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ABSTRACT 

In this paper, a new group of exact and asymptotic analytical solutions of the displacement equation in a 

homogeneous elastic media, considering the most general solution of the Helmholtz equation, which have not been shown 

in papers and standard texts, are presented. Moreover, the authors show from the ray theory point of view the meaning of 

such solutions. These solutions could be helpful in future conceptual works about generation and emerging phenomena in 

elastic waves such as scattering and diffraction, among others, specifically in the analysis of the boundary conditions. Here, 

new kinds of P-S body waves that oscillate elliptically and propagate outward from sources in a full-space are found 

where, as special cases, the grazing longitudinal (Py) and transversal (SVy) waves of the Goodier-Bishop type, the analytic 

expressions for the Rayleigh wave and surface P waves, for which the amplitude decays from sources, are obtained. Also, 

the standard expressions for the homogeneous plane wavefronts, surface P waves, and Rayleigh surface waves, are 

achieved. 
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1. INTRODUCTION 

In elastodynamics the exact solutions available 

are limited; therefore it is necessary to either use different 

approximate methods or to modify the problem in a way 

that it can be described in terms of fundamental known 

solutions. Such solutions are usually obtained from the 

propagation of secondary horizontal (SH) waves on special 

geometries [1-7]. Solving problems involving primary (P), 

secondary vertical (SV) and surface waves is more difficult 

due to the coupling of the field components either in the 

displacement equation or in the boundary conditions. Lee 

[8, 9] overcame that inconvenience with a hemispherical 

valley and canyon expansion into spherical Bessel 

functions and Legendre polynomials, resulting in a match 

for all the boundary conditions; and Todorovska and Lee 

[10] proposed a solution fora circular valley by Fourier-

Bessel series expansion. 

In spite of the limitations regarding analytical 

methods and advances in numerical approximations 

applicable to arbitrary shapes and in homogeneities, the 

analytical solutions are still essential to test the numerical 

methods. Furthermore they allow for a physical 

understanding when identifying dominating parameters in 

the problems under observation. In fact, these are the main 

reasons for seeking fundamental solutions to the 

displacement equation. 

This work presents P-SV elementary wavefronts 

and their sources in order to conceptualize their behavior 

in anisotropic, homogeneous and linear elastic medium. 

These solutions could be helpful in future conceptual 

works about diffraction, scattering and generation of 

elastic waves; specifically when satisfying the boundary 

conditions. 

 

2. BASIC EQUATIONS 

Equations governing linearized elastodynamics of 

a homogeneous isotropic medium are briefly summarized 

here. More details can be found in [11]. The theory begins 

with the displacement equation in absence of body forces 

for an isotropic, homogeneous and linear elastic medium: 

 

,      (1) 

 

Where  and  are the Lamé parameters of the medium 

and  is its mass density. 

The direct solution of Equation (1) is difficult to 

obtain due to the fact that the displacement components 

are coupled. A more convenient way is to express the 

displacement field in terms of a scalar potential  and a 

vector potential : 

 

.       (2) 

 

It can be shown that the representation in (2) 

satisfies (1), if  and  depend on the form  and 

fulfill the Helmholtz equation: 

 

, 

 

,        (3) 

 

, 

 

 𝜆 + 𝜇 ∇   ∇   ∙ u  + 𝜇∇2u  = 𝜌u    

𝜆 𝜇 

𝜌 

𝜑 

ψ    

u  = ∇   𝜑 + ∇   × ψ    

𝜑 ψ    𝑒±𝑖𝜔𝑡  

∇2𝜑 + 𝑘𝑝
2𝜑 = 0 

∇2ψ   + 𝑘𝑠
2ψ   = 0 

∇   ∙ ψ   = 0 
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being  and  the wave numbers, 

where  is the angular frequency,  and 

 are the velocities of primary and secondary 

waves in the medium, respectively. The time factors 

will be omitted here and thereafter. Note that in later 

sections it should be taken  for fields with and 

 for fields with  in order to correspond to sources 

that radiate outward. Although the equations in (3) are 

uncoupled, the potentials are coupled by means of the 

boundary conditions which are the main difficulty 

insolving elastodynamic problems. 

 

3. FUNDAMENTAL SOLUTIONS 

Taking ascalar function  in polar 

coordinates that fulfills the Helmholtz equation: 

 

,      (4) 

 

where  is the wavenumber; then using the classical 

method of separation of variables where 

 is substituted in equation (4), two 

ordinary differential equations are obtained. Supposing 

that  in the work space and manipulating the 

algebra: 

,        (5) 

 

,      (6) 

 

with  being a complex number in general. 

Equation (5) has solutions in the form: 

 

     (7) 

 

and equation (6) is the well-known differential equation 

satisfied by the Bessel functions [12]: 

 

    (8) 

 

where  and  are the Bessel functions and  and 

 are the Hankel functions. The most general solution 

for (4) can be represented by: 

 

.      (9) 

 

The functions that could be selected for , 

taking in mind(7) and (8),depend on the problem under 

study. The separation constant  , and the constants , 

, , , , , ,  are determined from the 

boundary conditions. For example, in [1, 2] can be seen 

that  and , in [3, 4]  and , in [5] 

, in [6, 7, 10]  and in [8, 9]  

(spherical Bessel Functions); where  and 

. 

It is important to notice that in the above works 

and standard literature [14-16], the term  is not 

considered without any apparent justification. However, in 

the following sections the terms  are 

studied from a mathematical, geometrical and physical 

point of view; which could be essential in the development 

of new analytical solutions to problems of P-S waves. 

 

 

 

 

 

 

4. LINE SOURCES AND HOMOGENEOUS AND  

    INHOMOGENEOUS CYLINDRICAL  

    WAVEFRONTS 

Taking into account the description of the 

displacement field in terms of potentials for primary (P) 

and secondary (S) waves; the authors propose cylindrical 

potentials, for  and  with , 

in the form: 

 

, 

,   (10) 

 

where , , ,  are in general complex constants and 

 is the Hankel function of second kind and zero order. 

Note that if  and ,  and  are not simultaneously 

zero; then  and  fulfill (3) except in  where are 

singular. Then can be written more conveniently as: 

 

, 

𝑘𝑝 = 𝜔 𝑐𝑝  𝑘𝑠 = 𝜔 𝑐𝑠  

𝜔 𝑐𝑝
2 =  𝜆 + 2𝜇 /𝜌 
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1
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𝜕𝑟
+

1

𝑟2

𝜕2𝜉

𝜕𝜙2
+ 𝑘2𝜉 = 0 

𝑘 

𝜉 𝑟,𝜙 = 𝑅 𝑟 Φ 𝜙  

𝜉 𝑟,𝜙 ≠ 0 

𝑑2Φ

𝑑𝜙2
+ 𝜂2Φ = 0 

𝑑2𝑅

𝑑Λ2
+

1

Λ

𝑑𝑅

𝑑Λ
+  1 −

𝜂2

Λ2
 𝑅 = 0 

Λ = 𝑘𝑟 

Φ =

 
 
 

 
 𝐴0𝜙 + 𝐵0 for  𝜂 = 0;

𝐴𝜂 cos 𝜂𝜙 + 𝐵𝜂 sin 𝜂𝜙

or for 𝜂 ≠ 0

𝐴𝜂𝑒
𝑖𝜂𝜙 + 𝐵𝜂𝑒

−𝑖𝜂𝜙

 

𝑅 =  

𝐶𝜂𝐽𝜂 Λ + 𝐷𝜂𝑌𝜂  Λ 

or for all values of 𝜂

𝐶𝜂𝐻𝜂
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 2  Λ 
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1

𝑖𝑘𝑝
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1

𝑖𝑘𝑠
𝐻0
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𝐻0
(2) 
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, 

, 

 

Representing harmonic line sources located at . 

