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ABSTRACT 

 Image processing is one of the common research areas in recent decades, since noisy images cause harmful 

consequence on several applications and considerably degrade visual quality. The term denoising indicates to the method 

of estimating the unidentified (original) signal from available noisy data. Hyperspectral imaging has been established that it 

has several applications in farming, diagnostic medicine, and military surveillance. On the other hand, in these 

applications, the occurrence of the noise considerably reduces the classification accuracy. In order to solve these setbacks, 

for HSI, there is much global and local redundancy and correlation (RAC) in spatial/spectral dimensions is proposed in 

earlier work to eliminate noise from samples. Additionally, denoising performance can be enhanced significantly if RAC is 

exploited professionally in the denoising process. Nevertheless, the available RAC method denoising performance possibly 

will decrease when noise is strong. It turns out to be one of the important issues on dictionary learning. With the intention 

of surpassing these setbacks, in this paper presented a noise removal scheme to eradicate noise from image samples, at first 

the sensing noise in the image samples are eradicated with the help of the Singular Value Decomposition (SVD) and the 

Gaussian noise in the image samples are eradicated with the help of the Compression Sensing (CS) methods. SVD 

algorithm utilizes both the spectral and the spatial information in the images. Noise can be eliminated by sparse 

approximated data with SVD techniques. The denoising outcome from the proposed method is better than the other 

hyperspectral denoising schemes. Our results demonstrate that our denoising method can achieve competitive performance 

than other state-of-the-art methods. 

 
Keywords: global redundancy and correlation (RAC), hyperspectral image (HSI) denoising, local RAC, low rank, sparse representation, 

singular value decomposition (SVD) , the compression sensing (CS) methods. 

 

1. INTRODUCTION 

 Hyperspectral images are exploited in several 

sensible applications, for instance, the exposure of earth 

surface, soil category examination, farming and forest 

monitoring, environmental investigations, and military 

surveillance [1-2]. On the other hand, in applications such 

as target recognition, the occurrence of the noise 

considerably reduces the classification accuracy by 

blurring the outlines of objects of concern. An additional 

effect of the noise is the lessening of spectral un mixing, in 

which the noise affects the perfect determination of 

sporadically occurring end members [3]. In contrast, the 

hyperspectral sensors are also extremely responsive to the 

noise owing to their nonlinear reaction in several spectral 

bands which results in a worsening of captured data 

quality. As a result, the noise reduction is a vital challenge 

in hyperspectral images applications. 

 In recent times, several HSI denoising schemes 

have been developed [4-6]. The easiest approach is to 

exploit the conventional 2-D or 1-D denoising techniques 

to condense noise in HIS band by band or pixel by pixel. 

But, the related denoising result by this approach is not 

pleasing, because only spatial or spectral noise is 

eliminated. In case if noise only reducedin spatial or 

spectral domain, artifacts or distortions will be established 

in supplementary domains. Simultaneously, this category 

of techniques will demolish the correlation in spatial or 

spectral domain. Spatial and spectral information is 

supposed to be considered mutually to eliminate the noise 

efficiently. But, these approaches possibly will lead to loss 

of information because the correlations among spatial and 

spectral bands are not concurrently considered. 

 An integration of spatial and spectral wavelet 

shrinkage that benefits from the variation of the signal 

nature in the spatial and spectral dimensions and works in 

the spectral derivative domain was formulated in [6]. An 

additional denoising approach [7] diminished the 

dimensionality of hyperspectral images by means of PCA 

and concurrently eliminated the noise in the images with 

the help of bivariate wavelet shrinkage. In fact, bivariate 

wavelet shrinkage is an extremely efficient approach in 

image denoising that considers the parent–child coefficient 

association in the wavelet domain.  

