
 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4717

BLOWFISH ENCRYPTION ALGORITHM FOR INFORMATION SECURITY

Saikumar Manku1 and K. Vasanth2
1VLSI Design, Sathyabama University, Chennai, India

2Department of Electrical and Electronics Engineering, Sathyabama University, Chennai, India
E-Mail: anandsai.kumar53@gmail.com

ABSTRACT

In this paper, a Blowfish encryption algorithm for information secruity is designed and analyzed. The work is
done for networking and communication application for enhanced network security and defence applications. In the
proposed Blowfish algorithm reduce rounds of algorithm and proposed single blowfish round. The design simulation is
done by Xilinx ISE software using the language of VHDL. Cryptography is the one of the main categories of computer
security that converts information from its normal form into an unreadable form. its ability to secure the protected data
against attacks and its speed and efficiency in doing so.

Keywords: blowfish, defence, xilinx software, cryptography.

INTRODUCTION

Blowfish is a symmetric block cipher that can be
effectively used for encryption and safeguarding of data. It
takes a variable-length key, from 32 bits to 448 bits,
making it ideal for securing data. Blowfish was designed
in 1993 by Bruce Schneier as a fast, free alternative to
existing encryption algorithms. Blowfish is unpatented and
license-free, and is available free for all uses. Blowfish
Algorithm is a Feistel Network, iterating a simple
encryption function 16 times. The block size is 64 bits,
and the key can be any length up to 448 bits. Although
there is complex initialization phase required before any
encryption can take place, the actual encryption of data is
very efficient on large microprocessors.

Each line - 32 bits.Algorithm keeps two sub-key
arrays: The 18-entry P-array four 256-entry S-boxes. S-
boxes accept 8-bit input Produce 32-bit output. One entry
of P-array is used every round. After final round, each half
of data block is XORed with one of the two remaining
unused P-entries. The blowfish algorithm Manipulates
data in large blocks

Has a 64-bit block size. It has a scalable key,
from 32 bits to at least 256 bits. It Uses simple operations
that are efficient on microprocessors.e.g., exclusive-or,
addition, table lookup, modular- multiplication. It does not
use variable-length shifts or bit-wise permutations, or
conditional jumps. Employs precomputable subkeys.

On large-memory systems, these subkeys can be
precomputed for faster operation. Not precomputing the
subkeys will result in slower operation, but it should still
be possible to encrypt data without any precomputations.
Consists of a variable number of iterations. For
applications with a small key size, the trade-off between
the complexity of a brute-force attack and a differential
attack make a large number of iterations superfluous.
Hence, it should be possible to reduce the number of
iterations with no loss of security (beyond that of the
reduced key size).

BLOWSIH ENCRYPTION
Basically, Blowfish encryption algorithm is

requires 32 bit microprocessor at a rate of one byte for
every 26 clock cycles. Blowfish contains 16 rounds. Each
round consists of XOR operation and a function. Each
round consists of key expansion and data encryption. Key
expansion generally used for generating intial contents of
one arry and data encryption uses a 16 round feiestek
network methods. Fig1 shows how blowfish algorithm
works. plain text and key are the inputs of this
algorithm.64 bit palin text taken is divided into two 32 bits
data and at each round the given key is expanded and
stored in 18 p-arry and gives 32 bit key as input and XOR
ed with previous round data.
Then, for i = 1 to 14:
xL = xL XOR Pi
xR = F(xL) XOR xR
Swap xL and xR
After the sixteenth round, swap xL and xR again to undo
the last swap.
Then, xR = xR XOR P15 and xL = xL XOR P16.
Finally, recombine xL and xR to get the ciphertext

Figure-1. Blowfish encryption and decryption algorithm.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4718

Decryption is exactly the same as encryption,
except that P1, P2,..., P18 are used in the reverse order.

Generating the Subkeys

Initialize first the P-array and then the four S-
boxes, in order, with a fixed string. This string consist of
the hexadecimal digits of pi (less the initial 3): P1
=0x243f6a88, P2 = 0x85a308d3, P3 = 0x13198a2e, P4 =
0x03707344, etc.

XOR P1 with the first 32 bits of the key, XOR P2
with the second 32-bits of the key, and so on for all bits of
the key (possibly up to P14). Repeatedly cyclethrough the
key bits until the entire P-array has been XORed with key
bits. (For every short key, there is at least one equivalent
longer key; for example, if A is a64-bit key, then AA,
AAA, etc., are equivalent keys. Encrypt the all-zero string
with the Blowfish algorithm, using the subkeys described
in steps (1) and (2). Replace P1 and P2 with the output of
step (3).

