
 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4812

AN EFFICIENT POLICY BASED SECURITY MECHANISM USING

HMAC TO DETECT AND PREVENT UNAUTHORIZED ACCESS

IN CLOUD TRANSACTIONS

Judy Jenita S., Justin Samuel S.,

Abirami S. and R. S. Shalini

Department of Information Technology, Faculty of Computing, Sathyabama University, Chennai, India

E-Mail: drsjustin@gmail.com

ABSTRACT

A cloud computing paradigm accommodates a large number of remotely located servers networked together, by

providing access to a centralized resource to all the entities participating within a cloud transaction. Whereas, the virtual cloud

is a recent trend in cloud computing in which multiple third party vendors renting a virtual space thereby improving the virtual

memory space to accommodate a wide range of resources. In this paper, we propose a secured cloud infrastructure with HMAC

authentication and policy fixation for individual users. Also, multiple transactions executing on a cloud server is administered

by a centrally located transaction manager which deals with the policy fixation engagements to different users participating in

that particular transaction. The proofs of authorisations are evaluated for each participant to facilitate the concept of safe and

trusted cloud transactions. Policy violations occurring within the cloud a server is termed as policy inconsistency updates

which is overcome by the proposed HMAC authentication algorithm. Transactions are either committed or aborted with the

permission from all the participating cloud servers within certain time periods provided by the application of a Two phase

validation commit protocol. Experimental results show a greater improvement in the security of the system using HMAC. The

outcome of this work shows notable improvement in the security level of transactions.

Keywords: cloud transactions, cloud access policies, cloud security, HMAC.

I. INTRODUCTION

Cloud computing background consists of servers

that are remotely located in large groups that are networked

for sharing data-processing and to obtain access to the

networked service and resources. Many users share the

cloud resources which are dynamically reallocated

according to the request. The speciality in cloud computing

is, a single web server can be accessed by multi-users and

data processing can be done without getting licenses for the

applications. Precisely, a cloud environment can render

infrastructure, platform, software and communication as

services provided by multiple vendors. A few multiplicities

of cloud models are known as Platform as a service (Paas),

Data as a Service (DaaS), Infra-Structure as a Service

(IaaS) and Software as a service (SaaS). In IaaS, the

vendors afford virtual as well as physical machines with

other resources like virtual disk library with images, raw

storage block, etc. The resources are retrieved from various

data sources as per the user demand. Cloud users can

download the images, videos files and executable software

applications over cloud infrastructure. The service

providers charge the users based on their usage and

consumption of resources. Similarly SaaS, also known as

software on demand, can be utilized by cloud users when

they are inadequate in establishing the requisite

infrastructure and application platforms. In order to meet

their demands the virtual machines are cloned at the end

time. To balance the loads on the cloud servers, all the

tasks are split and distributed over multiple virtual

machines. This process is hidden from the users. Users

perceive that they have only a single entry point to access

the cloud services.

Additionally, the applications offered by cloud are

multi-tenant which can be served to multiple organizations

simultaneously. A centrally hosted application updates its

data resources time to time and this can be performed

without consuming any software installations on the client

end. Due to its elasticity, users' data in the cloud are more

susceptible to unauthorized access. Hence, there are many

mechanisms available to protect the privacy as well as the

content of servers. Virtualization is the technique which

allows a physical computing, device copied into multiple

devices in such a way that each such device can perform all

computing tasks as the source device. Usage of virtual tools

facilitates the implementation of a cloud model with

available open sources. Xampp [1] is open source

webserver package containing Apache server, Interpreters

and MySql. Number of occurrences of XAMPP can be

generated in a single system which is self confined, and

they can copied to other destinations. EyeOS is another

web application which is used to establish communication

and collaboration among different users. It provides a web

cloud desktop with a unique user interface and provides full

support for cloud operations to manage files, tools and to

integrate client applications.

