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ABSTRACT 

Water influx is an important factor which needs to be quantified during early stages of reservoir development to 
justify project economics. For a CBM reservoir it is much more important to quantify degree of connection between Coal 
seams and aquifer (if any) as its production mechanism is based on efficient dewatering process. However, it is difficult to 
quantify connection factor values early in field life. Many traditional models ranging from simplest steady state model by 
Schilthuis and fetkovich utilizing material balance, to unsteady state solution of diffusivity equation by Van-Everdingen 
and Hurst exists for finding water influx but nearly all of them have inherit assumptions related to aquifer/reservoir 
boundray pressure or influx rate and requires accurate historical production data for estimation of correct influx which is 
often not available. However, during Appraisal/exploratory stage we do have accurate measurement of pressure at wellbore 
and production/injection rate when we conduct pressure transient testing. Well test analysis plays an important role in 
reservoir characterization and can aid in correct water influx calculations. Currently, pressure falloff test responses to 
quantify water influx in the reservoir with wells that exist near constant pressure boundary can be analyzed by either type-
curve matching or non-linear regression analysis. The former is basically a trial-and-error procedure and the later can lead 
to incorrect/impractical results. So, we need a more robust and accurate methods for water influx calculation. In this work, 
a practical method is developed to interpret the injection-falloff test response for a CBM reservoir in connection with 
aquifer to quantify connection factor between aquifer and reservoir using pressure transient tests which are usually 
conducted during field appraisal/exploration phase. Besides complementing the conventional straight-line method for the 
determination the leakage factor, we also provide a solution using characteristic points found on the pressure, pressure 
derivative and second pressure derivative log-log plot of a ‘leaky aquifer’ reservoir model (Cox and Onsager, 2002) which 
allowed us to develop relationships for the accurate estimation the leakage factor. An extremely useful application of the 
second pressure derivative was also included for estimation the unknown reservoir permeability for cases in which radial 
flow regime is completely masked by other flow regimes. The provided interpretation methodologies were successfully 
tested with synthetic examples. 
 
Keywords: aquifer permeability, water influx, reservoir characterization, leakage factor, CBM. 

 
INTRODUCTION 

Unconventional gas reservoirs have become an 
integral part of energy supply basket due to ever 
increasing demand of oil and gas and decrease in new 
conventional discoveries. In future, these unconventional 
reservoirs are expected to become more significant as era 
of conventional/easy oil and gas comes to an end. So it is 
vital to devise new methods for characterization of these 
complex reservoirs because accurate knowledge is not 
present about their production mechanism and 
performance with time.  

Coalbed methane (CBM) has developed into an 
important part of unconventional resources. At the time 
reservoir is discovered, nearly all hydrocarbon reservoirs 
are surrounded by porous rock containing water - Schafer, 
Hower and Ownes (1993), CBM reservoirs mostly contain 
natural fractures called cleats which are in most cases 
filled with water, since CBM reservoirs operate on 
principle of desorption of gas from coal seam surface due 
to depressurization, most CBM reservoirs require efficient 
dewatering before they can produce commercial volume of 
gas -Onsager and Cox (2000). In some instances, water 

influx from other aquifer units can inhibit the dewatering 
of the coal and thereby limit coal bed methane recovery -
Onsager and Cox (2000). So it becomes extremely 
important to come up with new methods to characterize 
the degree of connection between these coals and other 
units early in field life. It has been long recognized in 
groundwater industry that many aquifer have imperfect 
seals and are in connection with other aquifer units 
through a low permeability confining layer -Cox and 
Onsage, (2002), particularly for shallow reservoirs like 
CBM small aquifers connected with reservoir can be in 
communication to other aquifer units through low 
permeability “leaky” confining layers, this implies aquifer 
connection with reservoir is not perfect (ΔPres. ≠ ΔPaquifer).  

