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ABSTRACT  

A computer network is a system whose components are autonomous computers and other devices that are 

connected together usually over long physical distance. Each computer has its own operating system and there is no direct 

cooperation between the computers in the execution of programs. A basic feature for a system is that its components are 

connected together by physical communication links to transmit information according to some pattern. Moreover, it is 

undoubted that the power of a system is highly dependent upon the connection pattern of components in the system. A 

connection pattern of the components is a system is called an interconnection network, or network for short, of the system.  

In this paper, using the new graph class called Super Strongly Perfect (SSP), some bipartite and non bipartite based 

interconnection networks (Path, Helm and crown graphs) are discussed. 

 
Keywords: super strongly perfect (SSP) graph, inter connection network, Pan, helm, crown graphs. 

 

1. INTRODUCTION 

The use of mathematics is quite interesting in 

every area of computer science (i.e.) in artificial 

intelligence, automatic control, distributed and concurrent 

algorithms, software development environments and tools, 

software architecture and design and multiprocessing etc. 

Concepts in Mathematics help in the design, 

implementation and analysis of algorithms for scientific 

and engineering applications. It also improves the 

effectiveness and applicability of existing methods and 

algorithms. Graph theory is one of the important areas in 

mathematics. There are many research papers explore the 

use of graphs for modelling communication networks. The 

graph theoretical ideas are used by various computer 

applications like data mining, image segmentation, 

clustering, image capturing, networking etc. Graph theory 

can be used to represent communication networks. A 

communications network is a network which contains a 

collection of terminals, links and nodes which connect to 

enable telecommunication between users of the terminals. 

Each terminal in the network must have a unique address 

so messages or connections can be routed to the correct 

recipients. The collection of addresses in the network is 

called the address space. Every communications network 

has three basic components: 1) terminals (the starting and 

stopping points of network), 2) processors (which provide 

data transmission control functions), 3) transmission 

channels (which help in data transmission). The 

communication network aims to transmit packets of data 

between computers, telephones, processors or other 

devices. The term packet refers to some roughly fixed-size 

quantity of data, 256 bytes or 4096 bytes. The packets are 

transmitted from input to output through various switches. 

The communication networks can be represented using the 

various mathematical structures which also help us to 

compare the various representations based on congestion, 

switch size and switch count. Graphs have an important 

application in modeling communications networks. 

Generally, vertices in graph represent terminals, 

processors and edges represent transmission channels like 

wires, fibers etc. through which the data flows. Thus, a 

data packet hops through the network from an input 

terminal, through a sequence of switches joined by 

directed edges, to an output terminal [9]. Have we ever 

wondered how our mail gets from our mailbox to another 

address? Perhaps we are fascinated with how internet 

traffic travels from one country to the next. Networks have 

been used in a variety of applications for hundreds of 

years. In the scope of mathematics, we can visually depict 

these networks better through graphs. A graph is a 

representation of a group or set of objects, called vertices, 

in which some of the vertices are connected by links, also 

known as edges. The study of these graphs is referred to as 

Graph Theory. Figure-1 and Figure-2 are examples of 

simple graphs. The example used in Figure-1 is known as 

an undirected graph, a graph in which the edges have no 

orientation. A more practical example of an undirected 

graph would be two people shaking hands. Person A is 

shaking hands with person B and at the same time, person 

B is shaking hands with person A. Figure-2 shows a 

directed graph, or digraph. A digraph has edges that have 

direction and are called arcs. Arrows on the arcs are used 

to show the flow from one node to another. For example, 

from Figure-2, vertex A can move to vertex B, but B 

cannot move to A. Often times, graphs will be labeled 

with a number on the link between nodes. This means that 

the graph is weighted and this number denotes the cost it 

takes to get from one vertex to the next. There are many 

topics being researched today related to Graph Theory.   

