ON A POSSIBLE CHARATARIZATION OF A q-ARY LINEAR MDS CODE OF LENGTH n

M. Mary JansiRani ${ }^{1}$ and K. Prabhakaran ${ }^{2}$
${ }^{1}$ Department of Mathematics, Thanthai Hans Roever College, India
${ }^{2}$ Thanthai Hans Roever College, India
E-Mail: ersakthi@yahoo.com

Abstract

Let F_{q} be a finite field having q - elements ($\mathrm{q}=p^{m}$, p is a prime, $\mathrm{m} \geq 1$) by a linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code. We mean a subspace of the vector space if q^{n} having dimension k and minimum distance d denoting this code by C we analyse certain sub-codes of C . The inequality $\mathrm{d} \leq \mathrm{n}-\mathrm{k}+1$ is obtained via a sub-code of dimension ($\mathrm{k}-1$) in which the left- most coordinate position of each of its code words is zero. Under suitable circumstances, it is possible that $\mathrm{d} \geq \mathrm{n}-\mathrm{k}+1$.A q-ary linear code of length n, dimension k and having minimum distance d is said to be a mean distance separable code if $d=n$ $\mathrm{k}+1$ writing a mean distance separable code as an MDS code, we obtain a possible characterisation of an MDS code. A equivalence relation of the set of code words of a q-ary $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code suggests an algorithm for finding the minimum distance of an [n, k, d] code.

Keywords: MDS code, minimum distance, subcode, equivalence relation.

1. INTRODUCTION

If q denotes a finite field having q elements where $\mathrm{q}=p^{m}, \mathrm{p}$ is a prime; $\mathrm{m} \geq 1$. Let $\mathrm{d} \geq 1, \mathrm{n} \geq 1$ then If q^{n} is defined by If $q^{n}=\left\{\left(c_{0}, c_{1}, \ldots c_{n-1}\right) c_{i} \in \mathbb{F}_{q} \mathrm{i}=0,1\right.$, $2, \ldots \mathrm{n}-1\}$ If q^{n} is a vector space of dimension n over \mathbb{F}_{q}.

Definition 1.1 An $[\mathrm{n}, \mathrm{k}]$ linear code C characteristic of an encoding E: $\mathrm{F}_{q^{k}} \rightarrow \mathrm{~F}_{q^{n}}$

Definition 1.2 The weight $\mathrm{w}(\vec{c}$) of a code word \vec{c} is given by $\mathrm{w}(\vec{c})=$ the number of non-zero coordinate positions of $\vec{c}=c_{0}, c_{1}, \ldots c_{n-1} c_{i} \in \mathbb{F}_{q}$ $\mathrm{i}=0,1,2, \ldots \mathrm{n}-1$.

Definition 1.3 Let \vec{x}, \vec{y} be vectors in \mathbb{F}_{q} the Hamming distance $\mathrm{d}(\vec{x}, \vec{y})$ between $\vec{x} \& \vec{y}$ is defined as the number of coordinate positions in $\vec{x} \& \vec{y}$ which differ.It is known [2] $\operatorname{thatd}(\vec{x}, \vec{y})$ denoting the distance between $\vec{x}_{\text {and }} \vec{y}$ gives a function.

Definition 1.4 The minimum distance of a linear code C is the smallest distance between distinct code words of C.

The minimum distance d of a linear code is also the minimum weight of non-zero code words of C . That is $\mathrm{d}=\min \{\mathrm{w}(\vec{c}), \vec{C} \neq \vec{o}, \vec{C} \in \mathrm{C}\}$. when $\mathrm{q}=3$, a linear code over \mathbb{F}_{3} is called a ternary code.

2. OBSERVATION

A linear [n, k] code C has minimum distance d if and only if its parity check matrix H has a set of d linearly dependent columns but no set of d-1 linearly dependant columns. For any set of k independent columns of a
generator matrix G , the corresponding set of coordinates forms an information set for the code C represented by G . The remaining ($\mathrm{n}-\mathrm{k}$) coordinates are made a redundancy set in [2].