Traditional Methods used in Petroleum Industry 
for water Influx quantification like fetkovich and 
Schilthuis utilizes material balance with assumption of 
ΔPres.= ΔPaquifer, whereas Van Everdingen-Hurst (VEH) is 
based on diffusivity equation and gives solution for 
conditions of constant terminal water influx and constant 
terminal pressure at aquifer reservoir boundary for radial 
models. Carter-Tracy method is just modification over 
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VEH to save computation time. According to Fetkovich, 
M.J. (1971) “The last three methods have proved useful 
for predicting water drive performance after suffient 
historical data have been obtained to fix necessary influx 
constants with what some consider to be disappointing”. 
Coats (1962) and Allard and Chen (1988) considered 2-D 
model to provide water influx solutions for bottom water 
drive reservoir with constant terminal rate and pressure 
case. Some other recently developed methods like 
GRACE transform by Al-ghanim, Nashawi & Malallah, 
(2012) can also be used for water influx calculations. 
However, all methods are based on either constant 
terminal pressure at aquifer/reservoir boundary or constant 
terminal influx rate which may or may not be true. In 
2002, Cox and Onsager took a slightly different approach 
than VEH to obtain solutions for diffusivity equation, for a 
CBM reservoir connected with aquifer. Which could be 
easily used in pressure transient testing to come out with 
amount of pressure support provided by aquifer. This 
information can be very critical before incorporating any 
water influx models for calculation of amount of water 
influx. The constant terminal rate boundary condition (as 
during falloff/buildup rate =0) is much valid at well 
location rather than at aquifer/reservoir boundary which 
VEH assumed. In this Paper we build-up on solutions 
given by Cox and Onsager, 2002 for pressure falloff test 
and present a new method that can provide a more 
practical way to quantify aquifer reservoir connectivity for 
a reservoir with bottom water drive early in field life using 
pressure transient data. 

Hantush and Jacob (1955) published a 
methodology known in groundwater industry as “leaky 
aquifer model”. The idealized Hantush-Jacob leaky aquifer 
model assumes a constant pressure boundary at top/bottom 
of confining layer. ‘Leaky aquifer’ models more 
accurately describes bottom/top water drive CBM 
reservoirs in which coal is only producing layer this case 
can also be modelled by methods given by Neuman, S.P. 
and P.A. Witherspoon (1972) and Guo, Stewart and Toro 
(2002) which is essentially same as that of Hantush and 
Jacob (1955). Hantush and Jacob (1955) developed 
solution for non-steady distribution of drawdown caused 
by pumping a well at a constant rate from an effectively 
infinite and perfectly elastic aquifer of uniform thickness 
in which leakage takes place in proportion to the 
drawdown. They came up with parameter ‘b’ called as 
‘leakage factor’ which is a function of hydraulic 
conductivity and thickness of confining bed through which 
leakage occurs. Leakage coefficient is defined as “the 
quantity of flow that crosses a unit area of the interface 
between the main aquifer and its semi- confining bed, if 
the difference between the head in the main aquifer and in 
that supplying leakage is unity” -Hantush (1956). 

Using Laplace transform method Cox and 
Onsager (2002) came up with dimensionless pressure 
solutions for diffusivity equations of ‘Leaky Aquifer’ 
model, and demonstrated the application of leaky aquifer 
model to injection falloff transient test in CBM wells with 

