R

www.arpnjournals.com

ON A POSSIBLE CHARATARIZATION OF A q-ARY LINEAR MDS CODE OF LENGTH n

M. Mary JansiRani¹ and K. Prabhakaran² ¹Department of Mathematics, Thanthai Hans Roever College, India ²Thanthai Hans Roever College, India E-Mail: <u>ersakthi@yahoo.com</u>

ABSTRACT

Let \mathbb{F}_a be a finite field having q – elements (q= p^m , p is a prime, m ≥ 1) by a linear [n, k, d] code. We mean a

subspace of the vector space if q^n having dimension k and minimum distance d denoting this code by C we analyse certain sub-codes of C. The inequality $d \le n-k+1$ is obtained via a sub-code of dimension (k-1) in which the left- most coordinate position of each of its code words is zero. Under suitable circumstances, it is possible that $d \ge n-k+1$. A q-ary linear code of length n, dimension k and having minimum distance d is said to be a mean distance separable code if d=n-k+1 writing a mean distance separable code as an MDS code, we obtain a possible characterisation of an MDS code. A equivalence relation of the set of code words of a q-ary [n, k, d] code suggests an algorithm for finding the minimum distance of an [n, k, d] code.

Keywords: MDS code, minimum distance, subcode, equivalence relation.

1. INTRODUCTION

If q denotes a finite field having q elements where $q = p^m$, p is a prime; $m \ge 1$. Let $d \ge 1$, $n \ge 1$ then If q^n is defined by If $q^n = \{(c_0, c_1, \dots, c_{n-1}) | c_i \in \mathbb{F}_q \text{ if } 0, 1, \dots, c_{n-1}\}$

2,...n-1} If q^n is a vector space of dimension n over \mathbb{F}_q .

Definition 1.1 An [n,k]linear code C characteristic of an encoding E: $F_{a^k} \rightarrow F_{a^n}$

Definition 1.2 The weight w (\vec{c}) of a code word \vec{c} is given by w(\vec{c}) = the number of non-zero coordinate positions of $\vec{c} = c_0, c_1, \dots, c_{n-1}, c_i \in \mathbb{F}_q$ i = 0, 1, 2,...n-1.

Definition 1.3 Let \vec{x}, \vec{y} be vectors in \mathbb{F}_q the Hamming distance $d(\vec{x}, \vec{y})$ between $\vec{x} \& \vec{y}$ is defined as the number of coordinate positions in $\vec{x} \& \vec{y}$ which differ.It is known [2] that (\vec{x}, \vec{y}) denoting the distance between $\vec{x}_{and} \vec{y}$ gives a function.

Definition 1.4 The minimum distance of a linear code C is the smallest distance between distinct code words of C.

The minimum distance d of a linear code is also the minimum weight of non-zero code words of C. That is d= min {w (\vec{c}), $\vec{C} \neq \vec{o}$, $\vec{C} \in C$ }. when q= 3, a linear code over \mathbb{F}_3 is called a ternary code.

2. OBSERVATION

A linear [n,k] code C has minimum distance d if and only if its parity check matrix H has a set of d linearly dependent columns but no set of d-1 linearly dependent columns. For any set of k independent columns of a generator matrix G, the corresponding set of coordinates forms an information set for the code C represented by G. The remaining (n-k) coordinates are made a redundancy set in [2].

The generator matrix G of an [n,k] code is a matrix whose rows are linearly independent and span the code. The rows of the parity check matrix H are linearly independent. Hence H is the generator matrix of a different code called the dual of C denoted by C^{\perp} . C^{\perp} is an [n,n-k] code.

Definition: 1.5 A linear [n,k] code C is called self-orthogonal if $C \subseteq C^{\perp}$ if $C = C^{\perp}$, C is called a self-dual code.

Definition 1.6 Let C be a linear code of dimension k over F_q . A Subset T of C which also forms a vector space by itself over \mathbb{F}_q is a subspace of C. T is called a sub code of C.

If T is non trivial, $1 \le \dim T \le \dim C$ (or) $1 \le \dim T \le k$.

Definition 1.7 A linear code of length n over \mathbb{F}_q and minimum distance atleast d is called optimal if it has B_q (n, d) code words, where

 B_a (n,d) is the largest number of code words in C.

There are other ways of optimizing a linear code C they are

- 1) To find d_q (n,k) the largest value of d for which there exist a linear [n,k,d] code over \mathbb{F}_q .
- 2) To find n_q (k,d) the smallest value of n for which there exists a linear [n,k,d] code over \mathbb{F}_q .

The purpose of this note is

• To analysis the native of the minimum distance a of an [n, k, d] code C via certain specific sub code C.

www.arpnjournals.com

• To obtain certain a possible characterization of a qarylinear M D S code.

3. SOME INEQUALITIES INVOLVING d

As mentioned earlier, a linear code C of length n over \mathbb{F}_q is a subspace of dimension k over. As $q = p^m$ (p is a prime, $m \ge 1$) q^n is also a prime power namely p^{mn} . If q^n has q^n elements which are vectors of the form $\vec{a} = (a_0, a_1, \dots, a_{n-1})$

 $(\mathbf{F}_{q^n}, +)$ is an abelian group of order p^{mn} .