 In [8], an image restoration in which 

neighbourhoods of wavelet sub-bands were represented by 

a discrete mixture of linear projected Gaussian scale 

mixtures was formulated. This method is also constructive 

for real-time denoising applications. Some approaches in 

recent times have considered hyperspectral images as 3-D 

data which are also regarded as third-order tensor: two 

spatial dimensions and one spectral dimension. For 

example,in [9] hyperspectral images were taken as a 3-D 

tensor and denoising of hyperspectral images in the 

domain of imaging spectroscopy was achieved by the 

vectorial anisotropic diffusion.  
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 As a dominant statistical image modelling 

approach, sparse representation has been productively 

exploited in image denoising [10-11]. In case of a sparse 

representation structure, a dictionary can be learned by 

exploiting the RAC in an image. A noise-free image can 

be sparsely estimated by dictionaries’ atoms, while a noisy 
image cannot be sparsely estimated owing to noise’s 
stochastic character. The denoised image is estimated with 

the help of linear combination of atoms or bases. HSI 

includes multiple images obtained from auninterrupted 

spectrum with narrow bandwidth, and there is 

vastdistinction in different band subsets. Extremely 

correlated images set have the nature of small rank; they 

can be recovered resourcefully from measurement with 

noise or outliers by utilizing the restriction of low rank. 

 In this research work, a new noise reduction 

method is developed for hyperspectral images with the 

help of a K-SVD. This technique of denoising can well 

eliminate a range of mixed or single noise by employing 

sparse regularization of small image patches. It also 

preserves the image texture in a comprehensible manner. 

The learned dictionary exploited undoubtedly helps in 

eliminating the noise. At the same time,K-SVD 

accomplished an outstanding compression ratio and noise 

reduction. The weighted rank-one approximation setback 

is solved with the help of the new iterative scheme and the 

low rank approximation can be achieved by SVD and the 

Gaussian noise in the image samples are eliminated by 

means of the Compression Sensing (CS) methods. 

 

2. BACKGROUND STUDY 
 In [6] formulated a spectral and spatial adaptive 

total variation (TV) denoising method, it recommends that 

noise intensity is dissimilar in band by band or can say 

deviation in noise intensity band by band, as a result there 

should be special technique or the denoising strength 

should be regulate with deviation in noise intensity in 

different bands. Therefore to eradicatethis type of 

deviation in noise, a hyperspectral image denoising 

algorithm utilizing a spectral–spatial adaptive total 

variation (TV) model, it takes care of the spectral noise 

differences and spatial information differences in process 

on reducing noise. As a result, it enforces the spatial 

efficiency and spatial discontinuity. 

 Chen et al. [4] developed a denoising approach 

for hyperspectral images with convincinglybetter SNR by 

employing principal component analysis and wavelet 

shrinkage. The algorithm employed PCA to decorrelate 

the fine features of the data cube from the noise, and 

subsequentlycondensed the noise only in the noisy low-

energy PCA output channels with wavelet shrinkage 

denoising. 

 Kotwal et al. [12] formulated a bilateral filtering-

based approach is developed for hyperspectral image 

fusion to produce a correct resultant image. This approach 

keeps even the minor details that arepresent in individual 

image bands, by using the edge-preserving features of a 

bilateral filter. It does not introduce noticeable artifacts in 

the fused image. A hierarchical fusion method has also 

been formulated by this author for implementation 

purposes to hold a huge number of hyperspectral image 

bands. This approach provides computational and storage 

effectiveness without influencing the quality and 

performance of the fusion. 

 Xu et al. [13] suggested a noise estimation 

approach of hyperspectral remote sensing image, which 

depends on MLR and wavelet transform. This approach 

eliminates the spatial correlation of the residual image 

extracted by MLR by means of wavelet transform. 

Finally,the standard deviation is approximated from the 

median absolute value of the wavelet coefficients of the 

noisy signals in the high-frequency subbands.  

 Acito et al. [14] developed anapproach for 

striping noise reduction in hyperspectral images. This 

approach makes use of the orthogonal subspace method to 

approximate the striping component and to eliminate it 

from the image, preserving the helpful signal. The 

approach does not introduce artifacts in the data and also 

considers the dependence on the signal intensity of the 

striping component. 

 Letexier et al. [15] presented a Multidimensional 

Wiener Filtering (MWF) approach. It considers a 

multidimensional data set as a third-order tensor. It also 

depends on the separability among a signal subspace and a 

noise subspace. By means of multilinear algebra, MWF 

requires to flatten the tensor. On the other hand, flattening 

is always orthogonally carried out, which possibly will not 

be adapted to data. Indeed, as a Tucker-based filtering, 

MWF only takes the useful signal subspace into account. 

When the signal subspace and the noise subspace are 

extremely close, it is complicated to obtain all the 

constructive information. 