use of type curves to quantify leakage factor of aquifer in 
reservoir. In this paper, based on solutions given by Cox 
and Onsager, we propose a more practical method which 
uses characteristics points found on pressure and second 
pressure derivatives log-log curve and try to demonstrate 
the robustness of proposed method using synthetic 
pressure falloff data for a CBM reservoir. 
 The objective of this paper is to provide newer 
ways for analytically characterizing the ‘leakage factor’ 
from a pressure test which is defined as degree of 
connection between strong aquifer unit and main reservoir. 
First, the conventional analysis method was implemented 
to find such parameter based upon the steady-state 
pressure drop which can be easily found from either the 
Cartesian or semilog or log-log plot of pressure versus 
time. Next, we formulated a practical technique to find the 
leakage factor using the maximum point found on the 
second pressure derivative once radial flow is vanished. A 
practical equation for the determination of reservoir 
permeability was also introduced using the mentioned 
maximum point. Such methodology uses the TDS 
technique introduced by Tiab (1995). We use two 
characteristic features (maximum pressure derivative and 
intersection between both derivatives) to develop four 
expressions for estimating the leakage factor. We also 
unified the late steady-state curve by multiplying the time 
by the leakage factor, so an expression using a negative 
two slope was developed for the leakage factor 
determination.  The potential use of the second derivative 
was used to find a new expression to estimate permeability 
from the maximum second pressure derivative which is so 
vital for cases when the radial flow is unseen. The 
equations were successfully verified by using synthetic 
examples. 
 
Model description leaky aquifer concept 

An ideal leaky aquifer model is depicted in 
Figure-1. Three layers are considered Producing Layer, 
Confining Layer and Aquifer layer which provides 
pressure support to main producing layer through a 
confining layer. It is interest to quantify amount of 
pressure support provided by aquifer to main reservoir. 
 

 
 

Figure-1. Schematic of a leaky aquifer model.  
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Assumptions for leaky aquifer model  
No free gas present, so single phase flow of only 

water is occurring in the reservoir. Various layers are 
homogenous and have uniform reservoir properties and 
Rock Compressibility is negligible. The pressure at bottom 
of confining layer is constant because of aquifer support 
(Cox and Onsager, 2002). Vertical permeability of 
supporting aquifer is similar to horizontal permeability 
also capillary and gravity effects are ignored. 
 
Radial flow analysis  

The solution for Laplace transform of wellbore 
pressure for a leaky aquifer model Equation (1) was 
provided by Cox and Onsager (2002) .This formula was 
inverted using Stehfest algorithm to obtain dimensionless 
pressure and time curves for well with no wellbore storage 
and skin having different values of leakage factor ranging 
from 1x10-2 to 1x10-6. At early time, curves show 
characteristic radial flow behavior with zero slope but 
depending on the quantity of support from aquifer the 
pressure tends to steady state which causes derivative to 
drop to zero. In some cases leakage factor may be too 
large that there is no stable derivative portion for radial 
flow analysis. 
 
DISCUSSIONS 

Type curve analyses have several disadvantages 
for estimation of accurate reservoir properties. We 
demonstrate the utility of TDS and the application of the 
second derivative for estimation of accurate reservoir 
parameters especially ‘leakage Factor’ for a leaky aquifer 
model in a homogenous layered reservoir with help of two 
synthetic examples. 

Example 1 demonstrates an important point about 
utility of our method which uses intersection point of first 
and second derivative for obtaining critical reservoir 
parameters in cases where radial flow is partially masked 
by wellbore storage. 
 
MATHEMATICAL FORMULATION 
 
Mathematical model 

Onsager and Cox (2002) provided the solution of 
the diffusivity equation with wellbore storage and skin in 
Laplace space for a reservoir with an underlying leaky 
aquifer, 
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The dimensionless quantities are defined below as: 
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Figure-2. Dimensionless pressure versus time log-log 
behavior for several values of dimensionless leakage 

factors.  
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Conventional analysis 
 Figure-2 presents the dimensionless pressure 
behavior obtained from Equation (1). In this log-log plot it 
is observed that the steady state is reached at a different 
time depending on the leakage factor value. Actually, 
these values are correlated as observed in Figure-3. A 
strong dependency of the pressure at which steady state 
takes places on leakage factor is clearly observed and 
established as given below: 
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 Therefore, from a log-log plot of dimensionless 
pressure drop versus dimensionless time is easy to observe 
that the pressure drop is constant once the steady state is 
fully developed. However, any conventional plot, for 
example, semilog or Cartesian, can be used to find the 
steady-state pressure by drawing a horizontal line on the 
late steady-state period and finding the intercept on the y-
axis. In any case, this is observed by a flat behavior of 
either pressure or pressure drop. This value is read and 
replaced into Equation (10) to easily obtain the leakage 
factor. It is worth to remind that unlike pressure derivative, 
pressure drop is sensitive to skin effect; then, Pss in 
Equation (9) has to be free of skin effects. This means 
that: 
 