Now, taking (2) in polar coordinates and 

 

,    (11) 

 

the next P and S fields are obtained 

 

, 

 

. (12) 

 

Furthermore, taking into account the 

approximation for large  in (12) [12]: 

 

,     (13) 

 

it is obtained that 

 

, 

, 

 

where 

 

, 

, 

,    (14) 

. 

 

If the following asymptotic expansion of  

for large  is considered in (14) [12]: 

 

,    (15) 

 

it is finally achieved that 

 

, 

, 

 

,    (16) 

 

. 

 

where , ,  and  are complex constants in general. 

Observe inFigure-1, Figure-2 and Figure-3 that 

the approximations (13) and (15) are not valid near the 

origin and the negative real axis. In the particular case 

where  (positive real number), there is an 

agreement among functions as shown inFigure-4. In 

Figure-5 the behavior of ,  and 

 along imaginary axis are also shown; 

here, the approximation is in agreement for  

 (negative imaginary number). This 

part is going to be useful afterwards. 

 

 
(a) 

 

 
(b) 

 

Figure-1. Contour maps of (a) modulus and (b) phase of 

the function . The argument  is a 

complex number. 
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(a) 

 

 
(b) 

 

Figure-2. Contour maps of (a) modulus and (b) phase of 

the function . 

 

 
(a) 

 

 
(b) 

Figure-3. Contour maps of (a) modulus and (b) phase of 

the function . 

 
(a) 

 

 
(b) 

 

Figure-4. (a) Modulus and (b) phase of the functions 

,  and ,where  

is a real argument. 

 

 
(a) 

 

 
(b) 

 

Figure-5. (a) Modulus and (b) phase of the functions

,  and , where  

is an imaginary argument. 
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Results in (12), (14) and (16) can be understood 

as body waves generated outward from line sources at 

. It can be seen that  is a homogeneous cylindrical 

wave with  propagation velocity that oscillates 

longitudinally (P or longitudinal wave);  is a 

homogeneous cylindrical wave with  propagation 

velocity that oscillates transversally (SV or transversal 

wave);  is an inhomogeneous cylindrical wave with  

propagation velocity, that oscillates elliptically; is an 

inhomogeneous cylindrical wave with  propagation 

velocity, that oscillates elliptically (see Figure-6). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure-6. Diagrams of the displacement fields of (a) , 

(b) , (c) , and (d)  for . The changes of 

displacement fields with  and  are sketched in figure. 

 

Note that when either  or ,  and 

 tend to be longitudinal (L) and transversal (T) waves, 

respectively; but at ,  is transversal and  is 

longitudinal, therefore, the radial component in  and 

the azimuth in  are not continuous, since their values 

are different at  and . 

 

4.1. Particular cases: grazing longitudinal (Py) and  

       transversal (SVy) waves of the Goodier-Bishop  

       type 

Here, the first approximation considers that  is 

small, hence the arc longitude  tends to ,  tends to ; 

and the approximation for other parameters are shown in 

Figure-7. 
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Figure-7. Approximations taken for waves in (16). 

 

Returning to equation (16) and taking into 

account the previous approximations, it is obtained: 

 

, 

, 

,    (17) 

. 

 

The second approach supposes that we are far 

away of the sources; therefore the amplitudes variation 

with respect to  is so slow that can be neglected in (17), 

obtaining finally: 

 

, 

, 

,   (18) 

, 

 

where and  are typical longitudinal and 

transverse plane waves propagating in  direction.  

and  also propagate in  direction, but they have 

imaginary components and their amplitudes increase 

lineally with . These kinds of waves are named Py and 

SVy by Goodier and Bishop [13]; and Graff [14] where the 

critical cases of grazing incidence of P-SV waves on a 

half-space are studied. 

 

5. ANSÄTZE SOLUTIONS: PLANE SOURCES AND  

    HOMOGENEOUS AND INHOMOGENEOUS  

    WAVEFRONTS 

Taking into mind the previous ideas, the authors 

propose the following potentials for primary (P) and 

secondary (S) waves (the ansätze or educated guess), for 

 and  with : 

 

, 

,   (19) 

 

being  and , 

where , , , ,  and  are complex constants in 

general; hence, the argument  of  can be 

complex. 

One can show that the Laplacians of  and  

are (see Appendix 1) 

 

,  (20) 

; 

 

observe that in  and ,  and  are 

singular. If it takes into account the approximation (13) in 

(11), it calculates 

 

, 

 

which is valid for large  (in this validity range  

), and we replace in (20): 

 

, 

; 

 

the conditions in (3) are asymptotically achieved if is 

large (far-field: analysis far from the sources), obtaining 

finally 

 

, 

,     (21) 

. 

 

It is worth noting that  and  in (19) are 

singular in  and , thus, this generates Dirac 

delta functions in (20) that represent sources, but these 

function can represent, in fact, elastic wave in far-field due 

to that satisfy asymptotically the equations in (3) (or (21)) 

far from the sources. Based on these ideas, we are going to 

show the generation of elastic wave in far-field from the 

sources in the next section, together to the study of the 

particular cases of the Hankel function argument. 

 

5.1. Particular cases 

 

5.1.1. Homogeneous and inhomogeneous plane  

          wavefronts 

First, when the argument  is real is analyzed. 

Based on Figure-4 and in previous section, the 
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1