SYLOW'S first theorem [1]

Let G be a group of order $p^{s}t$ where $s \ge 1$ and Gcd (p,t)=1 then G contains a subgroup of order p^{j} for each j such that $1 \le j \le s$ and evens subgroup of G of order p^{j} $(1 \le j \le mn)$ is normal in same subgroup of order p^{j+1} .

According $(\mathbf{F}_{q^n}, +)$ has subgroups C_j whose orders are q^j $(1 \le j \le k)$ and $q^j = p^{mj}$ where $q = p^m$ (p is a prime, $m \ge 1$).

Definition 2.1 Let C be a q-ary code of length n. The code words \vec{c} of C are n-tuples of the form $\vec{c} = c_0, c_1$ $\dots c_{n-1}; c_i \in C_j$ i= 0,1,2,...n-1. \vec{c} -is said to be an (i-0) vector if the coordination at i^{th} place of \vec{c} is $o \in \mathbf{F}_q$.

Theorem 2.2 Given a q-ary linear [n, k, d] code the sub-code $c_0 = \{ \vec{c} = c_0, c_1, \dots, c_{n-1}; c_i \in \mathbf{F}_q \}$ $i = 0, 1, 2, \dots n-1 \}$ forms as [n,k-1,d] code, whose $d^1 \in d$ further, the quotient space C/C_0 is isomorphic to \mathbb{F}_q .

Proof: we take the subset T of the coordinates 0,1,2,...n-1to be T ={0} at coordinates position o. then C(T) is the set of code words having 0 at the left most position C(T) is a sub code of C of dimension (k-1).

Next, let T be the set of coordinate positions where a minimum weight code has zeros. There are (n-d) elements in T. The set of code words which are zero in T is a subcode of C. It is denoted by C(T) sub code has (n-d) zeros is specified coordinate positions, C (T) has dimension k-(n-d) or K-n+d. As the dimension of a non-trivial code is k-n+d ≥ 1 or d $\geq n - k + 1$.

Remark 2.3 we denote by $n_q(k, d)$ the least value of n for which there exists an [n, k, d] code over \mathbb{F}_q

Suppose that [x] denote the smallest integer not smaller that X.

The Griesmer bound for $n_a(k, d)$ says [1] that

$$n_q(\mathbf{k},\mathbf{d}) \ge \mathbf{d} + \frac{d}{q} + \frac{d}{q^2} + \dots + \frac{d}{q^{k-1}}$$
 the right side of this

equation is denoted by g_q (n,d). The singleton bound states that for any linear [n,k,d]-code over \mathbb{F}_q , $d \le n - k + 1$ codes with d = n - k + 1 is called maximum distance separable codes or MDS codes. If $d \le n - k + 1 => n \ge d + k - 1$ in [3] the singleton bound is a weak form of Griesmer

bound. As mentioned in [2] as $\frac{d}{q}, \frac{d}{q^2}, \dots, \frac{d}{q^{k-1}}$ are each

for $d \le k$, we get form (2) $n_q(k,d) = d+1+...+1(k-1)$ times = d+k-1. So Griesmer bound is obtained for $d \le q$. It is known that when k = 1, the MDS codes are the [n, 1, n] repetition codes, when $q \le k$ when $k \ge q$, the only MDS codes are trivial [k, k, 1] codes or [k+1, k, 2] codes. So we consider k>1 and

Theorem 2.4 Let C be an [n,k,d] code over \mathbb{F}_q then C is an MDS code if and only if C has a sub code C_T of dimension 1 with the following property.

If T is a set of coordinate position say $\{i_1, i_2, ..., i_{n-\alpha}\}$ and C_T is a code shortened at it is assumed that $2 \le k \le q-1$.

Proof: As d is the minimum distance of the code there exists a code word having zeros at (n-d) coordinate positions designated by $T = \{F_q\}$ by defined C(T) is the set of code words of C which are o on T puncturing C(T) on T gives a code of length n-(n-d)=d called the code shortened at T this code is denoted by C_T . If C is an MDS code, d= n-k+1, C_T is of length d by extending theorem 2.2 if each code word of a code C of length n has n-d zeros at coordinate positions $i_1, i_2, ..., i_{n-d}$ dimension of this code is k-(n-d)=k-n+d, when k-n+d=1, k=n-k+1 when C has a sub code of dimension 1 obtained by taking the set of code words of minimum distance d d = n-k+1 or C is an MDS code. Conversely, if C has a sub code C_T containing the code words of C having non distance d and C_T has dimension 1, then k-(n-d)=1 or d = n-k+1 thus C is an MDS code.

Example 2.5 We consider a code C for which n=4, k=2, d=3 and q=3. d =n-k+1 = 3 (4-2+1) then [4, 2, 3] over \mathbb{F}_q is given by

 $0000 \quad 11\,\alpha\,0 \quad \alpha\,10\,\alpha$

0111 $\alpha \alpha 10 \alpha 0\alpha 1$

()

www.arpnjournals.com

where $\alpha^2 = 1$, $0\alpha \alpha \alpha$ $1\alpha 01101\alpha \alpha + 1=0$, 1+1= α it is an MDS code, also hence d=q

 $C_0 = \{0000, 0111, 0 \alpha \alpha \alpha \}$ is a sub code of c drawn

from the set of code words of weight 3. C_0 is a sub code of C.