Any packet can be modeled as a directed graph 

where nodes are the routers, arcs are subnets. Routing 

function for a packet equivalent to finding shortest path in 

the graph associated to the network (i.e.) Minimum 

number of hops (un weighted graph) and shortest path 

(weighted graph)). The star network, a computer network 

modelled after the star graph, is important in distributed 

computing. 
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Figure-1. Undirected graph. 

 

 
 

Figure-2. Directed graph. 

 

An interconnection network connects the 

processors of a parallel and distributed system. The 

topology of an interconnection network for a parallel and 

distributed system can always be represented by a graph, 

where each vertex represents a processor and each edge 

represents a vertex-to-vertex communication link. The 

interconnection network plays a central role in 

determining the overall performance of a multicomputer 

system. If the network cannot provide adequate 

performance, for a particular application, nodes (points) 

will frequently be forced to wait for data to arrive. Some 

of the more important networks include Mesh, Torus, 

Rings, Hypercube, Butterfly, Benes and Cube Connected 

Cycles etc., [8].  It quit natural that an interconnection 

network may be modelled by a simple graph whose 

vertices represent components of the network and whose 

edges represent physical communication links, where 

directed edges represent one-way communication links 

and undirected edges represent two-way communication 

links, and the incidence function specifies a way that 

components of the network are interconnected by links. 

Such a graph is called the topological structure of the 

interconnection network, or network topology for short. 

Conversely any graph can be considered as a topological 

structure of some interconnection network. Topologically, 

graphs and interconnection networks are the same things. 

Thus a graph is nothing but a network. Instead of speaking 

a network, components, and links we speak of a graph, 

vertices and edges. The graph is directed or undirected, 

depending upon that links are one-way or two-way in the 

network [4]. Super strongly perfect graph is a new graph 

class which was defined by B. D. Acharya in 2006 and its 

characterization has been given as an open problem [7]. In 

my previous papers, various networks have been analyzed 

by using SSP graph. This paper investigates pan, helm and 

crown graphs.  

 

2. BASIC CONCEPTS 

In this paper, graphs are finite and simple. Let G 

= (V, E) be a graph where V is the vertex set and E is the 

edge set. A clique X is a subset of V such that G[X] is 

complete. A subset D of V (G) is called a dominating set if 

every vertex in V - D is adjacent to at least one vertex in 

D. A subset S of V is said to be a minimal dominating set 

if S-{u} is not a dominating set for any u  S. Walk of a 

graph is an alternating sequence of vertices and edges 

v0e1v1e2... vn-1envn beginning and ending with vertices such 

that each edge ei is incident with vi-1 and vi. We say the 

walk joins v0 and vn and it is called v0-vn walk, v0 is called 

the initial vertex and vn is called the terminal vertex of the 

walk. The above walk is also denoted by v0v1v2....vn, the 

edges of a walk being self evident and n is called the 

length of this walk. Walk is called a path if all the vertices 

are distinct. A v0-vn walk is closed if v0 = vn. Closed walk 

vov1v2...vn = v0 in which n  3 and v0, v1, v2, ... vn are 

distinct is called a cycle or circuit of length n. A cycle 

graph of length n is denoted by Cn. An odd cycle is a cycle 

with odd number of vertices. An even cycle is a cycle with 

even number of vertices. In cycle, number of vertices is 

equal to the number of edges. Wheel Graph G is a graph 

with n vertices formed by connecting a single vertex to all 

vertices of an n-1 cycle. A bipartite graph is 

a graph whose vertices can be divided into two disjoint 

sets V1 and V2 (that is, V1 and V2 are independent sets) 

such that every edge connects a vertex in V1 and V2.  

A complete bipartite graph G is a bipartite graph such that 

for any two vertices, v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge 

in G. The complete bipartite graph with partitions of size 

|V1| = m and |V2| = n, is denoted as Km,n.  

 

3. SUPER STRONGLY PERFECT GRAPH 
A graph G is Super Strongly Perfect (SSP) if 

every induced sub graph H of G possesses a minimal 

dominating set that meets all the maximal cliques of H. 

Illustrations of super strongly perfect and non-super 

strongly perfect graphs are given in Figure-3 and Figure-4. 

