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 ABSTRACT 

The pressure behavior of horizontal wells in dual-porosity, dual-permeability naturally-fractured reservoirs is 
presented. The proposed equation is obtained by double Fourier transformation and Laplace transformation. The results 
calculated for combinations of various dimensionless characterizing parameters, including the permeability ratio between 
matrix and fracture systems, have revealed the unique behavior of naturally fractured reservoirs when the flow state within 
the matrix blocks is taken into account. It is concluded that, for the flow within matrix blocks will weaken the essential 
nature of fluid flow through a dual-porosity, single permeability medium revealed by Warren-Root model. This paper also 
presents the application of “Tiab’s Direct Synthesis” technique to horizontal wells in an infinite-acting dual-porosity, dual-
permeability naturally-fractured reservoirs with pseudosteady state interporosity flow.  
 
Keywords: pressure transient analysis, TDS technique, naturally fractured reservoirs, dual permeability systems. 
 
1. INTRODUCTION 

The pressure behavior of naturally fractured 
reservoirs (NFRs) is usually studied using Warren and 
Root (1963) simplified model neglecting the flow of fluids 
in the matrix blocks. This simplification generally yields 
satisfactory results because the matrix permeability is 
usually much less than that of the fracture system in a 
naturally fractured reservoir. However, in order to 
determine the limits of validity of Warren and Root’s 
solution and to study the behavior of a naturally fractured 
reservoir in which the contrast between the permeability of 
matrix system and that of fracture system is not 
significant, the more general Barenblatt-Zheltov-Kochina 
(1960) model is typically used in the literature. But the 
analytical solutions to this model which were obtained by 
numerical analysis or numerical inversion are very 
complex and inconvenient to use (Chen and Jiang, 1980). 

Horizontal wells have been proven to be an 
effective means of producing hydrocarbons from naturally 
fractured reservoirs. Extension of horizontal well solutions 
to naturally fractured reservoirs was originally developed 
by Rosa and Carvalho (1988) using instantaneous source 
functions. They developed a relationship to determine the 
naturally fractured, dual-porosity solution in terms of the 
pressure derivatives in Laplace space. Aguilera and Ng 
(1991) applied the transform method developed by Goode 
and Thambynayagam to drawdown and buildup tests in 
naturally fractured reservoirs. Their solutions led to the 
identification of six flow periods, some of which may be 
dominated by natural fractures. 

To the best of our knowledge, all pressure 
drawdown and buildup equations for horizontal wells in 
NFRs are based on Warren and Root model, which is a 
dual-porosity, single permeability model (see Figure-1). 
This study presents an analytical solution for horizontal 
wells pressure transient equation in dual-porosity, dual-
permeability NFRs. The proposed equation is obtained by 

double Fourier transformation and Laplace transformation. 
The results calculated for combinations of various 
dimensionless characterizing parameters, including the 
permeability ratio between matrix and fracture systems, 
have revealed the unique behavior of naturally fractured 
reservoirs when the flow state within the matrix blocks is 
taken into account.  

Early techniques for interpreting horizontal wells 
pressure transient tests in NFRs include conventional 
semi-log and log-log type curve methods. Both methods 
are accurate provided certain criteria are established. That 
is, all flow regimes must be observed in the pressure and 
pressure derivative curve over a sufficient period of time. 
In NFRs, all flow regimes are rarely observed from 
pressure data, thus type curve method will have a non-
uniqueness problem and semilog analysis will be 
incomplete. Compound this problem with masking effect 
of wellbore storage and analysis becomes suspect. 

Therefore, it is proposed to use an alternative 
method referred to as “Tiab’s Direct Synthesis” (TDS). 
This method utilizes the characteristic intersection points, 
slopes, and times of various straight lines from a log-log 
plot of pressure and pressure derivative data. Values of 
these points are linked directly to the exact, analytical 
solutions to obtain reservoir and well parameters.  