 Karami et al. [16] formulated new noise 

reduction approach for the denoising of hyperspectral 

images. Thapproach, Genetic Kernel Tucker 

Decomposition (GKTD), makes use of both the spectral 

and the spatial information in the images. With regard to a 

previous approach, employ the kernel concept to apply 

Tucker decomposition on a higher dimensional feature 

space rather than the input space. A genetic algorithm is 

exploited to optimize for the lower rank Tucker tensor in 

the feature space.  

Among them all of the methods only reduce noise in 

spatial or spectral domain, artifacts or distortions will be 

introduced in other domains. At the same time, this kind of 

methods will destroy the correlation in spatial or spectral 

domain.  

 

3. PROPOSED METHODOLOGY 

 In this paper, a general framework is developed 

to adaptively identify and eliminate noise of several 

category, comprising Gaussian noise, impulse noise and 

more significantly, their combination in the HSI data. The 

HSI data is regarded as a three order tensor which takes 

care of both spatial and spectral modes of the particular 

image. Compressive Sensing (CS) is an approach to 

recover sparse signals from considerably less 

measurements than required with the conventional 
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sampling theory. The image experiences tensor 

decomposition; in a while the modified K-SVD algorithm 

is implemented to the tensors. The regularized Maximum 

Likelihood Estimation (MLE) is customized with new 

function together with additional variable, because the 

original likelihood functional associated with mixed noise 

is not simple to be optimized compared against the 

functional for a single Gaussian noise. This new functional 

has the similar global minimizer as the original likelihood 

functional and is simpler to be optimized. The weighting 

functions takes the role of noise detectors by reducing the 

new functional, acquire some weighted norms models. It 

also incorporates this with sparsity representation, as a 

result this scheme can well restore images and textures 

damaged by mixed noise. This scheme comprises of four 

phases: sparse coding followed by dictionary learning, 

image reconstruction, noise clustering (detection), and 

parameters estimation. Each phaserequires to carry out a 

minimization setback. Then these optimized tensors are 

partitioned as noise free tensor and noisy tensor. The noise 

free tensors are then integrated to rebuild the noise free 

image. The reconstruction is identical as reverse of the 

tensor decomposition. 

 

a) Model representation  
 Consider an original Hyperspectral image, and 

the degradation noise is taken as additive noise, the noise 

degradation model of the Hyperspectral image is given in 

the following equation  

   (1) 

Where represents the original 

clear Hyperspectral image, with the size of , in 

which indicates the samples of the image, represents 

the lines of the image, and  indicates the number of 

bands.  represents the noise 

degradation image which also of size , and  

, indicates the additive noise 

with the similar size as  and . Hyperspectral imaging 

(HSI) gathers and process information from across the 

electromagnetic spectrum. The human eye notices 

detectable light in three bands (red, blue, green). Spectral 

imaging splits the spectrum into several more bands. This 

approach of segmenting images into bands can be 

extended before can be extended beyond the visibility. 

Hyperspectral sensors gather a collection of images. Each 

image is a range of the electromagnetic spectrum 

recognized as a spectral band. Subsequently these images 

are integrated together to generate a three dimensional 

hyperspectral data cube. 

 

b) Compressive sensing for sparse noise removal  

 Compressive Sensing (CS) is an approach to 

recover sparse signals from considerably less 

measurements than required with the conventional 

sampling theory (See Figure-1). 

 

 
 

Figure-1. Compressive sensing block diagram. 

 

 In the above figure1, indicates a physical signal, 

e.g. objects intensities.  representsa vector of components 

in the sparsifying domain exploited to represent . is a 

mathematical representation vector that includes largely 

zeros or close to zero values. In the image acquisition 

phase, the signal vector  is sampled with the help of the 

 operator yielding the measurement vector . 

Subsequently consider that a  vector  that is to be 

measured can be given as  , where the  vector 

includes only  non-zero elements and 

represents a spasrsifying operator. The measurements 

vector , is obtained by  where 

represents a sensing matrix. By appropriately 

selecting and , and considering sparsity of in the  

domain, the signal  can be recovered from the 

measurements . The fundamental step here is to construct 

a sensing matrix in order that it enables perfect recovery 

of  sized  from fewer  measurements . 

Reconstruction off from  is certain when the number of 

measurements satisfies the following criteria: 

. It can be seen that the number of 

measurements necessary, , based on the size of the 

signal, , its sparisity, , and indicates the mutual 

coherence among  and . The mutual coherence is given 

as: 

 
(2) 

where ,  are vectors of  and correspondingly. 