𝑖𝑘𝑝
𝐻0
 2  Λ𝑝  𝑎𝜙 + 𝑏  

ψ   𝑝𝑙 = 𝜓𝑧
𝑝𝑙

z =
1

𝑖𝑘𝑠
𝐻0

(2) Λ𝑠  𝑐𝜙 + 𝑑 z  

Λ𝑝 = 𝑘𝑝𝑟 cos 𝜙 ± 𝛼0  Λ𝑠 = 𝑘𝑠𝑟 cos 𝜙 ± 𝛽0  

𝑎 𝑏 𝑐 𝑑  𝛼0 𝛽0 

Λ 𝐻0
(2) Λ  

𝜑𝑝𝑙  𝜓𝑧
𝑝𝑙  

∇2𝜑𝑝𝑙 − 𝑘𝑝
2 𝑎𝜙 + 𝑏 

𝑑2  −
1
𝑖𝑘𝑝

𝐻0
 2  Λ𝑝  

𝑑Λ𝑝
2 +

2𝑎𝑘𝑝 sin𝜙

𝑟

𝑑  −
1
𝑖𝑘𝑝

𝐻0
 2  Λ𝑝  

𝑑Λ𝑝
= 𝛿 Λ𝑝  

∇2𝜓𝑧
𝑝𝑙
− 𝑘𝑠

2 𝑐𝜙 + 𝑑 

𝑑2  
1
𝑖𝑘𝑠

𝐻0
 2  Λ𝑠  

𝑑Λ𝑠
2 +

2𝑐𝑘𝑠 sin𝜙

𝑟

𝑑  
1
𝑖𝑘𝑠

𝐻0
 2  Λ𝑠  

𝑑Λ𝑠
= 𝛿 Λ𝑠  

Λ𝑝 = 0 Λ𝑠 = 0 𝜑𝑝𝑙  𝜓𝑧
𝑝𝑙  

𝑑2𝐻0
(2) Λ 

𝑑Λ2
≈ −𝐻0

(2) Λ  

Λ 
𝛿 Λ𝑝 = 𝛿 Λ𝑠 = 0 

∇2𝜑𝑝𝑙 + 𝑘𝑝
2𝜑𝑝𝑙 +

2𝑎𝑘𝑝 sin𝜙

𝑘𝑝𝑟
𝐻0

(2)
 Λ𝑝 ≈ 0 

∇2𝜓𝑧
𝑝𝑙

+ 𝑘𝑠
2𝜓𝑧

𝑝𝑙
−

2𝑐𝑘𝑠 sin𝜙

𝑘𝑠𝑟
𝐻0

(2) Λ𝑠 ≈ 0 

𝑘𝑟 

∇2𝜑𝑝𝑙 + 𝑘𝑝
2𝜑𝑝𝑙 ≈ 0 

∇2𝜓𝑧
𝑝𝑙

+ 𝑘𝑠
2𝜓𝑧

𝑝𝑙
≈ 0 

∇ ∙ ψ   𝑝𝑙 = 0 

𝜑𝑝𝑙  𝜓𝑧
𝑝𝑙  

Λ𝑝 = 0 Λ𝑠 = 0 

Λ 
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approximations (13) and (21) are taken as valid for 

positive real argument and far the origin, that is, when 

 and . This implies that must be taken 

 and 

to cover all space far 

from the sources. 

Note that when  and  are real,  is 

singular in ,  and ; and  

 is singular in ,  and , 

where . Then, the Dirac delta functions in 

(20), for , can be written as: 

 

, 

, 

 

which represent plane sources such as are shown in 

Figure-8, where the Scase (SVor transversal wave) is 

sketched with positive real argument 

. 

 

 

 
(a) 

 

 

 
(b) 

 

 

Figure-8.Diagrams in far-field of the displacement field 

 generated by plane sources. The two regions defined 

by plane sources also are shown in figures and described 

in (22). 

 

In view of Figure-8, the following regions are 

defined: 
 

(22) 

 
 

Likewise, it can be defined for P case: 
 

(23) 

 
 

Also from Figure-8, it can be observed that for 

the case of this subsection 

 

 

,       (24) 

 

, 

Λ𝑝 ≫ 0 Λ𝑠 ≫ 0 

 Λ𝑝  = 𝑘𝑝𝑟 cos 𝜙 ± 𝛼0  ≡ Λ𝑝
±𝛼0 

 Λ𝑠 = 𝑘𝑠𝑟 cos 𝜙 ± 𝛽0  ≡ Λ𝑠
±𝛽0  

Λ𝑝  Λ𝑠 𝜑𝑝𝑙  

𝑟 = 0 𝜙 =
𝜋

2
∓ 𝛼0 𝜙 =

3𝜋

2
∓ 𝛼0 

𝜓𝑧
𝑝𝑙  𝑟 = 0 𝜙 =

𝜋

2
∓ 𝛽0 𝜙 =

3𝜋

2
∓ 𝛽0 

 Λ𝑝  =  Λ𝑠 = 0 

𝜈 = 2𝜋 

𝛿  Λ𝑝   =  
𝛿 𝑟 

𝑟
+ 𝛿  𝜙 −  

𝜋

2
∓ 𝛼0  + 𝛿  𝜙 −  

3𝜋

2
∓ 𝛼0   ≡ 𝛿 Λ𝑝

±𝛼0  

𝛿  Λ𝑠  =  
𝛿 𝑟 

𝑟
+ 𝛿  𝜙 −  

𝜋

2
∓ 𝛽0  + 𝛿  𝜙 −  

3𝜋

2
∓ 𝛽0   ≡ 𝛿 Λ𝑠

±𝛽0  

Λ𝑠 = 𝑘𝑠𝑟 cos 𝜙 ± 𝛽0   

 

   

  

   
    
  

    
  

 

    
   

    
  

 

  

     −       

    
−    

  
 

 
    

     −       
  

  

 
    

 

     

  

   

    
  

    
   

    
  

 

    
  

 

    
     

  
 

 
−    

            

            

  
  

 
−    

Region I-S =  
𝛽0 −

𝜋

2
< 𝜙 < 𝛽0 +

𝜋

2
, for cos 𝜙 − 𝛽0 

−
𝜋

2
− 𝛽0 < 𝜙 <

𝜋

2
− 𝛽0 , for cos 𝜙 + 𝛽0 

 

Region II-S =  
𝛽0 +

𝜋

2
< 𝜙 < 𝛽0 +

3𝜋

2
, for cos 𝜙 − 𝛽0 

𝜋

2
− 𝛽0 < 𝜙 <

3𝜋

2
− 𝛽0 , for cos 𝜙 + 𝛽0 

 

Region I-P =  
𝛼0 −

𝜋

2
< 𝜙 < 𝛼0 +

𝜋

2
, for cos 𝜙 − 𝛼0 

−
𝜋

2
− 𝛼0 < 𝜙 <

𝜋

2
− 𝛼0, for cos 𝜙 + 𝛼0 

 

Region II-P =  
𝛼0 +

𝜋

2
< 𝜙 < 𝛼0 +

3𝜋

2
,for cos 𝜙 − 𝛼0 

𝜋

2
− 𝛼0 < 𝜙 <

3𝜋

2
− 𝛼0, for cos 𝜙 + 𝛼0 

 

 Λ𝑠 =  
𝑘  𝑠

I ∙ 𝑟 = 𝑘𝑠𝑟 cos 𝜙 ± 𝛽0  in region I-S
 

𝑘  𝑠
II ∙ 𝑟 = −𝑘𝑠𝑟 cos 𝜙 ± 𝛽0  in region II-S

 ≡ 𝑘𝑠𝑟 cos 𝜙 ± 𝛽0 sgn cos 𝜙 ± 𝛽0   

𝜕 cos 𝜙 ± 𝛽0  

𝜕𝜙
=  

− sin 𝜙 ± 𝛽0  in region I-S

 
sin 𝜙 ± 𝛽0  in region II-S

 ≡ − sin 𝜙 ± 𝛽0 sgn cos 𝜙 ± 𝛽0   
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where  is the Sign Function and is defined as 

 

. 
 

Now, the fields P-Sare derived bytaking into 

account (19), (13) and (24) in equation (2), it is obtained 

that 

 

, 

, (25) 

 

where 

 

, 

 

, 

 

,    (26) 

. 

 

If it is taking into account the asymptotic 

expansion (15), it is achieved: 

 

, 

 

, 

 

,   (27) 

 

. 

 

Results in (26) and (27) can be interpreted as 

body waves (in far-field) generated outward from plane 

sources. It can be seen that  is a homogeneous plane 

wave with  propagation velocity that oscillates 

longitudinally (P or longitudinal wave);  is a 

homogeneous plane wave with  propagation velocity 

that oscillates transversally (SV or transversal wave);  

is an inhomogeneous plane wave with  propagation 

velocity, that oscillates elliptically;  is an 

inhomogeneous plane wave with  propagation velocity, 

that oscillates elliptically (see Figure-9). Note also that the 

decaying of amplitudes is given when we move away from 

the plane sources. 