The TDS method has been successfully applied to 
uniform flux and infinite conductivity vertical fracture 
models (Tiab, 1989), to vertically fractured wells in closed 
systems (Tiab, 1994), to homogeneous reservoirs with skin 
and wellbore storage (Tiab, 1995), to vertical wells and 
horizontal wells in naturally fractured reservoirs (Engler 
and Tiab, 1996), and to horizontal wells in anisotropic 
media (Engler and Tiab, 1996). 

This study also presents the application of TDS to 
horizontal wells in an infinite acting dual-porosity, dual-
permeability NFR with pseudosteady state interporosity 
flow. New analytical and empirical expressions are 
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developed as a result of this study.  Natural fracture 
parameters can be determined from the minimum 
coordinates of the pressure derivative curve. 
 
2. MATHEMATICAL FORMULATION 
 Figure-2 is a schematic of a horizontal well. A 
horizontal well of length L  is parallel to x direction. The 
following assumptions are made: 
 
1) The dual-porosity, dual-permeability naturally 

fractured reservoir is horizontal, and has constant 
matrix and fracture permeabilities, thickness, and 
porosity.  Both the matrix system and the fracture 
system are homogeneous and isotropic. 

2) The reservoir has infinite lateral extension, i.e., the 
boundaries of the reservoir in the horizontal directions 
are so far away that the pressure disturbance does not 
travel far enough to reach the boundaries during the 
well production. 

3) The reservoir pressure is initially constant; the initial 
pressure is uniform throughout the reservoir. The 
pressure remains constant and equal to the initial value 
at an infinite distance from the well. The reservoir is 
bounded by top and bottom impermeable formations. 

4) The production occurs through a horizontal well of 
radius RW, represented in the model by a uniform line 
sink located at a distance Zw from the lower boundary, 
and the length of the well is L.  And the thickness of 
the formation is small compared to the length of the 
horizontal well. 

5) A single-phase fluid, of small and constant 
compressibility, C, constant viscosity, µ, and formation 
volume factor, B, flows from the reservoir to the well. 
Fluid properties are independent of pressure. Constant 
flow rate is applied. 

6) Pseudo-steady state interporosity flow occurs between 
the matrix blocks and fractures, both the fracture 
system and matrix blocks can feed the horizontal 
wellbore (see Figure-3). 

7) Wellbore storage and gravity effects are ignored. 
 
Equations for initial and boundary conditions 

As Figure-2 shows, the horizontal well is a 
uniform line sink in three dimensional space, the 
coordinates of the two ends are (0, 0, Zw) and (L, 0, Zw). 
 
The drainage domain is: 
 

),0(),(),( H    (1) 

 
The reservoir has infinite lateral extension i.e., 

the reservoir has the following outer boundary condition: 
 

)2,1(;;),(  jrwhenPtrP inij
  (2) 

 
Where Pini is the initial pressure throughout the 

reservoir, subscripts 1 and 2 denote the matrix block 
system and the fracture system, respectively.  

 

 
 

Figure-1. Horizontal well in dual-porosity, 
single permeability reservoir. 

 

 
 

Figure-2. Horizontal well  configuration. 
 

 
 

Figure-3.  Horizontal well in dual-porosity, 
dual-permeability reservoir. 

 
Upper and lower reservoir boundaries are 

impermeable, 
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At wellbore, there holds,  
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)(),(),( 21 tPtRPtRP www     (4) 

 
Initial condition: 
 

)2,1(;0;),(  jtwhenPtrP inij   (5) 

 
Using continuum mechanics, the medium and 

flow parameters of the two media, fractures and matrix, 
are defined at each mathematical point. The pressure 
equations for a single point sink are derived, then, using 
Principle of Superposition, the solutions for uniform line 
sink can be obtained.  
 