The generator matrix G of an $[\mathrm{n}, \mathrm{k}]$ code is a matrix whose rows are linearly independent and span the code. The rows of the parity check matrix H are linearly independent. Hence H is the generator matrix of a different code called the dual of C denoted by $C^{\perp} . C^{\perp}$ is an $[\mathrm{n}, \mathrm{n}-\mathrm{k}]$ code.

Definition: 1.5 A linear [n, k] code C is called self-orthogonal if $\mathrm{C} \subseteq C^{\perp}$ if $\mathrm{C}=C^{\perp}, \mathrm{C}$ is called a selfdual code.

Definition 1.6 Let C be a linear code of dimension k over F_{q}. A Subset T of C which also forms a vector space by itself over \mathbb{F}_{q} is a subspace of C . T is called a sub code of C .
If T is non trivial, $1 \leq \operatorname{dim} \mathrm{T} \leq \operatorname{dim} \mathrm{C}$ (or) $1 \leq \operatorname{dim} \mathrm{T} \leq \mathrm{k}$.
Definition 1.7 A linear code of length n over \mathbb{F}_{q} and minimum distance atleast d is called optimal if it has $B_{q}(\mathrm{n}, \mathrm{d})$ code words, where
$B_{q}(\mathrm{n}, \mathrm{d})$ is the largest number of code words in C.
There are other ways of optimizing a linear code C they are

1) To find $d_{q}(\mathrm{n}, \mathrm{k})$ the largest value of d for which there exist a linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code over \mathbb{F}_{q}.
2) To find $n_{q}(\mathrm{k}, \mathrm{d})$ the smallest value of n for which there exists a linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code over \mathbb{F}_{q}.

The purpose of this note is

- To analysis the native of the minimum distance a of an [$\mathrm{n}, \mathrm{k}, \mathrm{d}$] code C via certain specific sub code C .
- To obtain certain a possible characterization of a qarylinear M D S code.

3. SOME INEQUALITIES INVOLVING d

As mentioned earlier, a linear code C of length n over \mathbb{F}_{q} is a subspace of dimension k over. As $\mathrm{q}=p^{m}(\mathrm{p}$ is a prime, $\mathrm{m} \geq 1) q^{n}$ is also a prime power namely $p^{m n}$. If q^{n} has q^{n} elements which are vectors of the form $\vec{a}=\left(a_{0}, a_{1}, \ldots \ldots a_{n-1}\right)$
($\mathrm{F}_{q^{n}},+$) is an abelian group of order $p^{m n}$.

SYLOW'S first theorem [1]

Let G be a group of order $p^{s} t$ where $\mathrm{s} \geq 1$ and Gcd $(p, t)=1$ then G contains a subgroup of order p^{j} for each j such that $1 \leq \mathrm{j} \leq \mathrm{s}$ and evens subgroup of G of order p^{j} $(1 \leq \mathrm{j} \leq \mathrm{mn})$ is normal in same subgroup of order p^{j+1}.

According $\left(\mathrm{F}_{q^{n}},+\right)$ has subgroups C_{j} whose orders are $q^{j}(1 \leq \mathrm{j} \leq \mathrm{k})$ and $q^{j}=p^{m j}$ where $\mathrm{q}=p^{m}(\mathrm{p}$ is a prime, $\mathrm{m} \geq 1)$.

Definition 2.1 Let C be a q -ary code of length n . The code words \vec{c} of C are n -tuples of the form $\vec{c}=c_{0}, c_{1}$, $\ldots c_{n-1} ; c_{i} \in C_{j} \mathrm{i}=0,1,2, \ldots \mathrm{n}-1 . \vec{c}$-is said to be an (i-0) vector if the coordination at $i^{\text {th }}$ place of \vec{c} is $\mathrm{o} \in \mathrm{F}_{q}$.