 

 
(a) 

 

 
(b) 

 

Figure-9. Diagrams in far-fieldof the displacement fields 

of (a) and (b)  for . The changes of 

displacement fields with   and  are shown in figures. 

 

It is also important to note here that when either 

 or ,  and  tend to be longitudinal 

(L) and transversal (T) waves, respectively; but at , 

 is transversal and  is longitudinal, therefore, they 

are not continuous, since their values are different at 

 and . 

 

5.1.2. Homogeneous plane wave fronts 

Another approximation that can be taken is to 

suppose that we are far away of the plane sources, 

therefore the amplitudes change so slowly with respect to  

 and , thus, they can be taken constants and the 

terms  are neglected in (27).  Here, the 

regions I with  is taken; obtaining 

finally the typical homogeneous plane waves in (28) that 

are illustrated in Figure-10. 

sgn 𝜂  

sgn cos 𝜙 ± 𝛽0  =  

1,  in region I-SV

 
−1, in region II-SV

 

u  𝑃
𝑝𝑙

= ∇𝜑𝑝𝑙 ≈ 𝑏u  𝐿
𝑝𝑙

+ 𝑎u  𝑝
𝑝𝑙𝑒

= u  𝐿
𝑝𝑙

  𝑎𝜙 + 𝑏 +
𝑎𝑖

𝑘𝑝𝑟
𝐻0

(2)
  Λ𝑝   ϕ  

u  𝑠
𝑝𝑙

= ∇ × ψ   𝑝𝑙 ≈ 𝑑u  𝑇
𝑝𝑙

+ 𝑐u  𝑠
𝑝𝑙𝑒

= u  𝑇
𝑝𝑙

  𝑐𝜙 + 𝑑 −
𝑐𝑖

𝑘𝑠𝑟
𝐻0

(2)  Λ𝑠  ϕ  

u  𝐿
𝑝𝑙

 ≈ 𝐻0
(2)
  Λ𝑝     cos 𝜙 ± 𝛼0  r − sgn cos 𝜙 ± 𝛼0  sin 𝜙 ± 𝛼0 ϕ   

u  𝑇
𝑝𝑙

 ≈ 𝐻0
 2   Λ𝑠   sgn cos 𝜙 ± 𝛽0  sin 𝜙 ± 𝛽0 r +  cos 𝜙 ± 𝛽0  ϕ   

u  𝑃
𝑝𝑙𝑒

 ≈ 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟
𝐻0

(2)
  Λ𝑝   ϕ  

u  𝑠
𝑝𝑙𝑒

 ≈ 𝜙u  𝑇
𝑝𝑙
−

𝑖

𝑘𝑠𝑟
𝐻0
 2   Λ𝑠  r  

u  𝐿
𝑝𝑙
≈

1

  Λ𝑝  

𝑒−𝑖 Λ𝑝    cos 𝜙 ± 𝛼0  r − sgn cos 𝜙 ± 𝛼0  sin 𝜙 ± 𝛼0 ϕ   

u  𝑇
𝑝𝑙
≈

1

  Λ𝑠 
𝑒−𝑖 Λ𝑠  sgn cos 𝜙 ± 𝛽0  sin 𝜙 ± 𝛽0 r +  cos 𝜙 ± 𝛽0  ϕ   

u  𝑃
𝑝𝑙𝑒

≈ 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟  Λ𝑝  

𝑒−𝑖 Λ𝑝  ϕ  

u  𝑠
𝑝𝑙𝑒

≈ 𝜙u  𝑇
𝑝𝑙
−

𝑖

𝑘𝑠𝑟  Λ𝑠 
𝑒−𝑖 Λ𝑠 r  

u  𝐿
𝑝𝑙  

𝑐𝑝  

u  𝑇
𝑝𝑙  

𝑐𝑠 

u  𝑝
𝑝𝑙𝑒  

𝑐𝑝  

u  𝑠
𝑝𝑙𝑒  

𝑐𝑠 

 

    
   

 

     

    
−    

   

  
  

  

 

    
   

 

     

    
−    

   

  
  

  

u  𝑝
𝑝𝑙𝑒  u  𝑠

𝑝𝑙𝑒  𝜈 = 2𝜋 
𝜙 𝑟 

𝑟 → ∞ 𝜙 → 2𝜋 u  𝑝
𝑝𝑙𝑒  u  𝑠

𝑝𝑙𝑒  

𝜙 = 0 

u  𝑝
𝑝𝑙𝑒  u  𝑠

𝑝𝑙𝑒  

𝜙 = 0 𝜙 = 2𝜋 

 Λ𝑝    Λ𝑠  

∝ 1 𝑘𝑟  Λ   

cos 𝜙 − 𝛼0 > 0 
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, 

, 

,      (28) 

. 

 

 
(a) 

 

 
(b) 

 

Figure-10.Diagrams in far-fieldof the displacement fields 

of (a) and (b) . The changes of displacement fields 

with  and  are shown in figures. 

 

5.1.3. Grazing longitudinal (Py) and transversal (SVy)  

          waves of the Goodier-Bishop type 

First, it is taken  and . Second, in 

the same manner as in the section 4.1, it is considered that 

 is small, hence , , , 

, ,  and  (see Figure-

7). Now, returning to equation (27) and taking into 

account the previous approximations, it is obtained that 

 

, 

 

, 

 

,   (29) 

 

. 

 

Finally, it is supposed that we are far away of the 

sources; therefore, the amplitudes variation with respect to  

 is so slow that can be neglected in (29), thus obtaining 

the same result in (18): , , 

, . 

 

5.1.4. Surface P wave 

Now, the case when  is complex is analyzed. 

Here, the expressions  and  from (26) for region I 

defined in (23) are worked and shown in Figure-12 (see 

also Figure-8 for identifying the region I): 

 

, 

 

. 

 

Then, if an imaginary angle  is taken, 

with  positive real: 

 

, 

 

,    (30) 

 

where . Considering the 

following relations: 

 

, 

 

;  (31) 

 

and transforming from Cylindrical to Cartesian system, it 

is obtained: 

 

,   (32) 

 

, 

 

where . Note that 

 and  for the problems shown in Figure-11 

and Figure-12. Here can also be observed that the 

argument   

(for  and , then,  and ) move into 

the validity range of approximations that are shown in 

u  𝐿
𝑝𝑙

 ≈ 𝑒−𝑖𝑘𝑝𝑟 cos  𝜙−𝛼0  cos 𝜙 − 𝛼0 r − sin 𝜙 − 𝛼0 ϕ   

u  𝑇
𝑝𝑙

 ≈ 𝑒−𝑖𝑘𝑠𝑟 cos  𝜙−𝛽0  sin 𝜙 − 𝛽0 r + cos 𝜙 − 𝛽0 ϕ   

u  𝑃
𝑝𝑙𝑒

 ≈ 𝜙u  𝐿
𝑝𝑙  

u  𝑠
𝑝𝑙𝑒

 ≈ 𝜙u  𝑇
𝑝𝑙  

 

    
  

 
     

    
−    

   

    

  

 

    
   

 
     

    
−    

   

    