Point sink solution 

The system of equations for a point sink at (x’, 0, 
Zw) in the dual-porosity, dual-permeability naturally 
fractured reservoir is, 
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Define the ratio of matrix system permeability to 

fracture system permeability below: 
 

21 / KKD       (7a) 

 
)1/( DD                         (7b) 

 
And, 
 

Assume Qw is the total flow rate of the horizontal 
well, Q1 is the flow rate of matrix block system, Q2 is the 
flow rate of fracture system, then, 
 

21 QQQw       (8) 

 
Define  
 

ww QQQQ /,/ 2211      (9) 

 
And assume 
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Then, 
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The storage capacity ratio, 
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The interporosity flow parameter, 
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Taking dimensionless transforms, Equations (6a) 

and (6b) are changed to  
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Taking the Laplace transform and double Fourier 

transform of Equations (13a) and (13b), using boundary 
conditions and initial condition, we obtain the point sink 
solution at  (x’D, 0, Zw) below:  
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In the above equations,  
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Uniform line sink solution 

Assume the horizontal well is a uniform line sink 
which is located between point at (0, 0, Zw) and point at (L, 
0, Zw), the dimensionless line sink is located between point 
at (0, 0, Zw) and point at (LD, 0, ZwD), according to the 
Principle of Superposition, and recall Equation (4), the 
dimensionless pressure at the wellbore point at (xD, 0, ZwD) 
is  
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Where, 
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Recall Equation (15), note that if 0h , there holds, 
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Using Mean Value Theorem there holds  
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Combining Equations (19), (20), (21) and (22), 

the horizontal wellbore pressure can be obtained.  
 
At very early time,  
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When 5,05.0  DD Lt , Equation (23) reduces to  
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At very late time, if ,10,25.0 3 DtD there holds 
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When 410Dt , Equation (26a) reduces to 
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2.1. Flow regimes  

A number of different flow regimes can be found 
while analyzing transient-pressure responses in horizontal 
wells. One or more of these flow regimes could be missing 
or masked depending on the reservoir parameters.  

As production starts, the pressure transient will 
move perpendicular to the wellbore, then radial flow is 
formed. This flow regime has been recognized as early 
time radial flow and its duration is very short when in thin 
reservoirs or high vertical permeability reservoirs. 

Typically, there is a substantial storage volume 
associated with a horizontal wellbore which can have 
serious consequences on the effectiveness of a pressure 
transient test, even when the measurement tool is located 
below a downhole shut-in device.  Kuchuk et al. (1990) 
noted that the storage effect in a horizontal well typically 
lasts longer than that for a vertical well in the same 
formation, because of (a) greater wellbore volume; (b) 
anisotropy reduces the effective permeability for a 
horizontal well. Daviau et al. (1985) showed that the first 
semilog straight line associated with early time radial flow 
almost always disappears because of the effects of 
wellbore storage. Thus, early time radial flow regime is 
not studied in this paper.   

Often, the length of the horizontal well is much 
greater than the reservoir thickness, which contributes to 
the formation of the second primary flow regime. This is 
known as intermediate time linear flow regime and is 
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developed when pressure disturbance reaches both the 
upper and lower boundaries of the reservoir. 

In the absence of a constant-pressure source and 
no boundaries to horizontal flow over a reasonable 
distance, flow towards the horizontal wellbore becomes 
effectively radial in nature after a long enough time, with 
the horizontal plane acting somewhat like a point source, 
this flow regime,  called late time radial flow regime. 
Between intermediate time linear flow regime and late 
time radial flow regime, there exists a transition period. As 
shown in Figure-2, the reservoir has infinite lateral 
extension, there does not exist late time linear flow 
regime, pseudo-steady state cannot be reached and is not 
studied in this paper. 
 
2.2. Dual-porosity, dual-permeability  
       behavior  

When dual-porosity, dual-permeability responses 
are plotted with the dimensionless pressure PD versus the 
dimensionless time tD, the curves are defined with D, , 
and . D and  define the contrast between matrix block 
system and fracture system,  defines the interaction 
between the two systems. Because pressure behavior is 
slightly affected by the vertical coordinate of center of the 
horizontal well, so we always assume zw = H/2, and the 
length of the horizontal well is much greater than the 
reservoir thickness, there holds L/H > 5. And we assume 
skin factor S=0 in the following discussions.  

