
 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4583

IMPLEMENTATION OF ACTIVE STORAGE IN EFFICIENT VIRTUAL
FILE SYSTEM

C. Saranya, V. Loganathan and S. Godfrey Winster

Saveetha Engineering College, Chennai, Tamilnadu, India
E-Mail: csaran08@gmail.com

ABSTRACT

In present decades nearly all the computation tasks use colossal volume of data. Moreover these computation
tasks are additionally of elevated performance. These tasks transfer’s data from the storage node to the computing node.
The data transfer rate amid storage and compute nodes is elevated and to minimize it the active storage was introduced.
Active storage increases the storage node’s processing power and it additionally reduces the web traffic. Active storage
was introduced in parallel file system’s like lustre parallel file system, red hat GFS, etc. The proposal is to craft n number
of adjacent file system in windows working system. In this the data can be stored and it does not inhabit space in the host
system drive or memory. The data stored in the file system ought to inhabit less space for that the data is being compressed
and then stored in the file system. The data is additionally safeguarded by encrypting the data before storing it into the file
system. This file system is portable to any other system. Our target is to make the file system to an active storage. The file
system is projected in such a method that it can present effectual fetching of data from the file system.

Keywords: active storage, lustre parallel file system.

1. INTRODUCTION

In computing, a file system is to manipulation the
data stored in files and reclaiming or accessing those data
or files. File systems can be utilized on countless disparate
kinds of storage devices. It manages admission to both the
content of files and the metadata concerning those files. It
is accountable for arranging storage space; reliability and
efficiency. File system allocate space in a well described
manner, normally several physical constituents on the
device. The file system is accountable for coordinating
files and directories, and keeping trail of that spans of the
mass media fit in to that file. It stores all the metadata data
associated alongside the file encompassing the file term,
the length of the contents of a file, and the locale of the
file in the folder, distinct from the contents of the file.
There are countless disparate kinds of file systems. Every
single one has disparate construction and logic, properties
of speed, flexibility, protection, size and more. A little file
systems have been projected to be utilized for specific
applications. The main setback in these file systems is to
how effectually the needed data is being fetched from
those file system for giving the computing tasks.

The main key feature in file system is indexing of
files in the file system. An index encompasses a collection
of data entries and this supports effectual retrieval of all
data in the file system. Indexing is a data construction
method for accessing records in a file. There are assorted
Indexing methods has been evolved for the file system.
Amid them the present trend is the semantic established
indexing. The automatic indexing of files and gathering
established on relativity is called “semantic”. In the
Semantic indexing, the user programmable nature of the
system uses data concerning the semantics of uploaded file
arrangement objects to fetch the properties for indexing.
The setback in semantic established indexing method is

that it does not furnish each level of protection to the data
that is being stored in the file system.

Nowadays all the computing tasks are elevated
computing tasks. These computing tasks use huge volume
of data transfer amid the storage and compute nodes.
Inorder to cut the data transfer amid nodes, active storage
was introduced. The data transfer was decreased by active
storage by rising the processing ability of storage nodes,
and those computing tasks are done by the storage nodes
itself. The active storage was implemented in parallel file
systems such as Lustre file system, Redhat GFS, Parallel
Virtual File System. The storage node ought to be capable
plenty to perform those high performance computing
tasks. The subject recognized here is that active storage
has been requested merely in the linux clusters no one has
dealt it with the windows file system.

2. RELATED WORK

Y. Hua, H. Jiang, Y. Zhu, et al [5] provides
Semantic Namespace scheme that is being evolved to
vanquish the difficulties in hierarchical directory
established construction that is tough to use and less
scalable for present colossal scale systems. Semantic
Namespace provides a flat but tiny, manageable and
effectual namespace for every single file. Here, a file is
embodied by its semantic correlations to supplementary
files, instead of standard file names. The metadata of files
that are powerfully correlated are automatically
aggregated and next stored jointly in semantic namespace.
After a user performs a file lookup, semantic namespace
will additionally present the user files that are powerfully
correlated to this hunted file that contain the semantic-
aware per-file namespace of this file. This permits the user
to access the correlated files facilely lacking possessing to
present supplementary searches. This enhances the

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4584

performance of the system. Semantic namespacing
leverages Locality Sensitive Hashing [7] to automatically
coordinate semantically correlated files lacking the
involvement of end-users or applications. But there is no
protection for the data stored in the file system.