4. ANEQUIVALENCE RELATTON

Form sylows theorem it is possible to obtain an [n, k-1] q-ary sub-code of a q-ary code of length n and dimension k.

Definition 3.1 Let C be a q-ary linear code of length n (n \geq 2) and of dimension k. A code words $\vec{c} = c_0 c_1 c_2 \dots c_{n-1}, c_i \in \mathbf{F}_q$ is said to have left-most coordinate position $c_0 \in \mathbf{F}_q$.

Definition 3.2 Let $\vec{a} = a_0 a_1 \dots a_{n+1}, \vec{b} = b_0 b_1 \dots b_{n-1}$ be two code words in C $\vec{a} \& \vec{b}$ are said to be equivalent if and only if, \vec{a} and \vec{b} agree as equality on the left most coordinate position.

Let C be a q-ary code of length n and of dimension k. the equivalence relation defined on the set-up C as in definition 3.2. Partition C into q-equivalence classes [0], [1], $[\alpha]$ $[\alpha^{q-2}]$ Where $[\alpha^i]$, i= (0, 1, 2,...q-2) denotes the equivalence class of code words having the left-most coordinate position $[\alpha^i]$ and [0] denotes the class of code of code words having left most coordinate position 0. Theorem, says that [0] is nothing but the sub code C_0 of C and having dimension k-1.Further, [1], $[\alpha]$... $[\alpha^{q-2}]$ are co-sets of [0] in C.

Definition 3.3 In a q-ary code of length n, a code word $\vec{c} = c_0 c_1 c_2 \dots c_{n-1}$ is said to be even like, if $\sum_{i=0}^{n-1} C_i = C_0 + C_1 + \dots + C_{n-1} = 0$ Otherwise \vec{C} is said to be odd-like.

Even like code words in C form a sub-code of C over \mathbb{F}_q as also even weight vectors in a binary code.

Example 3.4 C_1 = {0000, 0111, 0aaa, 11a0, a10a, 1a01, 101a, aa10, a0a1}

Let E= {0000, 0111, 0 $\alpha\alpha\alpha$ } C_1 is a [4, 2, 3] ternery code q=3, $\mathbb{F}_q = \{0, 1, \alpha\}$ with $1+\alpha = 0$, $\alpha^2 = 1$. E is a sub code of C_1 of dimension 1, E consists of evenlike code words of C.

E is a [4, 1, 3] linear code.

$$C_{E} = \{ [E], [E+11\alpha 0], [E+\alpha 10\alpha] \}$$

Let E₁ = [E+11\alpha 0] = {[11\alpha 0, 1\alpha 01, 101\alpha]}
E₂ = [E+\alpha 10\alpha] = {\alpha 10\alpha, \alpha \alpha 10, \alpha 0\alpha 1}

We get a partition of C into 3 classes and $C_1 = E_1 \bigcup E_2 \bigcup E_3$

The partitioning of a code into equivalence classes gives a method of finding the minimum weight of a code C. Since a $\vec{V} \in C$ for $\vec{V} \in C$ where $a \mathbb{F}_q$ we note that weight $(\vec{a v}) =$ weight of \vec{v} . Suppose the class [0] contains code words having minimum weight d_0 we can find the minimum weight of a code word contained in the equivalence class [1], say d_1 . But then, d_1 will be the minimum weight of a code word in $[\alpha], [\alpha^2], ..., [\alpha^{q-2}],$ so we do not have to search for minimum weight code words in all the code-words of C, instead we have only to look for minimum weight That is minimum weight d of a code word=min { d_0, d_1 }. This suggests that we can develop an algorithm for finding minimum weight of a code.

REFERENCES

- [1] N. Pendins Topics in algebra vikas pub. House 4th printing 1985 chapter 4, pp.130-143.
- [2] C. huffman and Verapless. Fundamental of error correcting codes Cambridge university press, 2004, chap 1, pp. 2- 47.
- [3] R. Hill. optimal linear codes a survey article, 1986.
- [4] P.P Greenough and R. Hill optimal linear codes over G F [4], Salfood M 5 4WT England.
- [5] J.H. Griesmer .A bound for error -correcting codes I BM J. res develop, vol. 4 pp. 532-542, 1960.
- [6] V.N .Logavec an improvement of the Griesmer bound in the case of Small code distance optimization methods and thus Application {Russia}, sibirsk, Energetinstsibirskotdel. akad Nauk SSSR, irkutsk, pp 107,111, 182, 1974.
- [7] H.C.A. Vantilborg On the uniqueness of existence of certain codes meeting the various bound, inform centre vol. 44, pp. 16-35, 1980.
- [8] F J. Macwlliams and N.J.A sloane the theory of error correcting Codes vol-16 Amsterdam: north Holland SS, 1977.