Encrypt the output of step (3) using the Blowfish
algorithm with the modified subkeys. Replace P3 and P4
with the output of step (5). Continue the process, replacing
all entries of the P array, and then all four S-boxes. in
orders, with the output of the continuously changing
Blowfish algorithm. In total, 521 iterations are required to
generate all required subkeys. Store the subkeys rather
than execute this derivation process multiple times.

The subkey generation process is designed to
preserve the entire entropy of the key and to distribute that
entropy uniformly throughout the subkeys. It is also
designed to distribute the set of allowed subkeys randomly
throughout the domain of possible subkeys. The digits of
pi were chosen as the initial subkey table for two reasons:
because it is a random sequence not related to the
algorithm, and because it could either be stored as part of
the algorithm or derived when needed. But if the initial
string is non-random in any way (for example, ASCII text
with the high bit of every byte a 0), this nonrandomness
will propagate throughout the algorithm. In the subkey
generation process, the subkeys change slightly with every
pair of subkeys generated. This is primarily to protect
against any attacked of the subkey generation process that
exploit the fixed and known subkeys. It also reduces
storage requirements.

The 448 limit on the key size ensures that the
every bit of every subkey depends on every bit of the key.

Proposed system of Blowfish

In the proposed system of blowfish alogorithm
reduced the rounds of blowfish algorithm and in the
algorithm each single round is introduced new modified.
See Figure-2 is drawn in below. In the blowfish algorithm
there will be 64 bits then the bits are separate into 32bits
and there will be four s-boxes. Each s-box contains 32bits.
Now design the algorithm like two s-boxes connecting
with Xor as like same other two 2 s-boxes connected with

Xor and then from the two Xor added then from there get
key plain text.

Figure-2. Proposed of blowfish single round.

RESULTS FOR BLOWFISH ALGORITHM

The simulated results for these designs are shown
in the Figure-3. In Figure-3 is blowfish encryption
algorithm key plain text 1, 2 given value some value and
then output of the encryption will get in here then these
values note side. In Figure-4 is blowfish decryption.
Algorithm decrypting is nothing but reverse order of
encryption of bowfish algorithm and in this decryption
process from the encryption outputs given in inputs of the
decryption and then output of the decryption will come
same of encryption inputs.

Figure-3. Simulated returns loss for blowfish encryption.

 VOL. 10, NO. 10, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4719

Figure-4. Blowfish decryption.

CONCLUSIONS

The present simulation result shows that the
encryption and decryption is done using blowfish
algorithm. Here the algorithm is modified so it provides
great security thus no one in between sender and receiver
will hack the data.

REFERENCES

[1] Alan G. Konheim. 2007. COMPUTER SECURITY

AND CRYPTOGRAPHY. By John Wiley and Sons,
Inc.

[2] Alfred J.M., Paul V. C. and Scott A. V. 2001.
Handbook of Applied Cryptography. Fifth Addition.

[3] Bruce Schneier. 1996. Applied Cryptography, Second
Edition: Protocols, Algorthms, and Source Code in C.
Wiley Computer Publishing, John Wiley and Sons,
Inc.

[4] B. Schneier. 1994. Applied Cryptography, John Wiley
and Sons, New York.

[5] B. Schneier. 1994. Description of a New Variable-
Length Key, 64-Bit Block Cipher (Blowfish) Fast
Software Encryption, Cambridge Security Workshop
Proceedings (December 1993), Springer-Verlag. pp.
191-204.

[6] Oppersmith Don. 1994. The data encryption standard
(DES) and its strength against attacks. IBM Journal of
Research and Development. 38(3): 243-250.

[7] National Institute of Standards and Technology. 1979.
FIPS-46: Data Encryption Standard (DES). Revised
as FIPS 46-1:1988, FIPS 46-2:1993, FIPS 46-3:1999,
available at
http://csrc.nist7aznml;'.gov/publications/fips/fips46-
3/fips46-3.pdf.

[8] Hala Bahjat AbdulWahab1, Abdul Monem S. Rahma.
2009. Proposed New Quantum Cryptography System
Using Quantum Description techniques for Generated
Curves. The 2009 International conference on security
and management, SAM2009, July 13-16 2009, Las
Vegas, USA, SAM.

[9] Henk C.A. van Tilborg, Eindhoven. 2012.
Encyclopedia of Cryptography and Security. 2005,
Springer Science+Business Media, Inc.

