcting code, the 
syndrome is a 4-tuple represented by S = (S1, S2, S3, S4). 
The syndrome component Si is obtained by dividing the 
erroneous code word r(x) by the corresponding minimal 
polynomial Φi(x) of αi and obtaining the remainder 
polynomial bi(x). The syndrome component is then given 
by Si = bi (αi). Syndrome computation can be implemented 
using simple linear feedback shift register. 
 
b) Determine the coefficients σ1 and σ2 of the error 

polynomial from the syndrome vectors. 
 The error location polynomial is given by 
equation (7).    
 
σ(x) =σ0+σ1x+σ2x

2                                          (7) 
 

The error co-efficient σ0 = 1 and the other error 
coefficients σ1 and σ2 are determined using the 
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Berlekamp’s iterative decoding algorithm. They are given 
by equations (8) and (9). 
 
σ1 = S1                                                                      (8) 
 
σ2 = S3S1

-1 + S2                                                                                           (9) 
 
c) Run an exhaustive search for the roots of the error 

polynomial equation. 
 On obtaining σ1 and σ2, the roots of the error 
location polynomial are determined by running an 
exhaustive search. This is done by checking if any of the 
4-tuples of the Galois field from 0001 to 1111 satisfy the 
error polynomial equation. 
 
d) Determine the error location positions from the 

inverse of the roots. 
 
e) Obtain the error vector and thus the corrected 

code vector. 
 For example, if the 4-tuples 0101 and 1011 
satisfy the equation, then the roots of the equation are α9 
and α13 which are the elements of GF (24). The inverse of 
the roots are α15-9 and α15-13. This gives the error locations 
as 6 and 2. The error vector can then be identified to be 
000000001000100. This error vector is then added in 
modulo-2 addition (XOR) with the erroneous code vector 
to produce the correct code vector c’(x). Thus c’(x) = r(x) 
+ e(x). 
 
f) Extract the 7-bit data from the corrected code 
 The 7-bit data vector is extracted from the 
corrected code vector by dividing it by the generator 
polynomial. Thus, d(x) = c’(x) / g(x). The division is 

carried out by using a circuit similar to the syndrome 
calculator circuit, in which the shift register circuit is built 
using the generator polynomial. 
 
4. 3-STAGE PIPELINE ARCHITECTURE OF THE  
DECODER 
 This section presents the pipeline architecture of 
the decoder. In order to implement the pipeline 
architecture, the decoding process has been divided into 3 
stages as shown below: 
 
a) Stage 1 consists of determining the syndrome vectors 

from the 15-bit erroneous code vector followed by the 
determination of the error polynomial coefficients σ1 
and σ2 from the syndrome vectors obtained. 

b) Stage 2 consists of determining the roots of the error 
location polynomial, determining the error vector 
from the inverse of the roots and finally obtaining the 
corrected vector. 

c) Stage 3 consists of extracting the data from the 
corrected code vector. 

 
 The first step in implementing the pipeline 
effectively was to ensure that every decoding stage 
involves the equal time interval. It was found that the time 
required in determining σ2was large since the Galois field 
multiplier used in multiplying S3 and S1

-1 was found 
consuming more time. Hence, the original circuit 
consisting of the shift registers was replaced by a 
combinational circuit, which does the same multiplication 
within one clock cycle. It was found that each stage then 
required n+1 clock cycles. Thus, for the (15, 7) code, 16 
clock cycles were required. The division of time interval 
for each stage is shown in Table-1. 

 
Table-1.Time division in each stage. 

 

Decoder 
stage 

16 clock cycles 

15 clock cycles 1 clock cycle 

Stage 1 
Determination of syndrome 

vectors 
Determination of σ1 and σ2 from 

the syndrome vectors 

Stage 2 
Determination of the roots 

of the error location 
polynomial

Determination of the inverse of 
roots and obtaining the corrected 

vector

Stage 3 Extraction of data 

 
The pipeline mechanism is as illustrated in the block diagram shown in Figure-1. 
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Figure-1.Block diagram illustrating the 3-stage pipeline. 
 
5. 2-STAGE PIPELINE ARCHITECTURE OF THE  
DECODER 

In the 3-stage pipeline architecture, the 3rd stage 
involved extracting the data from the corrected code word. 
This stage was required for the reason that the code 
generated by the encoder is in a non-systematic form. This 

stage can be eliminated, if the code generated by the 
encoder is made available in systematic form. In this 
direction, the systematic encoding of the data vector for 
the generator polynomial g(x) = X8 + X7 + X6 + X4 + 1 has 
been implemented using the shift register circuit depicted 
in Figure-2. 

 

 
 

Figure-2.Encoder for the (15, 7) BCH code. 
 