ss i wf sP P P P              (10) 
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Figure-3. Behavior of the leakage factor as a function of 
the pressure drop during steady-state. 
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Figure-4. Dimensionless pressure and pressure derivative 
versus time log-log behavior for several values of 

dimensionless leakage factors.  
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 Equation (10) is applied to drawdown and 
Equation (11) is applied to buildup tests. 

 Additionally, the equivalent time proposed by 
Agarwal (1980) is recommended to be used in buildup 
tests. 
 
TDS technique 
 This technique was introduced by Tiab (1995) 
and is based upon specific features found on the pressure 
and pressure derivative versus time log-log plot. 
 For the case dealt in this paper refer to Figure-4 
to observe the dimensionless pressure and pressure 
derivative behavior. It is seen that during radial flow 
regime the pressure derivative is governed by a flat 
straight line (zero slope) with an intercept of 0.5. Tiab 
(1995) demonstrated that after Equation (7) is equalized to 
0.5, an expression to find permeability is given: 
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Figure-5. Dimensionless pressure, pressure derivative  
and second pressure derivative versus time log-log 

plot for bD = 0.00001. 
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Figure-6. Dimensionless pressure, pressure derivative and 
second pressure derivative versus time log-log plot for 

several values of dimensionless leakage factors. 
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Tiab (1995) also provided an expression to find 
the skin factor by reading the pressure drop at any 
arbitrary time during radial flow: 
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 However, for the interest of this work, the pressure 
derivative does not help much since it has a decaying 
behavior as seen in Figure-5. Then, besides pressure and 
pressure derivative given in Figure-5, Figure-6 also includes 
the second pressure derivative behavior. in both plots two 
characteristic features are clearly seen: (1) a point of 
intersection between derivative and second derivative, and 
(2) a maximum point displayed by the pressure derivative 
which is given in Figure-6 for other cases studies. 
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Figure-7. Correlation between the time at which the 
maximum value of the second derivative takes 

place and the leakage factor. 
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Figure-8. Correlation between the time at which the 
pressure and second pressure derivatives intercept 

and the leakage factor. 
 
 Several observations can be drawn from Figure-6. 
The first one is that the maximum points are function of 
time and second derivative is practically constant at a 
dimensionless value of 0.186. Then: 
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 Solving for permeability: 
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 Equation (15) may be the practical use whenever 
the radial flow regime is obscured by wellbore storage. 
 The second observation is better explained in 
Figure-7 where a perfect correlation between time and 
leakage is obtained and given below: 
 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

t   *bD       D

t  
*P

 '
D

  
  

D

2

0.2648
* '

( * )D D
D D

t P
t b



2( )D r nsit

    b
0.01
0.005
0.001
0.0005
0.0001
0.00005
0.00001
0.000005
0.000001

D

 
 

Figure-9. Log-log plot Dimensionless pressure derivative 
a versus dimensionless time multiplied by dimensionless 