The value of  is inside the range of  . The 

lesser  is, the better the performance of the system and 

superiority of the product. The original signal  can be 

recovered by solving the following equation 

 subject to 
 

(3) 

Where,  is  norm and  is a regularization 

weight. One of the complicatedness of utilizing the CS 

method for HS imaging is the enormous size of matrices 

necessary for representing the sensing operation. Signals 

in the CS theory are indicated by vectors with  

components. The measurements data is  dimensional; 

accordingly the sensing matrix is of size . 
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Hyperspectral imaging involves 3D signals 

 which can be transformed to vectors by 

lexicographic ordering to  - length vector . 

Since  the sensing matrix size has the 

order of . For illustration consider the 

computational characteristics of random encoding a 3D 

data HS cube of , with 

. In this scenario, the sensing matrix 

 will be . The optical execution and sensor 

calibration of such systems also face a big challenge since 

the realization of random necessitates the system to have 

almost independent modes. 

 

c) Singular value decomposition for noised removal  
 The Singular Value Decomposition (SVD) is also 

regarded as the “swiss army knife” of matrix 
decompositions. Applications of the SVD tend to be 

changed from Latent Semantic Indexing (LSI) to 

collaborative filtering. The SVD is also one of the most 

costly decompositions, both based on computation and 

memory consumption. Here presented a well-organized 

algorithm for discovering the SVD for two special groups 

of matrices: sparse matrices and band matrices. The SVD 

of a matrix is given as, 

   (4) 

Where  and  and  and  are 

orthogonal matrices.  represents a diagonal 

matrix with real positive entries. This formulation of the 

SVD is commonly indicated as the full SVD. The more 

frequently exploited form of SVD is  and 

 is given as, 

   (5) 

where  and  and  and  have 

orthonormal columns.  representsa diagonal 

matrix with real positive entries. This is usually called as 

the thin SVD or the economy SVD. The concept in this 

paper is relevant to both the thin and full SVD. SVD is 

used to refer both SVD’s and make a distinction wherever 

required. 

 

d) Matrix SVD for image denoising 

Provided a matrix  of size , there occurs a 

factorization of the form,  

 (6) 

where U is a  orthonormal matrix,  is a  

diagonal matrix of positive ‘singular’ values and  is a 

orthonormal matrix. The columns of  and the 

columns of  (correspondingly called the right and left 

singular vectors) are respectively the eigenvectors of the 

column-column correlation matrix  and the row-row 

correlation matrix . The singular values in  are the 

square roots of the Eigen values of  (or ). The 

SVD also provides the optimal low rank decomposition of 

, i.e. the optimal solution to, 

 subject to the constraint 

rank  

(7) 

 (8) 

is given as, 

 
(9) 

where  and represents the first  columns of  and  

respectively and  includes the  largest singular values of 

. The singular values of natural images tend to 

decompose exponentially and the SVD bases have a 

frequency interpretation. Provided a noisy image  (a 

corrupted format of an underlying clean image) influenced 

by noise from , filtering is completed in three 

phases:  

(1) Calculating the decomposition of small patches 

 of size  in sliding window method,  

(2) Manipulating the singular values  and  

(3) Averaging the hypotheses appearing at each pixel to 

construct a final filtered image.  

The original K-SVD is fine tuned by the non-uniform 

weights. In that case indicate, 

 (10) 

Then 

 
(11) 

Similar to the K-SVD learning approach is the 

ordinary approach to reduce each atom  as follows: 

 

(12) 

This is the weighted approximation setback. This is 

resolved by an iterative approach by means of SVD. This 

approach cannot be exploited for the unweighted case. As 

a result, the minimization setback is solved. Hence the 

modified scheme diminishes the original K-SVD 

algorithm when all weights are the similar. 

 

Reconstruction  

 This minimization setback is solved as given 

below, since  is quadratic with respect to , accordingly 
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         (13) 
 

Where (� ° �) indicates ����� °� and s represents 

adiagonal matrix. Consequently the inverse matrix can be 

directly obtained. The signal dominant constituents are 

united by removing the noise tensors. Following the noise 

components are removed, the noise free image is obtained 

by rebuilding the signal dominant components. The 

tensors are rebuilt to form the noise free HIS data by the 

equation,  

 

(14) 

The value of indicates the number of signal dominant 

tensors. 