The 7 data bits are appended with 8 zeroes to its 
right to form a 15-bit vector. This 15-bit vector is passed 
through the shift register starting from the left. After 15 
clock cycles, when all bits are shifted in, the contents of 
the shift register present the parity bits. These 8 parity bits 
are appended to the data bits, forming the 15-bit code 
vector. 

This can be expressed in polynomial form by 
equation (10) as given by 
 
c(x) = d(x)xn-k + Rem[(d(x)xn-k) / g(x)] (10) 
 
where Rem[a(x) / b(x)] is the remainder obtained on 
dividing a(x) by b(x)[11]. Since the code obtained with 
this encoder is systematic, the last stage of the decoder 
shown in Figure-2 can be eliminated to obtain a 2-stage 
pipeline structure consisting of the following 2 stages: 
 

a) Stage 1 - Determination of the syndrome vectors from 
the 15-bit erroneous code vector followed by the 
determination of the error polynomial coefficients σ1 
and σ2 from these syndrome vectors obtained. 

b) Stage 2 -Determination of the roots of the error 
location polynomial, determining the error vector 
from the inverse of the roots and in the process, 
obtaining the corrected code vector. The first 7 bits of 
the code vector from the left denote the data vector. 

 
6. IMPLEMENTATION 

The encoding and the decoding algorithms as 
described in Sections 2, 3, 4 and 5 were coded in Verilog® 
HDL. The functional simulation of the design was carried 
out using Xilinx®ISim Simulator. It was tested for its 
correct functionality by providing various random inputs 
through the test benches. The architectures were 
synthesized using the tool Encounter from Cadence® RTL 
Compiler using 180nm technology libraries. Area and 
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power estimation were done using the Encounter tool of 
Cadence. 
 
7. RESULTS AND DISCUSSIONS 

This section presents the results and related 
inferences. An authentic memory environment in the form 
of a memory block consisting of an array of 7-bit data has 
been created. To simulate the actual behavior, random data 
is generated using a random () function and stored in the 
data array. During the memory write operation, when the 
write signal wr goes high, the data vectors are encoded 
individually and stored in another memory block which 
forms the code array. The code vectors are subjected to 

errors by deliberately introducing error at two bit 
positions. The two error locations are different for each 
code vector. During a memory read operation, when the 
read signal rd goes high, these code vectors are passed 
through a decoder to obtain the corrected data vectors. The 
results obtained for the 3-stage and 2-stage pipeline 
architectures are discussed in the following sub-sections. 
 
7.1 3-Stagespipeline architecture 

A sample of the simulated output of the encoding 
and decoding stages of the 3-stage pipeline architecture as 
seen on the console window of the simulator is shown in 
Figure-3.

 

 
 

Figure-3.Simulation output for the 3-stage pipeline architecture. 
 
The simulated output of the encoder for the 3-stage pipeline architecture is shown in Figure-4.  
 

 
 

Figure-4.Simulation output of the encoder for the 3-stage pipeline architecture. 
 

As seen from the markers in Figure-4, encoding 
of data occurs instantaneously, since the encoder used is a 
combinational circuit. Therefore, a new data is encoded 

during every clock cycle. The clk signal employed has a 
time period of 1ns and hence, a frequency of 1GHz. 

Figure-5 shows the simulated output of the 
decoder for the 3-stage pipeline structure. 

 

 
 

Figure-5.Simulation output of the decoder for the 3-stage pipeline architecture. 
 

The 15-bit erroneous code is loaded into the 
decoder during every transition of the load signal. The 

load signal makes a transition once in 16 clock cycles as 
seen from the 1st two markers, which can be observed 16ns 
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apart. The data corresponding to the code at the 1st marker 
which is at a time instant of 577.5ns is decoded and 
available at the output 49ns later, at a time instant of 
626.5ns. Since each decoder stage requires 16 clock cycles 
and there are 3 stages, a total of 48 clock cycles are 
required for decoding and extracting data. The 49th clock 
cycle is required to read the data from the buffer register. 
Similarly, the data corresponding to the code at the 2nd 

marker, which is at the time instant of 593.5ns is decoded 
and available at a time instant of 642.5ns, 49 clock cycles 
after the code is loaded into the decoder. The decoded data 

are available at an interval of 16 clock cycles as seen from 
the 3rd and the 4th markers. Thus, once the pipeline is full, 
the data are made available at a rate of 16 clock cycles. 
The decoder throughput is therefore found to be 437Mb/s 
for a clock frequency of 1GHz. This is an increase of 
about 118% as compared to the non-pipeline decoding. 
 
7.2 2-Stages pipeline architecture 

A sample of the simulated output of encoding and 
decoding for the 2-stage pipeline architecture as seen on 
the console window of the simulator is shown in Figure-6.