leakage factor.  
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 Third, for cases where the maximum point is 
difficult to be seen, probably due to much noise, and the 
intercept between the two derivatives is seen, a perfect 
correlation is reported in Figure-8. The obtained 
correlation is provided below: 
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 The fourth and final observation in Figure-6 
allows seeing a dependency of leakage factor on both time 
and second derivative, although the last one has a weak 
dependency. Equation (16) is a final correlation of the 
leakage factor as a function of pressure derivative and time 
read at the maximum point. However, for easier 
manipulations, the second pressure derivative is divided 
by the pressure derivative during radial flow regime. If 
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this is unclear and permeability is known, then, pressure 
derivative can be solved from Equation (12). 
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 A final observation comes out from Figure-9 
which is a log-log plot of dimensionless pressure derivative 
versus the product of dimensionless time multiplied by the 
dimensionless leakage factor. As seen in the plot the late 
steady-state period unifies into a single line. So, drawing a 
straight line of a slope of -2 will yield to the following 
fitting: 
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 The intercept of Equation (22) with the radial 
flow regime pressure derivative (tD*PD’=0.5) provides the 
following expression: 
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being tr2nsi the point of intersect between the radial flow and 
the negative two-slope lines. 
 
EXAMPLES 
 
Synthetic example 1 
 A simulated test was performed using Onsager 
and Cox (2002) model with the below information: 
 
B = 1.005 bbl/STB q = 30 STB/D 
h = 200 ft   = 1 cp   
rw = 0.4 ft  ct = 1x10-4 psi-1   
Pi = 3500 psi    = 30 %  
k = 10 md      bD = 0.00035 
CD = 10   s = 1 

 Pressure, pressure derivative and second pressure 
derivative versus time are provided in Figure-10. It is 
required to characterize this test with the sole purpose of 
estimating the leakage factor. 
 
Solution by conventional analysis 
 Actually, this example cannot be solved by 
conventional analysis since both wellbore storage and 
aquifer effects mask the radial flow regime. Therefore, 
neither skin factor nor permeability can be determined. 
However, assuming both permeability and skin factor is 
known, then, from the log-log plot of P vs. t, Figure-10, 
the value at which the horizontal line is drawn during the 
late steady-state period intercepts the y-axis is: 
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the classic permeability equation in order to find the 
pressure drop due to skin factor:  
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Figure-10. Log-log plot of pressure, pressure derivative 
and second pressure derivative versus time for example 1. 
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Solving for m; 
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 The pressure drop due to a skin factor of one is 
2.133. Then, Pss= 8.72 psi which used in Equation (9) 
will provide: 
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Solution by TDS Technique 
 The following information was read from Figure-
10: 
 
tr2nsi = 4 hr tint2p = 4.4 hr 
t2max = 4.84 hr (t2*P”)2max = 0.4342 psi 
 
 This is a very common case where the radial flow 
is obscured by wellbore storage. Besides, the steady-state 
period also contributes to not having a well-defined radial 
flow regime line. Then, the second derivative at the 
maximum point can also be used to estimate permeability 
from Equation (15): 
 

26.2632(30)(1)(1.005)
9.2 10 md

(200)(0.4342)
k     

 
 Since we need the value of pressure derivative 
during radial flow regime -actually it can be obtained from 
Equation (25)-, then, it is estimated from Equation (12): 
 

70.6 70.6(30)(1)(1.005)
( * ’) 1.0643 psi

(200)(10)r

q B
t P

hk


   

 
 The leakage factor can be found from Equations 
(16) and (17), respectively: 
 

2

0.0002637(10)(4.85)
1.005log 0.0185

(0.3)(1)(0.0001)(0.4 )10 0.000372Db

 
   

    
 

2

0.0002637(10)(4.4)
1.0035log 0.0394

(0.3)(1)(0.0001)(0.4 )10 0.00044Db

 
   

    
 
 Finally, using the coordinates of the maximum 
point of the second derivative in Equations (18) through 
(21), the leakage factor is also obtained: 
 

2

0.0002637(0.1)(1298.48)
1 1/ log 0.127

(0.3)(1)(0.0001)(0.4 )
F

 
  

 
 

 
2

1.064
2 6.25

0.432
F    

 
 

 

03

0.0491070542313- 2.2954373(0.127)

- 6.6837964356 10 (6.25) 0.284

Z




  
 

 
1/0.282210 0.0003Db    

  

 The point of intersection between the radial flow 
regime and the negative two- slope lines is also used to 
find leakage factor from Equation (23); 
 