Figures-4 and 5 show the influence of 
permeability ratio D on bottomhole pressure drop. With 
increasing permeability ratio, the characteristic trough of 
pressure derivative on the log-log plot will become 
shallow, the intermediate segment of the semilog plot of 
pressure versus time will shorten. The intermediate 
segment almost vanishes with unity permeability ratio 
(D=1).   
 

Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir
PwD vs. tD Semilog Plot 
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Figure-4.  Semi-Log plot of influence of permeability 
ratio D on PwD. 

 
On log-log derivative plot, straight lines with one 

half slope can be found for each value of D at early time, 
then intermediate time transition behavior establishes, the 
smaller D, the deeper the characteristic trough. At late 
time, the system reaches a homogeneous behavior 

characterizing the total permeability thickness, total 
storativity, pressure derivative reaches a constant with a 
value of 0.5.  
 

Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir
Pressure and Pressure Derivative Log-Log Plot 
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Figure-5. Log-Log plot of influence of permeability ratio 
D on PwD. 

 
Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir

PwD vs. tD Semilog Plot 
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Figure-6. Semi-Log plot of the two extreme cases D=0 
and D=1. 
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Figure-7. Log-Log plot of the two extreme cases D=0 and 
D=1. 

 
The results of the well-known Warren and Root’s 

model in which the flow within matrix blocks is neglected 
(D=0) and the results in the case of homogeneous medium 
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(D=1, ) are shown as two special and extreme cases 
in Figures-6 and 7. 

Figures-8, 9 and 10 show the influence of 
storativity ratio  and permeability ratio D on bottomhole 
pressure drops when  is specified. It can be found that if 
D and  are specified, the result of increasing  is similar 
to that of increasing D in a semilog plot. When  
increases, the intermediate segment shortens and almost 
disappears.  

 
Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir

PwD vs. tD Semilog Plot 
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Figure-8. Semi-Log plot of influence of   and D on PwD. 
 

Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir
Pressure and Pressure Derivative Log-Log Plot 
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Figure-9. Log-Log plot of influence of  and D on PwD 
(D=0.05). 

 
Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir
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Figure-10. Log-Log plot of influence of  and D on 
PwD (D=0.25). 

Figures-11, 12 and 13 show the influence of 
interporosity flow parameter  and permeability ratio D on 
bottom hole pressure drop when  is specified. It can be 
found that if D and  are specified, on the log-log plot, 
different curves corresponding to different values of  
converge to a one-half slope straight line at early time,  
because at early time, before the interporosity flow is fully 
established, the response is the same for  the reservoirs 
with different . On the semi-log plot, with the increasing 
, the intermediate segment shortens. 
 

Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir
PwD vs. tD Semilog Plot 
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Figure-11. Semi-Log plot of influence of  and D on PwD. 
 

Horizontal Well in a Dual-Porosity, Dual-Permeability Reservoir 
Pressure and Pressure Derivative Log-Log Plot 
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Figure-12. Log-Log plot of influence of   and D on 
PwD (D=0.25). 
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Figure-13. Log-Log plot of influence of  and D on 
PwD (D=0.05). 
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All the characteristic parameters D, , and  of a 
dual-porosity, dual-permeability medium play their role 
only in the early and transition stages, and all curves for 
various D,  and  converge to the same straight line 
segment. The essential nature of fluid flow through a 
double porosity, single permeability medium revealed by 
Warren and Root's model that in a semilog plot there 
appear an intermediate segment, weakens with the 
increasing of permeability ratio D. 

The pressure response exhibits linear flow when 
pressure transient reaches the upper and lower 
impermeable boundaries. Before this period can be fully 
developed, however, the matrix begins to contribute, 
significantly, to the fracture flow. Subsequently, the 
transition period becomes dominant and the minimum 
coordinates are observed. After the transition period, the 
late time, infinite-acting radial flow period is present; the 
reservoir reaches a homogeneous behavior characterizing 
the total producing system.  
 
3. TDS TECHNIQUE  

Tiab’s Direct Synthesis couples the characteristic 
points and lines of pressure and pressure derivative data 
with exact analytical solutions, resulting in estimates of 
reservoir parameters.  