The proposal of active storage [1] is an expansion to
established active disk [9] by adopting it to the parallel file
system. In preceding days, the processing manipulation of
disk controller CPU was utilized inorder to process the
data stored on the disks. Nowadays the number of the data
has been increased incredibly and inorder to grasp, transfer
and process those data, the computing and storage nodes
ought to demand huge processing power. For that Evan J.
Felix, Jarek Nieplocha, et al. [1], counselled the active
storage concept. Active storage is a knowledge aimed at
cutting the bandwidth necessities of present
supercomputing systems and to impact the processing
ability of the storage nodes by a little present file systems.
Active storage moves precise computing tasks from
compute nodes to the storage nodes whereas the demanded
data for the task resides. Active storage differs from active
disk by two main things such as:

 Storage servers are full-fledged computers.

 They contain a feature affluent nature endowed
normally by a linux working system.

 The active storage has been implemented in a
little parallel file systems such as Lustre file system,
Parallel Virtual file system [4]. Atfirst, active storage was
introduced in Lustre that is an open source file system. In
this proposal, active storage was implemented merely in
the kernel space of the lustre file system and consequently
it is believed as a traditional approach.

Later the implementation was completed in the
user space of the file system additionally by Juan Piernas-
Canovas, Jarek Nieplocha [2]. This evaluation depicts that
the user space implementation of active storage is extra
effectual than that of the established kernel space
implementation.

3. OBJECTIVE

The main target of the proposed system is to
create number of file systems whereas we can store our
files, documents and images. The files will be stored in
containers crafted by the user. A file system can have
number of containers alongside it. The containers have
various blocks of files that are to be stored in the file
system with assorted file formats. The uploaded files will
splitted and stored in the containers. The active storage is
being utilized in the file system for effectually retrieving
the data from the containers of the file system. Inorder to
furnish protection to the file system, the data that are being
uploaded into the file system are being encrypted by
employing the Rijndael Encryption algorithm.

Additionally inorder to effectual grasp the storage space in
the file arrangement, the data is being compressed and
next stored in the container so that it will inhabit less space
and consequently we can store huge volume of data than
ever before. After a file is being uploaded in the file
system, the index for the file is generated established on
the data present in the file. This kind of indexing is
recognized as semantic established indexing technique.
The main supremacy of the system is that the crafted file
system can be ported to any other system.

4. FILE SYSTEM ARCHITECTURE

In this section we first give the overview of our
proposed system. Then we define the proposed file system
architecture.

4.1 Proposed file system

In Semantic aware name spacing scheme, the
files are indexed based on contents present in the file.
Though in semantic namespacing is used for easy retrieval
of data from file system, there is no security for the data
stored in it. These file arrangements inhabit huge
recollection in the system. All the elevated presentation
computing are completed merely in linux cluster file
arrangements such as lustre, PVFS, etc alongside alert
storage. But there is no effectual file arrangement in
windows working arrangement alongside the
implementation of alert storage. File arrangement cannot
be ported from one working arrangement to another.
Hence to overcome the existing systems difficulties, the
proposed work is to create a file system by implementing
active storage in it for windows operating system. The
created file system is being provided with data encryption
and data compression and it will be portable to any other
systems. By providing encryption to data, the files will be
secured and through compression the disk space occupied
by the file system will be reduced.

The main proposal of the project is to create a
modernized file system in windows operating system. This
modernized file system will be a portable file system with
security for the data. The proposed system at first creates
a number of file systems. Our system asks the user for the
count of the file system to be created for them. Then the
system creates the container for uploading the files in the
container. The files with different files formats are placed
in various containers. Therefore the files are arranged as
blocks of similar format files. The data stored in the file
arrangement are being automatically indexed established
on semantic namespacing scheme. Indexing of data helps
us to reclaim the data effectually in the subsequent period
of our system. The concept of active storage is being used
in the efficient retrieval of data from the file system.