 

5.   EXPERIMENTATION RESULTS 
 This section will demonstrate the denoising 

performance of the K-SVD and CS proposed algorithm on 

simulated and real noisy HSI. In order to evaluate the 

competitive performance of the proposed method, it is 

evaluated against the two state-of-the-art methods; one is 

the global and local redundancyand correlation (RAC) 

[17], and another one which is an extension of the 

principal component analysis transform(PCA) [4] to the 

multichannel image case. Evaluation is done on three data 

sets; they are synthetic HSI using USGS spectral library 

(as shown in Figure-2), Sandi go, and Washington DC 

Mall data. In view of the fact that certain spectral bands of 

the latter two datasets are affected by noise largely, they 

cannot be exploited as ground truth. Then obtain numerous 

continuous bands that are free from noise to be ground 

truth by visual assessment. The synthetic HSI has a size of 

; size of the two latter data subsets is 

. The assessing indexes employed are 

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

Index Measurement (SSIM) [18], and Feature Similarity 

Index Measurement (FSIM) [19]. The latter two indexes 

are intended depending on human’s visual quality. Index 
value is higher; denoised image is more comparable to the 

original image in human’ svision sense. 

 

 
 

Figure-2. Simulated HSI [20] by using the spectral 

signature selected from USGS library with a size of 

 
The left is noise free, and its rank is 5. The right HSI is 

degraded by noise with zero mean and standard variance 

of 10, and its rank is full (Rank = 224).Numerical 

experimentations are carried out on these three data sets 

under various noise levels. All the indexes PSNR, SSIM, 

and FSIM are calculated for images on different spectral 

bands; the mean of these bands are then computed and 

indicated as MPSNR, MSSIM, and MFSIM. Assessing 

indexes of the experiment on synthetic HSI by means of 

USGS library are given in Table-1. 

 

 

Table-1. Assessing indexes of different denoising algorithms on synthetic HSI data using USGS spectral library under 

different noise levels. 
 

Noise level Assessing indices Inputting noisy image PCA RAC CS-K-SVD 

σ = 0.05 

MPSNR(db) 28.0261 40.3641 41.9264 42.268 

MSSIM 0.2712 0.8236 0.8895 0.9587 

MFSIM 0.9072 0.9792 0.9854 0.9878 

σ = 0.10 

MPSNR(db) 20.0018 35.325 37.851 38.5968 

MSSIM 0.1598 0.6235 0.7832 0.8124 

MFSIM 0.8698 0.9578 0.9658 0.9785 

σ = 0.15 

MPSNR(db) 16.4806 33.2568 36.589 37.5897 

MSSIM 0.1109 0.4869 0.6782 0.7895 

MFSIM 0.8518 0.9482 0.9568 0.9785 

σ = 0.20 

MPSNR(db) 13.3812 32.1568 32.8954 33.5689 

MSSIM 0.1008 0.42156 0.6897 0.7895 

MFSIM 0.8420 0.9458 0.9684 0.9728 

σ = 0.25 

MPSNR(db) 12.0430 26.989 32.5698 36.589 

MSSIM 0.0894 0.3289 0.4812 0.5248 

MFSIM 0.8361 0.9207 0.9456 0.9547 
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 The visual superiority of the denoised images to 

the results of other approaches is also clear. Alike 

conclusion can be made in the experiment on Sandi go 

data (see Table-2) and in the experiment on Washington 

DC Mall data (see Table-3). The proposed scheme offers 

competitive result to the state-of-the-art approaches. 

 

 
 

Table-2. Assessing indexes of different denoising algorithms on Sandi go data under different noise levels. 
 

Noise level Assessing indices Inputting noisy image PCA RAC CS-K-SVD 

σ = 0.05 

MPSNR(db) 34.1871 40.7128 41.4389 42.6897 

MSSIM 0.9303 0.9837 0.9908 0.9928 

MFSIM 0.9708 0.9909 0.9936 0.9968 

σ = 0.10 

MPSNR(db) 28.1260 37.8598 38.4612 38.5968 

MSSIM 0.7791 0.9717 0.9788 0.9823 

MFSIM 0.9176 0.9825 0.9887 0.9912 

σ = 0.15 

MPSNR(db) 23.6097 35.4287 36.0729 37.5897 

MSSIM 0.6729 0.9587 0.9678 0.9784 

MFSIM 0.8612 0.9778 0.9829 0.9879 

σ = 0.20 

MPSNR(db) 22.1478 33.7249 34.0789 35.7897 

MSSIM 0.5924 0.9330 0.9587 0.9687 

MFSIM 0.8214 0.9682 0.9758 0.9849 

σ = 0.25 

MPSNR(db) 20.1649 32.1479 32.4579 33.8794 

MSSIM 0.5389 0.9078 0.9487 0.9687 

MFSIM 0.7847 0.9587 0.9678 0.9712 

 

Table-3. Assessing indexes of different denoising algorithms on Washington DC mall data under different noise levels. 