22759.713(0.3)(1)(0.0001)(0.4 )
0.000331

(10)(4)Db    

 
Synthetic example 2 
 Another pressure test was simulated with the 
below information: 
 
B = 1.00  bbl/STB q = 550 STB/D 
h = 150 ft   = 0.5 cp   
rw = 0.5 ft  ct = 5x10-5 psi-1   
Pi = 3850 psi    = 20 %  
k = 60 md      bD = 0.000038 
CD = 0   s = 0 
 
 Figure-11 presents the semilog plot of pressure 
versus time and Figure-12 contains a log-log plot of 
pressure drop, pressure derivative and second pressure 
derivative versus time. Find permeability, skin factor and 
the leakage factor using both conventional analysis and 
TDS technique. 
 

3825

3830

3835

3840

3845

3850

1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

t , hr

P
  

 , 
p

si
 

w
f

m = -4.9 psi/cycle

1 3830 psihrP 

1Intersect 3827.54 psi 22.46 psihr ssP P    

 
 

Figure-11. Semilog plot of pressure versus time 
example 2. 

 

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02

t , hr


P

,  
t *


P
 ',

 &
  t

  *


P
 "

, p
si

 
2

2
2max( * ") 0.7932 psit P 

int 2 1.95 hrpt 

2max 2.1 hrt 

( * ') 2.11 psirt P 

' 13.93 psirP 

2 1.6 hrr nsit 

  
 

Figure-12. Log-log plot of pressure, pressure derivative 
and second pressure derivative versus time for example 2. 
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Solution by conventional analysis 
The following information is read from the 

semilog plot reported in Figure-10. 
 
m = -4.9 psi/cycle 
P1hr = 3830 psi 
Pss= 22.46 psi 
 

Permeability and skin factor are found with 
Equations (24) and (25), respectively. 
 

162.6(550)(0.5)(1)
60.84 md

(150) 4.9
k  


 

 

1
2

1.1513 log 3.23hr i

t w

P P k
s

m c r
  

   
  

                (25) 

 

2

3830 3850 60.84
1.1513 log 3.23

4.9 (0.2)(0.5)(0.00005)(0.5 )

0.43

s

s

  
      
 

 

 
The steady-state period is easily observed in both 

plots, Figures-11 and -12. Recalling the constant pressure 
value read from Figure-11 (Pss= 22.46 psi): the leakage 
factor is found from the application of Equation (9); 
 

(60.84)(150)(22.46)
0.014413

(550)(0.5)(1)1.5338 0.0000385Db e
 

  
    

 
Solution by TDS Technique 
The following information was read from Figure-

12: 
 
tint2p = 1.95 hr t2max = 2.1 hr 
(t2*P”)2max  = 0.7932 psi tr = 0.0224 hr  
(t*P’)r =  2.11 psi Pr  = 13.93 psi 
tr2nsi = 1.6 hr 
 

Using the value of the pressure derivative during 
radial flow regime, permeability is easily found from 
Equation (12); 
 

70.6(550)(0.5)(1)
61.3 md

(150)(2.1)
k    

 
Taking an arbitrary point during the radial flow 

regime, skin factor is estimated with Equation (13); 
 

2

13.93 61.3(0.0224)
0.5 ln 7.43

2.11 (0.2)(0.5)(0.00005)(0.5 )

0.06

s

s

  
    

  


 

 
Making use of the time at which the maximum 

second pressure derivative takes place find the leakage 
factor from Equation (16); 
 

2

0.0002637(61.83)(2.11)
1.005log 0.0185

(0.2)(0.5)(0.00005)(0.5 )10 0.0000365Db

 
   

    

 
Using the time of intersection between the 

derivatives find the leakage factor with Equation (17); 
 

2

0.0002637(61.83)(1.95)
1.0035log 0.0394

(0.2)(0.5)(0.00005)(0.5 )10 0.000042Db

 
   

    