  

u  𝐿
𝑝𝑙  u  𝑇

𝑝𝑙  

𝜙 𝑟 

𝛼0 = 0 𝛽0 = 0 

𝜙 cos 𝜙 → 1 sin 𝜙 → 0 𝑠 → 𝑦 

𝑟 → 𝑥 𝜙 = 𝑠 𝑟 ≈ 𝑦 𝑥  ϕ → y  r → x  

u  𝐿
𝑝𝑙

  ≈
1

 𝑘𝑝𝑥
𝑒−𝑖𝑘𝑝𝑥x  

u  𝑇
𝑝𝑙

  ≈
1

 𝑘𝑠𝑥
𝑒−𝑖𝑘𝑠𝑥y  

u  𝑃
𝑝𝑙𝑒

≈
1

 𝑘𝑝𝑥 
3 2 

𝑒−𝑖𝑘𝑝𝑥  𝑘𝑝𝑦x + 𝑖y   

u  𝑠
𝑝𝑙𝑒

≈
1

 𝑘𝑠𝑥 
3 2 

𝑒−𝑖𝑘𝑠𝑥 −𝑖x + 𝑘𝑠𝑦y   

𝑥 

u  𝐿
𝑝𝑙

  ≈ u  𝐿
𝑝𝑙𝑎𝑛𝑒  u  𝑇

𝑝𝑙
  ≈ u  𝑇

𝑝𝑙𝑎𝑛𝑒  

u  𝑃
𝑝𝑙𝑒

≈ u  𝑃𝑦  u  𝑠
𝑝𝑙𝑒

≈ u  𝑆𝑉𝑦  

Λ 

u  𝐿
𝑝𝑙  u  𝑝

𝑝𝑙𝑒  

u  𝐿
𝑝𝑙

= 𝐻0
(2)
 Λ𝑝  cos 𝜙 + 𝛼0 r − sin 𝜙 + 𝛼0 ϕ   

u  𝑃
𝑝𝑙𝑒

= 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟
𝐻0

(2)
 Λ𝑝 ϕ  

𝛼0 = 𝑖𝛾0 

𝛾0 

u  𝐿
𝑝𝑙

= 𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ   

u  𝑃
𝑝𝑙𝑒

= 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟
𝐻0

(2)
 Λ𝑝

+𝑖𝛾0 ϕ  

Λ𝑝
+𝑖𝛾0 = 𝑘𝑝𝑟 cos 𝜙 + 𝑖𝛾0  

sin 𝜙 ± 𝑖𝛾0 = sin𝜙 cosh 𝛾0 ± 𝑖 cos𝜙 sinh 𝛾0 

cos 𝜙 ± 𝑖𝛾0 = cos𝜙 cosh 𝛾0 ∓ 𝑖 sin𝜙 sinh 𝛾0 

u  𝐿
𝑝𝑙

= 𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  cosh 𝛾0 x − 𝑖 sinh 𝛾0 y   

u  𝑃
𝑝𝑙𝑒

= tan−1  
𝑦

𝑥
 u  𝐿

𝑝𝑙
+

𝑖

𝑘𝑝 𝑥
2 + 𝑦2

𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  −
𝑦

 𝑥2 + 𝑦2
x +

𝑥

 𝑥2 + 𝑦2
y   

Λ𝑝
+𝑖𝛾0 = 𝑘𝑝𝑥 cosh 𝛾0 − 𝑖𝑘𝑝𝑦 sinh 𝛾0 

𝑥 ≥ 0 𝑦 ≥ 0 

Λ𝑝
+𝑖𝛾0 = x + 𝑖y = 𝑘𝑝𝑥 cosh 𝛾0 − 𝑖𝑘𝑝𝑦 sinh 𝛾0 

𝑥 > 0 𝑦 > 0 x > 0 y < 0 
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section 4 (see Figure-1, 2, 3, 4 and 5), in other words, we 

move in the fourth quadrant of the complex plane (

and ) to cover the half-space that is shown in 

Figure-12. 

Then, the Dirac delta functions in (20), for 

, can be written for this case as: 

 

, (33) 

 

due to that  (or  in equations (19)) is 

singular when 

, and it can be 

observed that  is zero in  or  and  

simultaneously. From another point of view, as  is 

always real, then  and 

 are always zero, unless  

and , who could be interpreted as imaginary 

plane sources, such as shown in Figure-13. Therefore, 

there are line sources instead plane sources when ? is real 

(see Figure-12). 

Afterward, taking the asymptotic expansion (15) 

in (30): 

 

, (34) 

 

 
 

Note that in (34), the amplitude decays from 

source. Now it is supposed to be far away of the source, 

hence, the amplitude variation with respect to  is 

very slow and it can be neglected, obtaining finally: 

 

 

, (35) 

 

. 

 

where  

with .  in (35) is atypical surface 

P waves ( in Figure-11(b), where  is the 

amplitude) that travels with  velocity and emerges in 

the reflection process of a homogeneous plane SV wave 

falling on a half-space (  in Figure-11) below the 

incidence critical angle , as is shown by Graff [14] and 

Anchenbach [11], that for case of the Figure-11(b) is 

obtained: 

 

 
                    (36) 

 
 

 
(a) 

 

 
(b) 

 

Figure-11. Reflection of an incident plane SV wave on a 

half-space: (a) Falling above and   (b) below the incidence 

critical angle. In (b) is shown the generation of an 

inhomogeneous Pwave (surface P wave), with an 

imaginary angle, from a “Geometrical” point of view. 

 

Finally, considering the approximations given in 

section 4.1, it is obtained that 

 

 (37) 

 

where if  the Goodier-Bishop wave,  in (18), is 

achieved. 

In this section we have shown that (30), in fact, 

are surface P waves and in the case of the Figure-11(b) 