The enhanced resolution of the flow regimes 
from derivative curve results in accurate analysis of the 
flow regimes which is observed during the well test. The 
derivative follows the one-half slope straight line at early 
time, reaches a maximum, the drops below the 0.5 line in a 
transition, and finally reaches the 0.5 stabilization when 
radial flow in the equivalent homogeneous total system is 
reached. During the transition, the shape of the derivative 
valley is a function of the contrast of storativity and 
permeability between matrix system and fracture system. 
The pressure derivative response exhibits the characteristic 
trough with the associated minimum coordinates.  

Empirical expressions are developed to determine 
the storage capacity ratio  from the ratio of the minimum 
to late time radial pressure derivative coordinates: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table-1. Determine storage capacity ratio  by the 
normalized minimum pressure derivative points. 

 

D  a b c d e

1.0E-07 -0.078 1.704 -11.085 33.803 -34.383
1.0E-06 -0.094 1.946 -12.451 36.977 -37.003

0.01 1.0E-05 -0.136 2.562 -15.848 44.846 -43.551
1.0E-04 -0.232 3.792 -21.729 56.391 -51.294
1.0E-07 -0.299 3.969 -18.669 39.333 -28.985
1.0E-06 -0.452 5.774 -26.559 54.244 -39.326

0.05 1.0E-05 -0.822 9.808 -42.914 83.061 -58.021
1.0E-04 -1.757 18.871 -75.260 132.750 -85.655
1.0E-07 -0.656 6.703 -25.081 41.601 -24.538
1.0E-06 -1.154 11.524 -42.451 69.028 -40.595

0.1 1.0E-05 -2.445 23.220 -81.875 127.380 -72.650
1.0E-04 -5.318 46.333 -150.650 216.560 -115.080
1.0E-07 -1.567 10.780 -27.342 30.168 -11.595
1.0E-06 -4.439 31.589 -83.724 97.781 -41.889

0.25 1.0E-05 -13.395 93.282 -242.520 278.680 -118.870
1.0E-04 -29.848 196.360 -483.210 526.630 -213.920
1.0E-07 -2.4931 11.599 -18.226 9.7993 0.000
1.0E-06 -6.769 36.070 -70.849 60.158 -18.103

0.5 1.0E-05 -45.942 258.900 -545.510 508.830 -176.900
1.0E-04 -127.330 695.190 -1421.000 1288.100 -436.530  
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                (27) 

 
where the subscripts r  denotes the late time radial flow 
period. Table-1 lists the coefficients a, b, c, d and e used in 
Equation (27) for different D and , which are valid from 
0 <   

The ratio of the minimum to late time radial 
pressure derivative coordinates develops a correlation 
which can immediately determine the interporosity 
parameter   by the following equation:  
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  (28) 

 
Table-2 lists the coefficients a, b, c and d used in 

Equation (28) for different D and , which are valid from. 
10-8 ≤ ≤ 10-3. 
We introduce the following notations: 
 

21 KKKt                    (29a) 

 

2211)( CCC t                   (2bb) 

  
In oil field units, and only include mechanical 

skin factor, Equation (25) is expressed as 
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Table-2. Determine interporosity parameter   by the 
normalized minimum pressure derivative points. 

 

D  a b c d

0.001 14.7 -215.7 1528.9 -3850.4
0.01 57.7 -1060.8 7014.6 -15512.0

0.01 0.05 2189.1 -22453.0 76959.0 -87984.0
0.1 6521.8 -49899.0 127432.0 -108560.0