 

Example 1 
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Figure-3. Super strongly perfect graph. 

 

Here, {3, 7} is a minimal dominating set which 

meets all the maximal cliques K2. 

 

Example 2  

 

 
 

Figure-4. Non-Super strongly perfect graph. 

 

Here, {1, 4, 6} is a minimal dominating set which 

does not meet all the maximal cliques K2. 

 

3.1. Theorem [5] 
A graph G is super strongly perfect if and only if 

it does not contain an odd cycle Cn, n ≥ 5 as an induced 
sub graph. 

 

3.2. Theorem [6] 

Let G be a graph with at least one maximal clique 

Kn, n = 2, 3,… G is super strongly perfect if and only if it 

is n-colourable.   

 

3.3. Proposition [6] 

Every complete k-partite graph 
kPPPK ,..,

21

contains P1P2…Pk maximal cliques Kk.  

 

3.4. Proposition [6] 
Every complete k-partite graph Kn,n,…n(ktimes) 

contains a minimal dominating set of cardinality n. 

 

4. PAN GRAPH  

An n-pan graph is a graph obtained by joining a 

cycle graph Cn to a singleton graph K1 with a bridge. The 

special case of the 3-pan graph is sometimes known as 

the paw graph and the 4-pan graph as the banner graph 

[1]. 6-pan graph is illustrated in Figure-5. 

 

Example 3 
 

 
 

Figure-5. 6-Pan graph. 

 

 Here, {v2, v4, v6} is a minimal dominating set 

which meets all the maximal cliques of G. 

 

4.1. Theorem  

 Every n-pan graph, n   4 where n is even, is 

super strongly perfect. 

 

Proof 

 Let G be an n-pan graph, n   4 where n is even.  ⇒From the construction of G, G does not contain an odd 

cycle of length atleast five as an induced sub graph. 

Now, by the theorem 3.1, G is super strongly perfect. 

Hence the proof. 

 

4.2. Theorem  
 Every n-pan graph, where n is odd, n > 3, is non-

super strongly perfect. 

 

Proof 

 Let G be an n-pan graph, where n is odd, n > 3.  ⇒From the construction of G, G contains an odd cycle of 

length atleast five as an induced sub graph. 

 Now, by the theorem 3.1, G is non-super strongly 

perfect. 

Hence the proof. 

 

4.3. Proposition  

 Let G be an n-pan graph n 4 where n is even. G 

has the following properties. 

1) G has n+1 maximal cliques K2. 

2) G is 2-colourable. 

3) G has a minimal dominating set of cardinality 





 

2

1n
(or) 



 

2

1n
 

 

Proof 

1) Let G be an n-pan graph n  4 where n is even.  ⇒G is obtained by joining Cn to K1. 

Every Cn has n edges. 

Also from the construction of G, an edge is joined to Cn. ⇒G has n+1 maximal cliques K2. 

Hence the proof.  

2) Let G be an n-pan graph n  4 where n is even.  ⇒By the above observation, G has n+1 maximal cliques 

K2. 

http://mathworld.wolfram.com/SingletonGraph.html
http://mathworld.wolfram.com/Bridge.html
http://mathworld.wolfram.com/PawGraph.html
http://mathworld.wolfram.com/BannerGraph.html
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⇒By the theorem 3.2, G is 2-colourable. 

Hence the proof. 

3) Let G be an n-pan graph, n  4 where n is even.  ⇒G is obtained by joining Cn to K1. ⇒G is bipartite with n+ 1 vertices. ⇒There exists a minimal dominating set of cardinality 

1V  (or) 2V .
 ⇒ 1V  has 



 

2

1n
vertices and 2V  has 



 

2

1n

vertices.
 ⇒G has a minimal dominating set of cardinality 



 

2

1n

(or) 



 

2

1n
.

    
Hence the proof. 

The above proposition is illustrated in the 

following Figure-6. 

 

 
 

Figure-6. 12-Pan graph. 