that , where . In 

x > 0 
y < 0 

𝜈 = 2𝜋 

𝛿 Λ𝑝
+𝑖𝛾0 =

𝛿 𝑟 

𝑟
+ 𝛿  𝜙 −  

𝜋

2
− 𝑖𝛾0  + 𝛿  𝜙 −  

3𝜋

2
− 𝑖𝛾0  =

𝛿 𝑟 

𝑟
 

𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  𝜑𝑝𝑙  

Λ𝑝
+𝑖𝛾0 = 𝑘𝑝𝑟 cos 𝜙 + 𝑖𝛾0  

= 𝑘𝑝𝑥 cosh 𝛾0 − 𝑖𝑘𝑝𝑦 sinh 𝛾0 = 0 

Λ𝑝
+𝑖𝛾0  𝑟 = 0 𝑥 = 0 𝑦 = 0 

𝜙 

𝛿  𝜙 −  
𝜋

2
− 𝑖𝛾0   

𝛿  𝜙 −  
3𝜋

2
− 𝑖𝛾0   𝜙 =

𝜋

2
− 𝑖𝛾0 

𝜙 =
3𝜋

2
− 𝑖𝛾0 

u  𝐿
𝑝𝑙
≈

1

 Λ𝑝
+𝑖𝛾0

𝑒−𝑖Λ𝑝
+𝑖𝛾0

 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ   

u  𝑃
𝑝𝑙𝑒

≈ 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟 Λ𝑝
+𝑖𝛾0

𝑒−𝑖Λ𝑝
+𝑖𝛾0

ϕ ≈
𝑒−𝑖Λ𝑝

+𝑖𝛾0

𝑘𝑝𝑟 Λ𝑝
+𝑖𝛾0

 𝑘𝑝𝑟𝜙 cos 𝜙 + 𝑖𝛾
0
 r − sin 𝜙 + 𝑖𝛾

0
 ϕ  + 𝑖ϕ   

Λ𝑝
+𝑖𝛾0  

u  𝐿
𝑝𝑙
≈ 𝑒−𝑖Λ𝑝

+𝑖𝛾0

 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ   

≈ 𝑒−𝑦𝑘𝑝 sinh 𝛾0𝑒−𝑖𝑥𝑘𝑝𝑠𝑢𝑟𝑓  cosh 𝛾0 x − 𝑖 sinh 𝛾0 y   

u  𝑃
𝑝𝑙𝑒

≈ 𝑒−𝑖Λ𝑝
+𝑖𝛾0

 𝑘𝑝𝑟𝜙 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ  + 𝑖ϕ   

𝑘𝑝𝑠𝑢𝑟𝑓 = 𝑘𝑝 cosh 𝛾0 = 𝜔 𝑐𝑝𝑠𝑢𝑟𝑓 = 𝜔 cosh 𝛾0 𝑐𝑝  

𝑐𝑝𝑠𝑢𝑟𝑓 = 𝑐𝑝 cosh𝛾0  u  𝐿
𝑝𝑙

  

u  𝑝
𝑅𝑒𝑓

= 𝑏u  𝐿
𝑝𝑙  𝑏 

𝑐𝑝𝑠𝑢𝑟𝑓  

u  𝑠𝑣
𝑖𝑛𝑐  

𝛽𝑐𝑟  

sin 𝑖𝛾0 = 𝑖 sinh 𝛾0   

 = 𝑖 𝛫2 cos2 𝛽𝑖𝑛𝑐 − 1  

= 𝑖𝛫 cos2 𝛽𝑖𝑛𝑐 − 𝛫−2, 

cos 𝑖𝛾0 = cosh 𝛾0 = 𝛫 cos𝛽𝑖𝑛𝑐 , 

 

𝑐𝑝𝑠𝑢𝑟𝑓 = 𝑐𝑠 cos𝛽𝑖𝑛𝑐 = 𝑐𝑝 cosh 𝛾0 , 

 

with 𝛫 = 𝑘𝑠 𝑘𝑝 = 𝑐𝑝 𝑐𝑠 . 

 

    
   

 

Half-space 

  
  

  

   
    

     
    

     
   

 

 

     
    

 
    
   

 

     
   

 

       

     

Half-space 

  
  

  

     

u  𝑃
𝑝𝑙𝑒

≈ 𝑒−𝑦𝑘𝑝 sinh 𝛾0𝑒−𝑖𝑥𝑘𝑝𝑠𝑢𝑟𝑓  𝑘𝑝𝑦  cosh 𝛾0 x + 𝑖  
1

𝑘𝑝𝑦
− sinh 𝛾0 y    

𝛾0 = 0 u  𝑃𝑦  

𝛾0 = cosh−1  
𝑐𝑝

𝑐𝑠
cos𝛽0  

𝑐𝑝

𝑐𝑠
cos𝛽0 > 1 
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Figure-12 the “Geometrical” and “physical” point of view 

of the inhomogeneous waves in (34) are shown. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure-12. Diagrams in far-field of surface P waves for 

the half-space from: (a) and (c)a “Geometrical” point of 

view, (b) and (d)a “Physical” point of view. Plane sources 

(gray points) in (a) and (c) are imagined and we have 

drawn it to try to visualize, from a geometrical point of 

view, the origination of the inhomogeneous plane waves 

emerging with imaginary angles, since the one real source 

is a lineat the origin. 

 

 
Figure-13. Diagrams in far-field of the displacement field 

   𝐿
𝑝𝑙

 generated by imaginary plane sources (gray points). 

 

5.1.5 Rayleigh surface wave 

In order to illustrate, the expressions in (26) for 

region I defined in (22) and (23) are worked and shown in 

Figure-14(a) (see also Figure-8 for identifying the region 

I): 

 

, 

 

, 

 

 

Half-space 

  
  

  

    
  

 

       

    
      

     

 

     

Half-space 

    
  

                       

  

  

  

 

Half-space 

  
  

  

    
   

 

       

    
      

     

 

Half-space 

    
   

               

  

  

  

 

      

    
  

    
   

    
  

 

    
  

 

    
     

  
 

 
−     

  
  

 
−     

u  𝐿
𝑝𝑙

= 𝐻0
(2)
 Λ𝑝  cos 𝜙 + 𝛼0 r − sin 𝜙 + 𝛼0 ϕ   

u  𝑇
𝑝𝑙

= 𝐻0
 2  Λ𝑠  sin 𝜙 + 𝛽0 r + cos 𝜙 + 𝛽0 ϕ   
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, 

 

. 

 

Then, if imaginary angles  and 

 are taken, being  and  positive real 

numbers: 

 

,  

 

, 

 

,    (38) 

. 

 

where  and . 

Considering the relations (31) and changing from 

cylindrical system to Cartesian system, it is obtained: 

 

, 

 

,   (39) 

 

 
 

 
 

where  and 

. Note that  and 

 for the problem shown in Figure-14. Here can also 

be observed that the arguments  and , as in the 

previous subsection, move into the validity range of 

approximations that are shown in section 4. 

Then, Dirac delta functions in (20) for this case, 

the same as in the previous subsection, are given by 

 

,    (40) 

 
here also there are line sources instead plane sources when 

 is real (see Figure-14). Taking into account the 

approximation (15) in (38), it is obtained: 

 

, 

 

, 

 

   (41) 

, 

 

 

. 

 

Note also that in (41), the amplitude decays from 

sources. Finally, it is supposed to be far away from the 

sources, hence, the amplitude variation with respect to  

is very slow and it can be neglected, obtaining finally: 

 

 

, 

 

  (42) 

, 

 

, 

 

. 

 

where  

and  with 

 and . 

Expressions in (42) are P and S surface waves that travel 

at velocities  and , respectively. Then, it is 

obtained that 

 

 
 

u  𝑃
𝑝𝑙𝑒

= 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟
𝐻0

(2)
 Λ𝑝 ϕ  

u  𝑠
𝑝𝑙𝑒

= 𝜙u  𝑇
𝑝𝑙
−

𝑖

𝑘𝑠𝑟
𝐻0
 2  Λ𝑠 r  

𝛼0 = 𝑖𝛾0 

𝛽0 = 𝑖𝜃0 𝛾0 𝜃0 

u  𝐿
𝑝𝑙

= 𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ   

u  𝑇
𝑝𝑙

= 𝐻0
 2  Λ𝑠

+𝑖𝜃0  sin 𝜙 + 𝑖𝜃0 r + cos 𝜙 + 𝑖𝜃0 ϕ   

u  𝑃
𝑝𝑙𝑒

= 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟
𝐻0

(2)
 Λ𝑝

+𝑖𝛾0 ϕ  

u  𝑠
𝑝𝑙𝑒

= 𝜙u  𝑇
𝑝𝑙
−

𝑖

𝑘𝑠𝑟
𝐻0
 2  Λ𝑠

+𝑖𝜃0 r  

Λ𝑝
+𝑖𝛾0 = 𝑘𝑝𝑟 cos 𝜙 + 𝑖𝛾0  Λ𝑠

+𝑖𝜃0 = 𝑘𝑠𝑟 cos 𝜙 + 𝑖𝜃0  

u  𝐿
𝑝𝑙

= 𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  cosh 𝛾0 x − 𝑖 sinh 𝛾0 y   