Theorem 2.2 Given a q-ary linear [$\mathrm{n}, \mathrm{k}, \mathrm{d}$] code the sub-code $c_{0}=\left\{\vec{c}=c_{0}, c_{1}, \ldots c_{n-1} ; c_{i} \in \mathrm{~F}_{q}\right.$ $\mathrm{i}=0,1,2, \ldots \mathrm{n}-1\}$ forms as $[\mathrm{n}, \mathrm{k}-1, \mathrm{~d}]$ code, whose $\mathrm{d}^{1} \in \mathrm{~d}$ further, the quotient space C / C_{0} is isomorphic to \mathbb{F}_{q}.

Proof: we take the subset T of the coordinates $0,1,2, \ldots n$ - 1 to be $\mathrm{T}=\{0\}$ at coordinates position o . then $\mathrm{C}(\mathrm{T})$ is the set of code words having 0 at the left most position $\mathrm{C}(\mathrm{T})$ is a sub code of C of dimension (k-1).

Next, let T be the set of coordinate positions where a minimum weight code has zeros. There are ($\mathrm{n}-\mathrm{d}$) elements in T. The set of code words which are zero in T is a subcode of C . It is denoted by $\mathrm{C}(\mathrm{T})$ sub code has ($\mathrm{n}-\mathrm{d}$) zeros is specified coordinate positions, C (T) has dimension $\mathrm{k}-(\mathrm{n}-\mathrm{d})$ or $\mathrm{K}-\mathrm{n}+\mathrm{d}$. As the dimension of a nontrivial code is $\mathrm{k}-\mathrm{n}+\mathrm{d} \geq 1$ or $\mathrm{d} \geq \mathrm{n}-\mathrm{k}+1$.

Remark 2.3 we denote by $n_{q}(\mathrm{k}, \mathrm{d})$ the least value of n for which there exists an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code over \mathbb{F}_{q}

Suppose that $[\mathrm{x}]$ denote the smallest integer not smaller that X .

The Griesmer bound for $n_{q}(\mathrm{k}, \mathrm{d})$ says [1] that
$n_{q}(\mathrm{k}, \mathrm{d}) \geq \mathrm{d}+\frac{d}{q}+\frac{d}{q^{2}}+\ldots+\frac{d}{q^{k-1}}$ the right side of this equation is denoted by $g_{q}(\mathrm{n}, \mathrm{d})$.The singleton bound states that for any linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$-code over $\mathbb{F}_{q}, \mathrm{~d} \leq \mathrm{n}-\mathrm{k}+1$ codes with $\mathrm{d}=\mathrm{n}-\mathrm{k}+1$ is called maximum distance separable codes or MDS codes. If $\mathrm{d} \leq \mathrm{n}-\mathrm{k}+1 \Rightarrow \mathrm{n} \geq \mathrm{d}+\mathrm{k}$ 1 in [3] the singleton bound is a weak form of Griesmer bound. As mentioned in [2] as $\frac{d}{q}, \frac{d}{q^{2}}, \ldots, \frac{d}{q^{k-1}}$ are each for $\mathrm{d} \leq \mathrm{k}$, we get form (2) $n_{q}(\mathrm{k}, \mathrm{d})=\mathrm{d}+1+\ldots+1(\mathrm{k}-1)$ times $=\mathrm{d}+\mathrm{k}-1$. So Griesmer bound is obtained for $\mathrm{d} \leq \mathrm{q}$. It is known that when $\mathrm{k}=1$, the MDS codes are the $[\mathrm{n}, 1, \mathrm{n}$] repetition codes, when $\mathrm{q} \leq \mathrm{k}$ when $\mathrm{k} \geq \mathrm{q}$, the only MDS codes are trivial $[k, k, 1]$ codes or $[k+1, k, 2]$ codes. So we consider $\mathrm{k}>1$ and
$2 \leq \mathrm{k} \leq \mathrm{q}-1$.
Theorem 2.4 Let C be an $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code over \mathbb{F}_{q} then C is an MDS code if and only if C has a sub code C_{T} of dimension 1 with the following property.

If T is a set of coordinate position say $\left\{i_{1}, i_{2}, \ldots, i_{n-\alpha}\right\}$ and C_{T} is a code shortened at it is assumed that $2 \leq \mathrm{k} \leq \mathrm{q}-1$.