  

 

Figure-6.Simulation output of the 2-stage pipeline architecture. 
 
The simulated output of the encoder for the 2-stage pipeline architecture is shown in Figure-7.  
 

 
 

Figure-7.Simulation output of the encoder for the 2-stage pipeline architecture. 
 

Data is loaded into the encoder at every transition 
of the load signal, which is once in every 16 clock cycles. 
As depicted in Figure-7, the data input 1011100 is loaded 
into the encoder at time 70.5ns, when load signal goes 
high. The corresponding code vector 101110000101001 in 
the systematic form is available at the output at 86.5ns, at 
which point of time, the load signal goes low and new data 

is loaded into the encoder. The value of the code at this 
time instant is seen in the ‘value’ window seen on the left 
hand side. It can hence be concluded that encoding of data 
requires 16 clock cycles. 

Figure-8 shows the simulated output of the 
decoder for the 2-stage pipeline structure. 

 

 
 

Figure-8.Simulation output of the decoder for the 2-stage pipeline architecture. 
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The 15-bit erroneous code is loaded into the 
decoder during every transition of the load signal which is 
once in 16 clock cycles as seen from the 1st two markers 
which are 16ns apart. The data corresponding to the code 
at the 1st marker which is at the time instant of 534.5ns is 
decoded and made available at the output 33ns later, that 
is, at the time instant of 567.5ns. Since each decoder stage 
requires 16 clock cycles and there are only 2 stages, a total 
of 32 clock cycles are required for the decoding and 
extracting data processes. The 33rd clock cycle is required 
to read the data from the buffer register. Similarly, the 

data corresponding to the code at the 2nd marker, which is 
at a time instant of 550.5ns is decoded and available at a 
time instant of 583.5ns, 33 clock cycles after the code is 
loaded into the decoder. The decoded data are available at 
an interval of 16 clock cycles as seen from the 3rd and the 
4th markers. Thus, once the pipeline is full, data are 
available at the rate of 16 clock cycles.  

Table-2 shows a comparison of the different 
architectures in terms of area, power and memory access 
time. The power estimation obtained is dependent on the 
synthesized architectures. 

 
Table-2. Comparison of the different architectures. 

 

Architecture 

Decoder 

Area 
μm2 

Power (μW) Decoding time 
of individual 
codes (No. of 
clock cycles) 

Decoding time of 
a code in an 
array (No. of 
clock cycles) 

Leakage 
power 

Dynamic 
power 

Total 
power 

2-stage 
pipeline 

9,121 0.046 486.46 486.52 32 16 

3-stage 
pipeline 

13,588 0.07 705.40 705.47 48 16 

Non-pipeline 21,871 0.10 522.15 522.25 20-120 variable 

 
It may be noted from the Table that the decoding 

time is not a constant in the case of non-pipelined 
architecture, as it depends on the number of errors and 
their positions. If there is no error in the code word, the 
syndrome vector is zero. The decoder then skips the 
additional steps and extracts the data from the code vector.  
Hence, the decoding time becomes less. When there are 
errors in the code word, the decoding time can be more. 
On the other hand, in the case of the two pipelined 
architectures, though the decoding time of individual code 
varies, once the pipeline is full, the decoding time of each 
code is the same, or equal to 16 clock cycles for both the 
architectures. Further, the decoding time of an individual 
code is a constant and is independent of the number of 
errors and their positions. 

Additionally, as seen from Table-2, the decoder 
area of the 2-stage pipeline architecture is found to be the 
least of the three architectures, which is about 33% less 
than the 3-stage architecture and 58% less than the non-
pipeline architecture.  

Furthermore, it may be noted that the power 
consumed by the 2-stage pipeline decoder is the least, 
since only two decoder stages are running concurrently at 
any given time. This power is found to be 31% less than 
the 3-stage pipeline decoder, which consumes the 
maximum power since three decoder stages are running 
concurrently at any given time. 
 
8. CONCLUSIONS 

In this paper, a novel 2-stage pipeline architecture 
has been proposed for the BCH decoder with the two 
stages being the Syndrome generation stage and the 
Berlekamp-Chien stage. With its low power, small area 

and high decoding speed the 2-stage pipeline decoder is 
ideally suited for high speed NOR flash memory. 

Though this work is limited to double error 
detection and correction using (15, 7) BCH code, it may 
be extended for higher (n, k) values. Thus for a (31, 21) 
BCH code with double error correction capability, 32 
clock cycles would be required to decode each code which 
gives a decoder throughput of 656Mb/s. For a (63,51) 
BCH code, 64 clock cycles would be required to decode 
each code to give a throughput of 796Mb/s for a clock of 
frequency 1GHz. Thus, higher the (n, k) values, more is 
the throughput.  
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