 

Here,  

1) G has 13 maximal cliques K2. 

2) G is 2-colourable. 

3) G has a minimal dominating set of cardinality 6 (or) 

7. 

 

4.4. Remark  

Let G be a 3-pan graph then,  

a) G is super strongly perfect. 

b) G has only one maximal clique K3. 

c) G is 3-colourable. 

d) G has a minimal dominating set of cardinality 1. 

 

 This remark is illustrated in the following Figure-

7. 

 

 
 

Figure-7. 3-Pan graph. 

 

Here, {v1, v4} is a minimal dominating set which 

meets all the maximal cliques of G.   

 

5. HELM GRAPH 

The Helm Graph Hn is the graph obtained from 

an n-wheel graph by adjoining a pendant edge at each 

vertex of the cycle. That is, helm graph Hn is obtained by 

attaching a single edge and vertex to each vertex of the 

outer circuit of a wheel graph Wn. Figure-8 illustrates the 

helm graph H7. 

 

Example 4 

 

 
 

Figure-8. H7. 

 

Here, {1, 8, 9, 10, 11, 12, 13} is a minimal 

dominating set which meets all the maximal cliques of G. 

 

5.1. Theorem  

Every helm graph Hn where n is odd, n ≥ 5, is 
super strongly perfect. 

 

Proof 

Let G be a helm graph Hn where n is odd, n ≥ 5. ⇒G is constructed by an n-wheel graph by joining a 

pendent edge at each vertex of the cycle. 

Since every odd wheel graph is super strongly 

perfect [3], if we join a pendent edge at each vertex of the 

cycle of the odd wheel graph then the resulting graph is 

super strongly perfect with a minimal dominating set of 

cardinality n vertices (i.e.,) the n-1 non adjacent vertices 
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from the n-1 pendent edges and a middle vertex from the 

wheel graph. ⇒ G is super strongly perfect. 

Hence the proof.  

 

5.2. Theorem  
Every helm graph Hn where n is even, n ≥ 6, is 

non-super strongly perfect. 

 

Proof 

Let G be a helm graph Hn where n is even, n ≥ 6. ⇒G is constructed by an n-wheel graph by joining a 

pendent edge at each vertex of the cycle. 

Since every even wheel graph is non-super 

strongly perfect [3], if we join a pendent edge at each 

vertex of the cycle of the even wheel graph, then also the 

resulting graph is non-super strongly perfect.  ⇒ G is non-super strongly perfect. 

Hence the proof.  

 

5.3. Proposition  

Let G be a helm graph with odd number of 

vertices n, G has the following properties.  

1)  G contains n-1 maximal cliques K3. 

2)  G is 3-colourable. 

3)  G contains a minimal dominating set of cardinality n. 

 

Proof 
1) Let G be a helm graph with odd number of 

vertices n. ⇒ G is obtained from an n-wheel graph by adjoining a 

pendant edge at each vertex of the outer cycle Cn-1. ⇒Any two vertices from Cn-1 with a centre single vertex 

give an induced K3. 

Since G has n-1 such vertices, G has n-1 maximal 

cliques K3. 

Hence the proof. 

2) Let G be a helm graph with odd number of vertices n. ⇒ by the above part, G has n-1 maximal cliques on 3 

vertices. ⇒ by the theorem 3. 2, G is 3-colourable. 

Hence the proof. 

3) Let G be a helm graph with odd number of vertices n. ⇒ G is formed by connecting a single vertex to all vertices 

of the outer cycle Cn-1. ⇒The n-1 non adjacent vertices from the n-1 pendent 

edges and a middle vertex from the wheel graph give a 

minimal dominating set which meets all the maximal 

cliques K3. ⇒G has a minimal dominating set of cardinality n. 

Hence the proof.  

This observation is illustrated in the following Figure-

9. 

 

 
 

Figure-9. H13. 

 

Here, 

1) G contains 12 maximal cliques K3. 

2) G is 3-colourable. 