Proof: As d is the minimum distance of the code there exists a code word having zeros at ($\mathrm{n}-\mathrm{d}$) coordinate positions designated by $T=\left\{\mathbb{F}_{q}\right\}$ by defined $C(T)$ is the set of code words of C which are o on T puncturing $\mathrm{C}(\mathrm{T})$ on T gives a code of length $\mathrm{n}-(\mathrm{n}-\mathrm{d})=\mathrm{d}$ called the code shortened at T this code is denoted by C_{T}. If C is an MDS code, $\mathrm{d}=\mathrm{n}-\mathrm{k}+1, C_{T}$ is of length d by extending theorem 2.2 if each code word of a code C of length n has $\mathrm{n}-\mathrm{d}$ zeros at coordinate positions $i_{1}, i_{2, \cdots}, i_{n-d}$ dimension of this code is $\mathrm{k}-(\mathrm{n}-\mathrm{d})=\mathrm{k}-\mathrm{n}+\mathrm{d}$. when $\mathrm{k}-\mathrm{n}+\mathrm{d}=1, \mathrm{k}=\mathrm{n}-\mathrm{k}+1$ when C has a sub code of dimension 1 obtained by taking the set of code words of minimum distance $\mathrm{d} \mathrm{d}=\mathrm{n}-\mathrm{k}+1$ or C is an MDS code. Conversely, if C has a sub code C_{T} containing the code words of C having non distance d and C_{T} has dimension 1, then $\mathrm{k}-(\mathrm{n}-\mathrm{d})=1$ or $\mathrm{d}=\mathrm{n}-\mathrm{k}+1$ thus C is an MDS code.

Example 2.5 We consider a code C for which $\mathrm{n}=4, \mathrm{k}=2, \mathrm{~d}=3$ and $\mathrm{q}=3$.
$\mathrm{d}=\mathrm{n}-\mathrm{k}+1=3(4-2+1)$ then $[4,2,3]$ over \mathbb{F}_{q} is given by
$0000 \quad 11 \alpha 0 \quad \alpha 10 \alpha$
$0111 \quad \alpha \alpha 10 \alpha 0 \alpha 1$
where $\alpha^{2}=1,0 \alpha \alpha \alpha \quad 1 \alpha 01101 \alpha \quad \alpha+1=0$, $1+1=\alpha$ it is an MDS code, also hence $\mathrm{d}=\mathrm{q}$
$c_{0}=\{0000,0111$, o $\alpha \alpha \alpha\}$ is a sub code of c drawn
from the set of code words of weight $3 . c_{0}$ is a sub code of C.

4. ANEQUIVALENCE RELATTON

Form sylows theorem it is possible to obtain an [$n, k-1]$ q-ary sub-code of a q-ary code of length n and dimension k .

Definition 3.1 Let C be a q -ary linear code of length $\mathrm{n}(\mathrm{n} \geq 2)$ and of dimension k. A code words $\vec{c}=c_{0} c_{1} c_{2} \ldots c_{n-1}, c_{i} \in \mathrm{~F}_{q} \quad$ is said to have left-most coordinate position $c_{0} \in \mathrm{~F}_{q}$.

Definition 3.2 Let $\vec{a}=a_{0} a_{1} \ldots a_{n+1}, \vec{b}=b_{0} b_{1} \ldots b_{n-1}$ be two code words in $\mathrm{C} \vec{a} \& \vec{b}$ are said to be equivalent if and only if, \vec{a} and \vec{b} agree as equality on the left most coordinate position.

Let C be a q-ary code of length n and of dimension k. the equivalence relation defined on the set-up C as in definition 3.2. Partition C into q -equivalence classes [0], [1], $[\alpha] \ldots \ldots\left[\alpha^{q-2}\right]$ Where $\left[\alpha^{i}\right], \mathrm{i}=(0,1$, $2, \ldots \mathrm{q}-2)$ denotes the equivalence class of code words having the left-most coordinate position $\left[\alpha^{i}\right]$ and [0] denotes the class of code of code words having left most coordinate position 0 . Theorem, says that [0] is nothing but the sub code c_{0} of C and having dimension k 1.Further, [1], $[\alpha] \ldots\left[\alpha^{q-2}\right]$ are co-sets of [0] in C.