Inorder to provide security, the data stored in the
containers will be encrypted. Another main aim is to lower
the memory space occupied by the files by compressing
the files before placing it in the containers. To the best of
our knowledge no system has the encryption and
compression of files in semantic namespacing scheme.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4585

Therefore the file is being compressed, encrypted and
splitted simultaneously and then placed in the container.
When a user places a request for the data, the file system
should efficiently fetch the data and then process those
data for performing the task.

4.2 Proposed file system architecture

Figure-1 depicts the architecture of the proposed
efficient virtual file system. In this proposed system of file
system creation the user can store any kind of data. The
data format that is being uploaded can be of doc, jpg, img,
mov, etc. At the start of our system design, we generate a
user defined file system. The user is allowed to create any
number of file system according to the needs. After
creating the file system, the user has to login into the
system inorder to provide security to access the file
system. Once the login is successful, the user can create
containers. The containers are used to organize the data
stored in it. Then the users are asked to create the objects.
Objects are the index for grouping the files. The files that
are named under the same object are grouped together and
placed in the same container. In our file system, the file is
stored in the form of blocks. Each file blocks are of fixed
size and files are splitted according to it. For example, if
the user uploads a file size of 10MB and it is defined that
block size as 1MB, then 10MB file will be splitted into 10
file blocks each of 1MB in size. In some cases the size of
the last block will be less than the defined block size.

Figure-1. File System Architecture.

While uploading the files inside the container, the
file will be compressed inorder to reduce the amount of
memory space it occupies inside the container. Then the
compressed file will be encrypted inorder to provide
security for the file system. The algorithm utilized for
compression is Huffman encoding algorithm and for
encryption Rijndael Encryption algorithm is used. The
files are indexed established on the contents stored in the
files. The files listed under same objects are grouped
together automatically which is similar to the semantic
indexing technique. Based on those indexes, the files are
searched upon an user request for the data in the file
system. The storage system will perform the computing
task after fetching the information from the container.

5. DESIGN AND IMPLEMENTATION

The implementation of virtual file system is
explained in various sections described below. The aim of
generating the file system is to efficiently index the files
using semantic aware indexing technique and fetch those
files from the file system based on the user query.

5.1 File system and container creation

The user is allowed to create the virtual file
system. The user is at first allowed to enter the number of
file system’s to be created by the user. The system asks the
user to create the file system by providing the name for the
file system. After providing the name for the file system,
the system creates the file system for the user. The specific
universal PVFS commands are used for creating the file
system.

After creating the file system the user can able to
upload the files in the files system, but when the user
uploads many files with various file formats then it will be
difficult to categorize those files. Without containers the
files will be scattered throughout the file system. The
containers are used to wrap the files with different file
formats. Therefore this module allows the user to create
number of containers according to the user needs. The
container will be created in that user specified name. Now
the container is ready for receiving the files or data that
needs to be stored in those containers. The containers store
the files as blocks of data in it.

5.2 Data uploader

While uploading data into container, the files are
to be splitted. The files are splitted by the system manually
based on the number of containers created by the user.
Each splitted file is placed in all the created containers.
But before placing it in containers the splitted parts are
being compressed and encrypted by the system. The
encryption is being done by the Rijndael algorithm. The
compression is being performed by Huffman Encoding
algorithm.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4586

5.2.1 Huffman encoding
The Huffman encoding algorithm is an optimal

compression algorithm where merely the frequency of
individual messages is utilized to compress the data. The
system behind the algorithm is that if you have a
characters that are extra recurrent than others, it makes
sense to use less bits to encode those letters than to encode
the less recurrent letters. Huffman's scheme uses a table of
frequency of occurrence for every single signal (or
character) in the input. This table could be derived from
the input itself or from data that is representative of the
input. It next demands to allocate a variable-length bit
thread to every single character that unambiguously
embodies that character. An encoding for every single
character is discovered by pursuing the tree from the path
to the character in the leaf: the encoding is the thread of
symbols on every single division followed. The symbols
can be 0’s and 1’s. The steps to be pursued in the
algorithm:

 Scan text to be compressed and tally occurrence of all

characters.