3) G contains a minimal dominating set of cardinality 

13. 

6. CROWN GRAPH 

A Crown graph on 2n vertices is a graph with 

two sets of vertices ui and vi and with an edge from ui to vj 

whenever i ≠ j. The crown graph can be viewed as a 

complete bipartite graph from which the edges of a perfect 

matching have been removed. It is denoted by Sn
0
. The 6-

vertex crown graph forms a cycle and the 8-vertex crown 

graph is isomorphic to the graph of a cube. A traditional 

rule for arranging guests at a dinner table is that men and 

women should alternate positions, and that no married 

couple should sit next to each other. The arrangements 

satisfying this rule, for a party consisting of n married 

couples, can be described as the Hamiltonian cycles of a 

crown graph. Crown graphs can be used to show 

that greedy colouring algorithms behave badly in the 

worst case: if the vertices of a crown graph are presented 

to the algorithm in the order u0, v0, u1, v1, etc., then a 

greedy colouring uses n colours, whereas the optimal 

number of colours is two. Crown graphs are sometimes 

called Johnson’s graphs with notation Jn [3]. Fürer uses 

crown graphs as part of a construction showing hardness 

of approximation of colouring problems [2]. A 3-crown 

graph is illustrated in the following Figure-10. 

 

Example 5 
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Figure-10. 3-Crown graph. 

 
Here, {v1, v2, v3} is a minimal dominating set 

which meets all the maximal cliques of G. 

 

6.1. Theorem  

 Every crown graph is super strongly perfect. 

 

Proof 

 Let G be a crown graph. ⇒ From the definition of the crown graph, the removal of 

vertical edges (Perfect Matching) of the graph G is 

isomorphic to Kn,n. 

 Since Kn,n is super strongly perfect, if we remove 

the vertical edges from Kn,n, again the graph is super 

strongly perfect with the same minimal dominating set of 

Kn,n. ⇒ G is super strongly perfect. 

Hence the proof.  

 

6.2. Proposition  
Every crown graph has the following properties. 

1) G has n(n-1) maximal cliques K2. 

2) G is 2-colourable. 

3) G contains a minimal dominating set of cardinality n. 

 

Proof 

1) Let G be a crown graph. ⇒From the construction of G, the vertical edges (Perfect 

Matching) of Kn, n is removed. 

 Also, by the proposition 3.3, Kn, n, n(ktimes), then G 

contains n
k
 maximal cliques Kk. ⇒Kn, n has n

2
 maximal cliques K2. 

 If we remove the n-vertical edges from Kn, n, then 

we have n
2
-n maximal cliques K2. ⇒ G has n(n-1) maximal cliques K2.  

Hence the proof. 

2) Let G be a crown graph. ⇒ by the previous proposition, G has n(n-1) maximal 

cliques, K2. ⇒By theorem 3.2, G is 2-colourable. 

Hence the proof. 

3) Let G be a crown graph.  ⇒From the construction of G, the vertical edges (Perfect 

Matching) of Kn,n is removed. 

 Also, by proposition 3.4, Kn, n has a minimal 

dominating set of cardinality n. 

⇒ G has a minimal dominating set of cardinality n. 

Hence the proof.  

 The above proposition is illustrated in the 

following Figure-11. 

 

 
 

Figure-11. 6-Crown graph.
 

 
Here,  

1) G has 30 maximal cliques K2. 

2) G is 2-colurable. 

3) G
 
contains a minimal dominating set of cardinality 6. 

 

7. CONCLUSIONS 

Artificial neural networks have been widely used 

in solving many issues in graph theory, such as the graph 

colouring problem, the graph isomorphism problem, the 

graph vertex coverage problems, the maximum clique and 

the maximum independent set problem, the planar testing 

problem, the graph partitioning problem, TSP problem, 

the Chinese postman problem and 0-1 balanced problem 

etc. Here, the structural problems on pan, helm and crown 

graphs using the new network SSP is analysed. In future, 

these investigations will be extended to the remaining well 

known networks. 
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