0.001 24.1 -200.4 698.2 -867.4
0.01 56.4 -545.5 1926.8 -2313.8

0.05 0.05 459.2 -3283.8 7948.2 -6462.9
0.1 2269.8 -13754.0 27893.0 -18900.0

0.001 37.2 -252.9 670.4 -624.7
0.01 74.3 -547.1 1447.8 -1306.2

0.1 0.05 422.3 -2500.5 5026.9 -3402.8
0.1 2254.0 -11853.0 20871.0 -12284.0

0.001 81.1 -420.9 793.1 -517.2
0.01 155.6 -834.8 1559.0 -988.4

0.25 0.05 754.7 -3543.6 5620.2 -2996.0
0.1 5366.1 -23304.0 33820.0 -16390.0

0.001 207.9 -921.8 1420.6 -746.1
0.01 421.7 -1878.3 2846.9 -1454.1

0.5 0.05 2596.6 -10536.0 14324.0 -6514.1
0.1 16804.0 -63199.0 79315.0 -33207.0  
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On thePw vs. t1/2 plot, we can obtain a straight 

line with a slope below: 
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And skin factor can be calculated by  
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Where Pw|t=0 is the pressure at t=0, obtained by 

extrapolating the straight line section back to this time. For 
the pressure derivative, there holds  
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In oil field units, and only consider mechanical 

skin factor, Equation (26b) is expressed as 
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If we use common log, then 
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On the semilog plot, we can obtain a straight line 

with a slope below: 
 

HK

BQ
m

t

w
r

6.162
      (38) 

 
So 
 

Hm

BQ
K

r

w
t

6.162
      (39) 

 
Skin factor can be calculated by 
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From Equation (37a), we obtain 
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Then 
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And skin factor can be calculated by 
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Step by step procedure  
 
Case one:  

All intermediate time linear flow, transition flow 
and late time radial flow regimes are observed. 

Step-1:  Identify the late time radial flow period 
represented by a constant derivative line and calculate the 
total permeability Kt from Equation (42),  if  D is given, 
solve Equations (7a) and (29a),  then obtain  K1 and  K2. 

Step-2:  Calculate   from Equation (32a), if   is 
given, then solve Equation (24a) to estimate D. If D is 
given, Substitute Equation (24b) into Equation (24a), also 
solve Equation (24a) to estimate . 

Step-3:  Identify the intermediate time linear flow 
period represented by one-half slope derivative line, for 
verification purpose; calculate the total permeability Kt again 
from Equation (35).    

Step-4:  Identify the minimum pressure derivative 
coordinate and normalize with respect to the late time radial 
pressure derivative line.  Substituting this ratio into Equation 
(28) results in an estimate for , and calculate  by Equation 
(27),  however, these methods are less reliable and require 
more information to estimate  and . 

Step-5: Select convenient points within well-
defined horizontal well flow regimes on the pressure and 
pressure derivative curves.  Substitute these points into 
Equations (33), (36), (40), (43) and solve for mechanical 
skin factor. 
 
Case two:  

Late time radial flow period is not observed. 
Step-1:  Calculate    from Equation (24a), 

assuming   and D are given. 
Step-2:  Identify the intermediate time linear flow 

period represented by one-half slope derivative line; 
calculate the total permeability Kt from Eq. (32b). Solve 
Equations (7a) and (29a), then obtain K1 and K2. 

Step-3: Select a convenient point during 
intermediate time linear flow regime on the pressure and 
pressure derivative curves. Substitute this point into 
Equations (33) and (36), and solve for mechanical skin 
factor. 
 
Case three 

Intermediate time linear flow period is not 
observed. 

Step-1:  Identify the late time radial flow period 
represented by a constant derivative line and calculate the 
total permeability Kt from Eq. (42), or from the slope of the 
straight line on the semi-log plot, calculate Kt from Equation 
(39). If D is given, solve Equations (7a) and (29a), then 
obtain K1 and K2. 
 

Step-2:  Locate the minimum derivative point 
(assuming it is present), and normalize with respect to the 
late time radial pressure derivative line, then determine  
and   by Equations (27) and (28), respectively. 
 

Step-3:  Select a convenient point during late time 
radial flow regime on the pressure and pressure derivative 
curves. Substitute this point into Equations (40) and (43), 
and solve for mechanical skin factor. 
 
4. EXAMPLES 
 
4.1. Example one 

Only early time pressure drop data are available. 
Reservoir and well data are in Table-3, pressure drop data 
are in Table-4. 
 