 Sort or prioritize acts established on number of
occurrences in text.

 Build Huffman program tree established on prioritized
list.

 Perform a traversal of tree to ascertain all program
words.

 Scan text once more and craft new file employing the
Huffman codes.

5.3 Index tuning and operational detail

To enhance the performance of the document
storage, the index for each compressed file will be placed
on hold to the documents. The documents will be
hierarchically stored and indexed based on the logically
metadata information about the documents. The indexing
of data is done through latent semantic indexing technique
which indexes based on contents in the file.

This part of implementation provides a detailed
view about the operations happening on the system. The
file system is made to process the input output procedures
above the data that are being present in the file system.
The file search and all their file I/O operations are being
performed by the system itself. After the semantic search
and the personalized ranking, the recommender shows the
list of found document units to the user. For each of the
retrieved document units the user can also see additional
information that come from its annotation data (e.g., the
list of annotation concepts, the number of reuses, the
number and list of users, the list of documents in which it
appears and the number of versions).

6. CONCLUSION AND FUTURE WORK
The file system crafted in each system that is

being developed will inhabit the disk space in the system
where it is being crafted or installed. The crafted file
system ought to inhabit less space in the arrangement
drive. None of the existing file system provides security
for the data stored in the file system. Our proposed work
provides security by splitting files and encrypting the files
in the container. In the namespace scheme, semantic based
namespace system is being used which is a recent trend.
The created file system is portable which is not being done
in any other file system. Our file system performs the file
I/O operations. In future the work can be extended to make
the file system to perform all computing tasks.

REFERENCES

[1] Evan J. Felix, Kevin Fox, Kevin Regimbal, and Jarek

Nieplocha. 2006. Active Storage Processing in a
Parallel File System. Proceedings of the 6th LCI
International Conference on Linux Clusters: The HPC
Revolution.

[2] Juan Piernas-Canovas and Jarek Nieplocha. 2010
Implementation and Evaluation of Active Storage in
Modern Parallel File Systems. Elsevier Journal.
Proceedings of Parallel computing. pp. 26-47.

[3] Juan Piernas, Jarek Nieplocha, and Evan J. Felix.
2007. Evaluation of Active Storage Strategies for the
Lustre Parallel File System. Proceedings of the
Supercomputing Conference (SC07).

[4] Philip H. Carns and Walter B Ligon III. 2000. PVFS:
A Parallel File System for Linux Clusters.
Proceedings of the Extreme Linux Track: 4th Annual
Linux Showcase and Conference.

[5] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian. 2009.
Rapport: Semantic-sensitive Namespace Management
in Large-scale File Systems. Proceedings of
ACM/IEEE Supercomputing Conference (SC).

[6] Seung Woo Son, Samuel Lang, Philip Carns, Robert
Ross, and Rajeev Thakur. 2010. Enabling Active
Storage on Parallel I/O Software Stacks. IEEE 26th
Symposium, Mass Storage Systems and Technologies
(MSST).

[7] M. Datar, N. Immorlica, P. Indyk and V. Mirrokni.
2004. Locality-sensitive hashing scheme based on p-
stable distributions. Proc. Annual Symposium on
Computational Geometry, pp. 253-262.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4587

[8] Yu Hua, Hong Jiang, Yifeng Zhu, Dan Feng, Lei Xu.
2013. SANE: Semantic-Aware Namespace in Ultra-
large-scale File Systems. IEEE Transactions on
Parallel and Distributed Systems. 1(1).

[9] A.Acharya, M. Uysal and J. H. Saltz. 1998. Active
Disks: Programming Model, Algorithms and
Evaluation. Proceedings of the International
Conference on Architectural Support for
Programming Languages and Operating Systems, pp.
81-91.

[10] R. Motwani, A. Naor, and R. Panigrahy. 2006.
SLower bounds on locality sensitive hashing. ACM
Symposium on Computational Geometry.