 
Find the leakage factor from the application of 

the coordinates of the maximum point of the second 
derivative with Equations (18) through (21) 
 

2

0.0002637(61.83)(2.1)
1 1/ log 0.09815

(0.2)(0.5)(0.00005)(0.5 )
F

 
  

 
 

 
2

2.11
2 7.407

0.7932
F    

 
 

 

03

0.0491070542313- 2.2954373(0.09815)

- 6.6837964356 10 (7.407) 0.2257

Z




  
 

 
1/0.282210 0.0000371Db    

 
The point of intersection between the radial flow 

regime line and the negative two-slope line is used to find 
another value of leakage factor from Equation (23); 
 

22759.713(0.2)(0.5)(0.00005)(0.5 )
0.000035

61.83(1.6)Db    

 
COMMENTS ON THE RESULTS 

The results obtained from both techniques are 
quite satisfactory. Although, the conventional analysis 
provides a single finding of the leakage factor, the results 
were excellent in both exercises, even though, the first 
problem cannot be completely carried out by conventional 
technique due to the missing of the radial flow regime. 

As far as the use of the TDS technique is 
concerned, four different forms for estimating the leakage 
factor are provided. The best results were obtained from 
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the use of the time at which the maximum point displayed 
by the second derivative takes place. The expression that 
uses the intersect point formed between the two 
derivatives provided less accurate results, due to the fact 
that it is difficult to exactly define such intercept. The 
solution provided by Equation (18) through (21) provided 
better results in the second problem. It may be due to the 
fact that wellbore storage could affect the solution. In both 
exercises the solution found with Equation (23) which 
uses the intercept between the radial line and the negative 
two-slope line (artificially added) provided excellent 
results. 

It is worth to remark that the maximum point of 
the second pressure derivative was also used to find an 
approximation for the determination of permeability. The 
first example is a typical case of its use since the radial 
flow was undefined. 
 
CONCLUSIONS 
a) New expressions were introduced for the 

determination of the leakage factor by using both 
conventional analysis and the TDS technique. A total 
of five expressions were introduced four of which 
belong to the TDS technique. The expressions were 
satisfactory applied to synthetic examples. 

b) The TDS technique used the potential of the second 
derivative for the estimation of the leakage factor. The 
maximum point of the second pressure derivative was 
also used to provide an approximation to find 
reservoir permeability.  

c) The value of leakage factor found out by presented 
new methods lead to better estimation and is much 
more robust than using type-curve analysis which 
may lead to inaccurate estimations. 

d) Further analysis and historical data is needed to show 
that the calculated leakage factor values can be used 
in classic diffusivity equation to estimate accurate 
amount of water influx which can be compared with 
VEH water influx model to test its validity.  

 
Nomenclature 
 

B  Volume factor, rb/STB 

b  Leakage factor, ft 

C  Wellbore storage coefficient, bbl/psi 

ct  Total system compressibility, psi-1 

h  Reservoir thickness, ft 

   Laplace parameter 

k  Reservoir permeability, md 

P  Pressure, psi 

Pi  Initial reservoir pressure, psi 

Pwf  Wellbore flowing pressure, psi 

q  Water flow rate, BPD 

rw  Wellbore radius , ft 

s  Skin factor 

t  Time, days 

tD  Dimensionless time coordinate 

tD*PD’  Dimensionless pressure derivative 

tD
2*PD”  Dimensionless second pressure derivative 

(t*P’)  Pressure derivative 

(t2*P”)  Second pressure derivative 

e) Greeks 

f)  

 Porosity, fraction 

 Viscosity, cp 

g)  

h) Suffices 

i)  

2max Maximum of the second pressure derivative 

conf Confining layer 

D Dimensionless 

i Initial 

int2p 
Intercept of pressure derivative and second 
pressure derivative 

r Radial 

r2nsi 
Intersect of the radial flow line and the 
negative two-slope line 

ss Steady state 

v, conf Vertical in confining layer 
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