Solution: This problem matches Case Two.  
Step-1: From Pw vs. t0.5 plot (see Figure-14), we 

obtain 
 

)/(52.66 2/1hrpsiaml   

 
)(20| 0 psiaP tw    

 
Since D = 0.1 and  = 0.05, use Equations (24a) 

and (24b), we obtain 
 

8826.1   

 
Step-2: Use Equation (32b), we have  
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Then solve Equations (7a) and (29a), and obtain   
 

)(4.108)(8.10 21 mDKmDK   

 
Step-3: From Figure 14, we obtain 

 
)(20| 0 psiaP tw    

 
From Equation (33), we have  
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From log-log plot (see Figure-15), we obtain a 

one-half slope straight line, we choose  
 

Table-3. Reservoir and well data for example one. 
 

Parameter Data Parameter Data

t 0.11  1.00E-04

Ct(psia-1) 1.35E-05  0.05

H (ft) 40 Q (STB/D) 2500
L (ft) 500 B (RB/STB) 1.357
(cp) 1.147 D 0.1
Rw ( ft) 0.5 Pini (psia) 3860  

 
Table-4.  Pressure data for example one. 

 

t (hr) Pw (psia) t (hr) Pw (psia)

0.0015 3836.71 0.0760 3820.58

0.0030 3835.67 0.0950 3818.24

0.0060 3834.19 0.1200 3815.44

0.0090 3833.05 0.1500 3812.40

0.0120 3832.07 0.1900 3808.72

0.0150 3831.21 0.2400 3804.54

0.0190 3830.17 0.3000 3799.97
0.0240 3829.02 0.3800 3794.41
0.0310 3827.57 0.4700 3788.68
0.0380 3826.27 0.6000 3781.07
0.0470 3824.75 0.7800 3771.48
0.0610 3822.63 0.9600 3762.64  
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Figure-14. Pw vs. t1/2 plot for example one. 
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Only intermediate time and late time pressure 

drop data are available. Reservoir and well data are the 
same as shown in Table-3, pressure drop data are in Table-
5. 
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Figure-15. Log-Log plot for example one. 
 
4.2. Example Two 
 

Table-5.  Pressure data for example two. 
 

t (hr) Pw (psia) t (hr) Pw (psia)

9.6 3399.20 93.0 3356.25

12.3 3395.12 105.0 3351.92

15.0 3392.43 129.0 3343.88

18.0 3390.09 141.0 3340.14

21.0 3388.14 150.0 3337.44

24.0 3386.40 168.0 3332.32
27.0 3384.77 194.0 3325.49

30.0 3383.22 220.0 3319.25

33.0 3381.72 264.0 3309.83

39.0 3378.83 295.0 3303.91

45.0 3376.03 321.0 3299.34

51.0 3373.31 352.0 3294.29

57.0 3370.68 393.0 3288.18

63.0 3368.11 437.0 3282.26
69.0 3365.61 470.0 3278.17
81.0 3360.81 500.0 3274.68  

 
Solution: This problem matches case three.  
 
Step-1: From semilog plot see Figure-16), we obtain 
 

)/(130 cyclepsiamr   

 
)(275| 1 psiaP hrtw    
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From Equation (39),  
 

)(5.121

)40)(130(

)357.1)(2500)(147.1(6.162

mD

Kt



  

 
Then solve Equations (7a) and (29a), and obtain   
 

)(5.110)(0.11 21 mDKmDK   

 
From log-log plot (see Figure-17), 
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Figure-16. Pw vs. semilog t plot for example two. 
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Figure-17. Log-Log plot for example two. 
 

437( ), ( * ') 56( )r rt hrs t P psia    

 
From Equation (42), we have 
 

)(1.122

)40)(56(

)357.1)(2500)(147.1(6.70

mD

Kt



  

 
Step-2: The minimum derivative point is  

min min18.0( ), ( * ') 12.72( )t hrs t P psia    

and  
 
( * ') 56( )rt P psia   

 
We may use Equations (27) and (28) to obtain 

roughly estimations of   and . 
 