u  𝑇
𝑝𝑙

= 𝐻0
 2  Λ𝑠

+𝑖𝜃0  𝑖 sinh 𝜃0 x + cosh 𝜃0 y   

u  𝑃
𝑝𝑙𝑒

= tan−1  
𝑦

𝑥
 u  𝐿

𝑝𝑙
+

𝑖

𝑘𝑝 𝑥
2 + 𝑦2

𝐻0
(2)
 Λ𝑝

+𝑖𝛾0  −
𝑦

 𝑥2 + 𝑦2
x +

𝑥

 𝑥2 + 𝑦2
y   

u  𝑠
𝑝𝑙𝑒

= tan−1  
𝑦

𝑥
 u  𝑇

𝑝𝑙
−

𝑖

𝑘𝑠 𝑥
2 + 𝑦2

𝐻0
(2)
 Λ𝑠

+𝑖𝜃0  
𝑥

 𝑥2 + 𝑦2
x +

𝑦

 𝑥2 + 𝑦2
y   

Λ𝑝
+𝑖𝛾0 = 𝑘𝑝𝑥 cosh 𝛾0 − 𝑖𝑘𝑝𝑦 sinh 𝛾0 

Λ𝑠
+𝑖𝜃0 = 𝑘𝑠𝑥 cosh𝜃0 − 𝑖𝑘𝑠𝑦 sinh 𝜃0 𝑥 ≥ 0 
𝑦 ≥ 0 

Λ𝑝
+𝑖𝛾0  Λ𝑠

+𝑖𝜃0 

𝛿 Λ𝑝
+𝑖𝛾0 = 𝛿 Λ𝑠

+𝑖𝜃0 =
𝛿 𝑟 
𝑟

 

Λ 

u  𝐿
𝑝𝑙
≈

1

 Λ𝑝
+𝑖𝛾0

𝑒−𝑖Λ𝑝
+𝑖𝛾0

 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ   

u  𝑇
𝑝𝑙
≈

1

 Λ𝑠
+𝑖𝜃0

𝑒−𝑖Λ𝑠
+𝑖𝜃0

 sin 𝜙 + 𝑖𝜃0 r + cos 𝜙 + 𝑖𝜃0 ϕ   

u  𝑃
𝑝𝑙𝑒

≈ 𝜙u  𝐿
𝑝𝑙

+
𝑖

𝑘𝑝𝑟 Λ𝑝
+𝑖𝛾0

𝑒−𝑖Λ𝑝
+𝑖𝛾0

ϕ  

≈
𝑒−𝑖Λ𝑝

+𝑖𝛾0

𝑘𝑝𝑟 Λ𝑝
+𝑖𝛾0

 𝑘𝑝𝑟𝜙 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ  + 𝑖ϕ   

u  𝑠
𝑝𝑙𝑒

≈ 𝜙u  𝑇
𝑝𝑙
−

𝑖

𝑘𝑠𝑟 Λ𝑠
+𝑖𝜃0

𝑒−𝑖Λ𝑠
+𝑖𝜃0

r  

≈
𝑒−𝑖Λ𝑠

+𝑖𝜃0

𝑘𝑠𝑟 Λ𝑠
+𝑖𝜃0

 𝑘𝑠𝑟𝜙 sin 𝜙 + 𝑖𝜃0 r + cos 𝜙 + 𝑖𝜃0 ϕ  − 𝑖r   

Λ 

u  𝐿
𝑝𝑙

 ≈ 𝑒−𝑖Λ𝑝
+𝑖𝛾0

 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ   

≈ 𝑒−𝑦𝑘𝑝 sinh 𝛾0𝑒−𝑖𝑥𝑘𝑝𝑠𝑢𝑟𝑓  cosh 𝛾0 x − 𝑖 sinh 𝛾0 y   

u  𝑇
𝑝𝑙
≈ 𝑒−𝑖Λ𝑠

+𝑖𝜃0

 sin 𝜙 + 𝑖𝜃0 r + cos 𝜙 + 𝑖𝜃0 ϕ   

≈ 𝑒−𝑦𝑘𝑠 sinh 𝜃0𝑒−𝑖𝑥𝑘𝑠𝑠𝑢𝑟𝑓  𝑖 sinh𝜃0 x + cosh𝜃0 y   

u  𝑃
𝑝𝑙𝑒

≈ 𝑒−𝑖Λ𝑝
+𝑖𝛾0

 𝑘𝑝𝑟𝜙 cos 𝜙 + 𝑖𝛾0 r − sin 𝜙 + 𝑖𝛾0 ϕ  + 𝑖ϕ   

u  𝑠
𝑝𝑙𝑒

≈ 𝑒−𝑖Λ𝑠
+𝑖𝜃0

 𝑘𝑠𝑟𝜙 sin 𝜙 + 𝑖𝜃0 r + cos 𝜙 + 𝑖𝜃0 ϕ  − 𝑖r   

𝑘𝑝𝑠𝑢𝑟𝑓 = 𝑘𝑝 cosh 𝛾0 = 𝜔 𝑐𝑝𝑠𝑢𝑟𝑓 = 𝜔 cosh 𝛾0 𝑐𝑝  

𝑘𝑠𝑠𝑢𝑟𝑓 = 𝑘𝑠 cosh 𝜃0 = 𝜔 𝑐𝑠𝑠𝑢𝑟𝑓 = 𝜔 cosh𝜃0 𝑐𝑠  

𝑐𝑝𝑠𝑢𝑟𝑓 = 𝑐𝑝 cosh𝛾0  𝑐𝑠𝑠𝑢𝑟𝑓 = 𝑐𝑠 cosh𝜃0  

𝑐𝑝𝑠𝑢𝑟𝑓  𝑐𝑠𝑠𝑢𝑟𝑓  

cosh 𝛾0 =
𝑐𝑝

𝑐𝑝𝑠𝑢𝑟𝑓
=

𝑘𝑝𝑠𝑢𝑟𝑓

𝑘𝑝
, 

cosh 𝜃0 =
𝑐𝑠

𝑐𝑠𝑠𝑢𝑟𝑓
=

𝑘𝑠𝑠𝑢𝑟𝑓

𝑘𝑠
, 
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 ,     (43) 

. 

If the waves 

 

, 

,      (44) 

 

and they are traveling in a free-traction half-space, the 

condition  

is obtained, where is the Rayleigh wave velocity. Thus, 

 

 

,   (45) 

, 

 

and 

 

, 
 

. (46) 

 

Note that the sum of the expressions in (46), 

, agrees with the expression for a Rayleigh 

surface wave given by Pujol [16], where, in order to agree 

with the amplitudes defined by him,  and 

. 

In this section, we have shown that the 

expressions in (38) are surface waves. In Figure-14 the 

“Geometrical” and “physical” point of view of the 

inhomogeneous waves in (44) are shown, where 

 and  with 

 and , respectively. Furthermore, it 

can be observed that . 

 

 
(a) 

 

 
(b) 

 

Figure-14. Diagrams in far-field of a Rayleigh wave 

generated from the sum of P and S inhomogeneous plane 

waves for a free-traction half-space: (a) a “Geometrical” 

point of view and (b) a “Physical” point of view. Plane 

sources in (a) are imagined and we have drawn it to try to 

visualize, from a geometrical point of view, the origination 

of the inhomogeneous plane waves emerging with 

imaginary angles, since the one real source is a line at the 

origin. 