 

Noise level Assessing indices Inputting noisy image PCA RAC CS-K-SVD 

σ = 0.05 

MPSNR(db) 34.1780 41.0601 42.2457 43.1548 

MSSIM 0.9382 0.9848 0.9925 0.9956 

MFSIM 0.9797 0.9956 0.9978 0.9984 

σ = 0.10 

MPSNR(db) 28.1118 37.3548 38.1687 38.5968 

MSSIM 0.79438 0.9748 0.9840 0.9912 

MFSIM 0.9325 0.9911 0.9924 0.9943 

σ = 0.15 

MPSNR(db) 24.6163 35.4287 35.9874 37.5897 

MSSIM 0.7242 0.9587 0.9754 0.9894 

MFSIM 0.9004 0.9778 0.9784 0.9814 

σ = 0.20 

MPSNR(db) 20.1478 33.7249 33.0789 35.7897 

MSSIM 0.6387 0.9387 0.9587 0.9646 

MFSIM 0.8647 0.9775 0.9878 0.9915 

σ = 0.25 

MPSNR(db) 20.1649 32.1479 32.4579 33.8794 

MSSIM 0.5687 0.9104 0.9498 0.9612 

MFSIM 0.8304 0.9735 0.9784 0.9879 

 
 Figures-3–4 illustrate the denoising performance 

in every spectral band of PCA, RAC, and the proposed 

CS-K-SVD  algorithm on Sandi go data, when. Figure-4 

shows the comparison of FSIM value among methods in 

the whole spectrum Sandi go, when. It is found that that 

the CS-K-SVD method works better than PCA and RAC, 

no matter what the noise level and testing data are. It 

demonstrates the rationality of the sparse representation 

framework and low-rank constraint in our algorithm. 

Approximation errors may be introduced in the sparse 

coding and dictionary updating stages in the sparse 

representation method. These errors could be suppressed 

by the constraint of low rank. In contrast, the low- rank 

reconstruction only considers spectral correlation; the 

performance will be improved when spatial information is 

considered.  
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Figure-3. Comparison of PSNR value among methods on 

spectrum on Sandi go, in the case of σ = 15. 
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Figure-4. Comparison of SSIM value among methods for 

whole spectrum on Sandi go, in the case of σ = 15. 
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Figure-5. Comparison of FSIM value among methodsin 

the whole spectrum Sandi go, in the case of σ = 15. 

 

6.   CONCLUSIONS AND FUTURE WORK 
 The hyperspectral image cube can be represented 

as a three dimensional array. Tensors and the tools of 

multilinear algebra offer an accepted structure to manage 

with this kind of mathematical object. Singular value 

decomposition (SVD) and its variants have been exploited 

by the HSI community for denoising of hyperspectral 

imagery. Denoising of HSI with the help of SVD is 

accomplished by discovering a low rank approximation of 

a matrix representation of the hyperspectral image cube. 

This approach of denoising can competently eliminate a 

variety of mixed or single noise by employing sparse 

regularization of small image patches. It also preserves the 

image texture in a comprehensible manner.  The learned 

dictionary exploited clearly assists in eliminating the 

noise. This paper involved in reducing model to eliminate 

mixed noise,for instance, Impulse noise, Gaussian-

Gaussian mixture and Gaussian-Impulse noise from the 

HSI data.  Excluding theoretical examination, the 

consistency of combining sparse representation and low 

rank is also analyzed by means of experimental methods. 

The experimental results reveal that the denoising method 

can accomplish competitive performance than other state-

of-the-art approaches. The future work will concentrate on 

considering the gradient in the spectral dimension in the 

model building process with the intention of developing a 

real 3-D TV model. Additionally, it might be possible to 

employ neither the 3-D segmentation nor clustering result 

to restrict the denoising process from a region perspective, 

more willingly than the pixel perspective in the present 

paper. 
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