4108,1.0    

 
The above results indicate that Equations (27) 

and (28) and the parameters in Table-1 and Table-2 are 
less reliable.  
 
Step-3: From Figure 16, 
 

)(275|),/(130 1 psiaPcyclepsiam hrtwr    

 
Use Equation (40), we obtain  
 

21.0mS  

 
From Figure 17,   
 

437( ), ( * ') 56( ), 577( )r r rt hrs t P psia P psia      

 
Use Equation (43), then  
 

21.0mS  

 
We may use the value of Kt obtained in Example 

Two to verify   and D.  Use Equation (32a),  
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Then use Equation (24a), we have 
 

)1(05.0/)1)(05.01(

1
9.1

DDDD

D




  

  
Solve for D,  
 

11.0D  
 
CONCLUSIONS 
a) This paper presents an alternative analytical solution 

to the system of pressure equations of horizontal wells 
in a dual-porosity, dual-permeability naturally 
fractured reservoir.  

b) The flow within matrix blocks will weaken the 
essential nature of fluid flow through a dual-porosity, 
single permeability medium revealed by Warren-Root 
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model. With increasing permeability ratio D, the 
characteristic trough of pressure derivative on the log-
log plot will become shallow; the intermediate 
segment of the semilog plot of pressure versus time 
will shorten. The intermediate segment almost 
vanishes with unity permeability ratio. The result of 
increasing  is similar to that of increasing D in a 
semi-log plot. 

c) The pressure response exhibits linear flow when 
pressure transient reaches the upper and lower 
impermeable boundaries, subsequently, the transition 
period becomes dominant and the minimum 
coordinates are observed. After the transition period, 
the late time, infinite-acting radial flow period is 
present; the reservoir reaches a homogeneous behavior 
characterizing the total producing system.   

d) For intermediate time linear flow and late time radial 
flow, the simplified pressure drop equations are 
presented, which can be used to calculate total 
permeability and mechanical skin factor.  
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Nomenclature 
D     ratio of matrix permeability to fracture permeability 
B     oil volumetric factor, rb/STB 
C     compressibility, 1/psi 
H     formation thickness, ft 
K1     matrix permeability, mD 
K2     fracture permeability, mD 
L      horizontal well length, ft. 
P      pressure, psi 
Qw    total well flow rate, STB  
r       radial distance, ft  
Rw    wellbore radius, ft 
Sm     mechanical skin factor 
t        test time, hr 
zw      vertical coordinate of center of horizontal well  
 
Greek symbols 
           characteristic factor of  NFR, 1/ft2 

           a parameter defined by Eq.(7b) 
            a parameter defined by Eq.(18c) 
1          a parameter defined by Eq.(24b) 
2           a parameter defined by Eq.(24b) 
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           drainage domain  defined by Eq.(1) 
            a parameter defined by Eq.(24a) 
 change, drop 
 porosity, fraction 
 viscosity, cp 
 interporosity flow parameter, dimensionless 
 storage coefficient, dimensionless 
1           a parameter defined by Eq.(9) 
2           a parameter defined by Eq.(9) 
 
Subscripts 
D  dimensionless  
ini  initial  
l   intermediate time linear flow period 
min minimum 
r   late time radial flow period   
t  total 
w  well  
x,y,z coordinate indicators  
1    matrix bulk property 
2    fracture bulk property 
 
SI metric conversion factors  

301589873.1 mEbbl   

sPaEcp .030.1 *   

mEft  01048.3 *  

PaEpsi  03894757.6  
21686923.9 mEmD   

*Conversion factor is exact. 
 
Appendix: Definition of dimensionless variables 
 

HzzHyyHxx DDD /,/,/                           (A-1) 

 
HzzHLLH wwDDD /,/,1                             (A-2) 

 
HRRHrr wwDD /,/                                              (A-3) 

 
)/()()(2 21 wjiniDj BQPPHKKP    (j=1, 2) (A-4) 

 

)](/[)( 2211
2

21 CCHtKKtD                      (A-5) 

 