 

Finally, considering again the approximations 

given in section 4.1, it is obtained that 

 

, 

(47) 

, 

 

where if  the Goodier-Bishop waves,  

and  in (18), are achieved. 

 

 

 

 

 

sinh 𝛾0 =  
𝑐𝑝

2

𝑐𝑝𝑠𝑢𝑟𝑓
2 − 1 

sinh 𝜃0 =  
𝑐𝑠

2

𝑐𝑠𝑠𝑢𝑟𝑓
2 − 1 

u  𝐿
𝑅 = 𝑏u  𝐿

𝑝𝑙  

u  𝑇
𝑅 = 𝑑u  𝑇

𝑝𝑙  

𝑘𝑝𝑠𝑢𝑟𝑓 = 𝑘𝑠𝑠𝑢𝑟𝑓 = 𝑘𝑅 ⇒ 𝑐𝑝𝑠𝑢𝑟𝑓 = 𝑐𝑠𝑣𝑠𝑢𝑟𝑓 = 𝑐𝑅 

cosh 𝛾0 =
𝑐𝑝

𝑐𝑅
=

𝑘𝑅

𝑘𝑝
, 

cosh𝜃0 =
𝑐𝑠

𝑐𝑅
=

𝑘𝑅

𝑘𝑠
, 

sinh 𝛾0 =  
𝑐𝑝

2

𝑐𝑅
2 − 1 =

𝑘𝑅
𝑘𝑝

 1 −
𝑐𝑅

2

𝑐𝑝
2
 

sinh𝜃0 =  
𝑐𝑠

2

𝑐𝑅
2 − 1 =

𝑘𝑅
𝑘𝑠
 1 −

𝑐𝑅
2

𝑐𝑠
2
 

u  𝐿
𝑅  ≈ 𝑏  

𝑘𝑅
𝑘𝑝
 𝑒

−𝑦𝑘𝑅 1−𝑐𝑅
2 𝑐𝑝

2 
𝑒−𝑖𝑥𝑘𝑅  x − 𝑖 1 −

𝑐𝑅
2

𝑐𝑝
2

y   

u  𝑇
𝑅  ≈ 𝑑  

𝑘𝑅
𝑘𝑠
 𝑒

−𝑦𝑘𝑅 1−𝑐𝑅
2 𝑐𝑠

2 
𝑒−𝑖𝑥𝑘𝑅  𝑖 1 −

𝑐𝑅
2

𝑐𝑠
2

x + y   

u  𝑅 = u  𝐿
𝑅 + u  𝑇

𝑅 

𝐴 = 𝑏  𝑘𝑅 𝑘𝑝   

𝐵 = 𝑑 𝑘𝑅 𝑘𝑠   

𝛾0 = cosh−1  
𝑐𝑝

𝑐𝑅
  𝜃0 = cosh−1  

𝑐𝑠
𝑐𝑅
  

𝑐𝑝 𝑐𝑅 > 1 𝑐𝑠 𝑐𝑅 > 1 

𝛾0 > 𝜃0 

 

    
  

       

Half-space 

  
  

  

    
  

       

    
     

    
     

 

     

Half-space 

                        

  

  

  

u  𝑃
𝑝𝑙𝑒

≈ 𝑒−𝑦𝑘𝑝 sinh 𝛾0𝑒−𝑖𝑥𝑘𝑝𝑠𝑢𝑟𝑓  𝑘𝑝𝑦  cosh 𝛾0 x + 𝑖  
1

𝑘𝑝𝑦
− sinh 𝛾0 y    

u  𝑠
𝑝𝑙𝑒

≈ 𝑒−𝑦𝑘𝑠 sinh 𝜃0𝑒−𝑖𝑥𝑘𝑠𝑠𝑢𝑟𝑓  𝑘𝑠𝑦  𝑖  −
1

𝑘𝑠𝑦
+ sinh 𝜃0 x + cosh 𝜃0 y    

𝛾0 = 𝜃0 = 0 u  𝑃𝑦  

u  𝑆𝑉𝑦  
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6. OTHER SOLUTIONS 
In this section, the necessary conditions are 

defined to obtain expressions that represent waves in terms 

of the Hankel function. Then, it is defined: 

 

,    (48) 

 

where  is the argument of the Hankel function. Now, it is 

necessary to know what conditions must fulfill  to 

satisfy 

 

.    (49) 

 

First, when  is analyzed. Replacing (48) 

in (49), taking into account (3), (11) and the vectorial 

identity , it is 

obtained that 

 

.  (50) 

 

Finally, considering the approximation (13), the 

asymptotic condition for large  is given by: 

 

.    (51) 

 

Note that (50) and (51) are fulfilled for 

 and  which is the 

particular case (10). 

Now, when  is analyzed. 

Therefore, 

 

, (52) 

 

and considering again (13), it is achieved that 

 

. (53) 

 

It can also be observed that 

 

, 

 

,      (54) 

 

with , fulfill (51) and (53) for large . Then, 

 

,    (55) 

 

with  or , are asymptotic 

solutions of (3), where  and  are complex constants in 

general. 

 
7. DISCUSSION AND CONCLUSIONS 

In this paper some exact and asymptotic 

analytical solutions of the displacement equation have 

been studied, considering the most general solution of the 

Helmholtz equation. These solutions are not shown in 

papers and standard texts, for instance [11, 14, 15, 16]. 

Equations (12) and (18) are exact solutions of (1),which is 

unexpected because (18) were obtained after applying a 

series of approximations to (12), (26), (30) and (38).In 

(18) the main disadvantage is that the waves do not regard 

a generating origin (this is equivalent to consider plane 

waves from infinity) and they are valid near to the half-

space surface, producing a local solution [13, 14], in 

contrast with (12), (26), (30) and (38) that are valid 

solutions for all space. It is also shown that (19) are 

potentials that generate homogeneous (see (25) and (29)) 

and inhomogeneous plane waves (see (30), (36), (38) and 

(43)). Moreover, the authors have tried to give a meaning 

to all these expressions, from a geometrical point of view, 

for a better conceptualization of these solutions. 

The solutions presented in this work can be 

combined with other known waves in order to satisfy 

boundary conditions in P-S waves problems such as in 

[11, 13, 14, 16] (see (18), (35) and (36), (45) and (46)); 

which is a good strategy for understanding complex 

problems due to the fact that the solution is divided into 

parts that can be manipulated and interpreted more easily, 

and furthermore, used in other problems. 

Conditions (49)-(52) permit to find either exact or 

approximated solutions of , therefore multiplying 

it by the Hankel Function the equations in (3) are fulfilled. 

This provides an alternative way to find solutions, which 

could be helpful when  is simple such as in (54). 

We can also observe that (55) could be taken as ansatz 

functions to develop approximate analytical solutions by 

series expansions along with other known solutions, 

particularly for matching boundary conditions. These 

kinds of analysis are going to be reported in future works. 
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APPENDIX 1 

First, the next function is defined 

 

, 

 

where . Second, we use the vectorial 

identity 

 

 
with . Third, the Laplacians and Gradients 

in Polar coordinate of  and  are calculated: 

 

, 

 , 

. 

 

Now, we replace in the previous vectorial identity 

 

 . 

Finally, we reorganize 

 

. 

 