Definition 3.3 In a q-ary code of length n, a code word $\vec{c}=c_{0} c_{1} c_{2} \ldots c_{n-1}$ is said to be even like, if $\sum_{i=0}^{n-1} C_{i}=C_{0}+C_{1}+\ldots+C_{n-1}=0$ Otherwise \vec{C} is said to be odd-like.

Even like code words in C form a sub-code ofC over \mathbb{F}_{q} as also even weight vectors in a binary code.

Example 3.4 $C_{1}=\{0000,0111,0 \alpha \alpha \alpha, 11 \alpha 0$, $\alpha 10 \alpha, 1 \alpha 01,101 \alpha, \alpha \alpha 10, \alpha 0 \alpha 1\}$

Let $\mathrm{E}=\{0000,0111,0 \alpha \alpha \alpha\} \quad C_{1}$ is a $[4,2,3]$ ternery code $\mathrm{q}=3, \mathbb{F}_{q}=\{0,1, \alpha\}$ with $1+\alpha=0, \alpha^{2}=1$. E is a sub code of C_{1} of dimension $1, \mathrm{E}$ consists of evenlike code words of C .
E is a $[4,1,3]$ linear code.
$C / E=\{[E],[E+11 \alpha 0],[E+\alpha 10 \alpha]\}$
Let $\mathrm{E}_{1}=[\mathrm{E}+11 \alpha 0]=\{[11 \alpha 0,1 \alpha 01,101 \alpha]\}$
$E_{2}=[E+\alpha 10 \alpha]=\{\alpha 10 \alpha, \alpha \alpha 10, \alpha 0 \alpha 1\}$

We get a partition of C into 3 classes and $C_{1}=$ $E_{1} \cup E_{2} \cup E_{3}$

The partitioning of a code into equivalence classes gives a method of finding the minimum weight of a code C. Since a $\vec{V} \varepsilon C$ for $\vec{V} \varepsilon C$ where aF_{q} we note that weight (a \vec{v}) $=$ weight of \vec{v}. Suppose the class [0] contains code words having minimum weight d_{0} we can find the minimum weight of a code word contained in the equivalence class [1], say d_{1}.But then, d_{1} will be the minimum weight of a code word in $[\alpha],\left[\alpha^{2}\right], \ldots,\left[\alpha^{q-2}\right]$, so we do not have to search for minimum weight code words in all the code-words of C, instead we have only to look for minimum weight That is minimum weight d of a code word=min $\left\{d_{0}, d_{1}\right\}$. This suggests that we can develop an algorithm for finding minimum weight of a code.

REFERENCES

[1] N. Pendins Topics in algebra vikas pub. House $4^{\text {th }}$ printing 1985 chapter 4, pp.130-143.
[2] C. huffman and Verapless. Fundamental of error correcting codes Cambridge university press, 2004, chap 1, pp. 2-47.
[3] R. Hill. optimal linear codes a survey article, 1986.
[4] P.P Greenough and R. Hill optimal linear codes over G F [4], Salfood M 5 4WT England.
[5] J.H. Griesmer .A bound for error -correcting codes I BM J. res develop, vol. 4 pp. 532-542, 1960.
[6] V.N .Logavec an improvement of the Griesmer bound in the case of Small code distance optimization methods and thus Application \{Russia\}, sibirsk, Energetinstsibirskotdel. akad Nauk SSSR, irkutsk, pp 107,111, 182, 1974.
[7] H.C.A. Vantilborg On the uniqueness of existence of certain codes meeting the various bound, inform centre vol. 44, pp. 16-35, 1980.
[8] F J. Macwlliams and N.J.A sloane the theory of error correcting Codes vol-16 Amsterdam: north Holland SS, 1977.