An interesting aspect of the cloud is its elasticity,

making it favourable for highly scalable and multi tiered

applications. In data replication, multiple copies of original

data is duplicated and distributed over networked servers

[2]. This offers the facility of scalability and elasticity in

cloud. This conveys an account of consistency when the

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4813

data is propagated throughout the system. Inconsistencies

arise in a database when the single data is observed at

multiple sites. There are two types of security inconsistency

problems, policy inconsistency in which several versions of

a single policy are witnessed at multiple sites within a

lifetime of a single transaction leading to a set of

inconsistent access difficulties. Secondly, the system may

suffer from credential inconsistencies, where a user’s login
credentials are revoked by the authority or a transaction

manager before the transactions commits or rollback. Paper

[3] illustrates a mechanism which sense the attacks based

on certified characteristics over a multi-tenant cloud model.

We introduce the concept of trusted transactions which do

not cause policy or credential inconsistencies and at the

same time to conform to the ACID properties of a

transaction. A two phase validate and two phase validation

commit protocol can be suggested to ensure the safety of a

transaction by examining the policy, credential and data

consistency during the period of a transaction.

Considerably, the use of log records in a cloud architecture

increases data storage to a large extent [4]. Furthermore,

developments may lead to workload balancing between

multiple servers participating within a cloud architecture.

When a heap of transaction requests is made by a

transaction manager through the same cloud server the

workload increases on that particular server. This may lead

to deadlocks in the system and causes incomplete

transactions and rollbacks in the progress of a transaction.

Hence it becomes necessary to balance the workload

among the multiple servers present in a cloud environment.

This results in an efficient distributed transaction system

over a cloud environment.

2. RELATED STUDY

Due to the elasticity and relaxed consistency of

cloud model a variety of related enhancements can be

possibly done in the near future. Outsourcing of cloud

resources serves as a major threat to its security

considerably due to the potential loop holes in the system.

Replicated data stored at remote sites are provided to

clients. In the related works involving such cases, data

replication process can be done in accordance with the

proofs of retrievability in order to provide data integrity,

policy and credential consistency to the users. The

transaction manager maintains a master policy which

contains documents related to the user accesses and

authorization policies [5,14]. A recent work provides a

certain guarantee level for the interaction between the data

and set of policies [6], which assures that the server side

policies maps the data stored in the server. Williams et al.

[7] introduces a technique by which cloud servers can

handle encrypted reads, writes, and inserts so that the third

party vendors support transaction serialization, backup, and

recovery to ensure data confidentiality and correctness of

user access patterns. Further, the extension of the system by

using HMAC authentication strengthens the security of the

virtual cloud architecture [10]. According to [11] the recent

research works in the virtual cloud security probably falls

into two contrasting categories. It involves the process of

determining the security of cloud storage and cloud

computation. In [12], authors have proposed a protocol

called the Orthogonal Handshaking Authentication

Protocol for handling transactions in cloud. This indicates

that future enhancements can implement hand shaking

mechanisms for executing the transactions in a virtual

cloud.

3. ARCHITECTURE OF THE SYSTEM

Figure-1. Transaction processing with HMAC

authentication

 The above Figure illustrates the working of

multiple cloud servers enclosed in a runtime environment.

Pile of user requests are sent to the transaction manager for

authorization and set a default policy for each server. Using

hmac, a secret key is generated in the transaction manager.

The master policy associated with the transaction manager

encloses all the policy versions. A virtual run time cloud

contains many servers participating in multiple

transactions. Users can access the cloud services through a

Transaction Manager (TM) which manages the servers. A

master policy is maintained by the TM. At regular intervals

the existing policies in the cloud servers are replaced by

newer versions. It includes view, update, delete and login

policies. When an adversary tries to modify the data in the

server a policy update request is submitted to the TM.A

hash message authentication code is used to ensure the

authenticity of the database.

VIRTUAL CLOUD

USER

REQUESTS

SERVER 1

SERVER 2

Waiting

TRANSACTION

MANAGER

 TWO PHASE

VALIDATION

REQUESTS

TWO PHASE

VALIDATION

Pending

Approved

HMAC

SECRET KEY

MASTER POLICY

 VIEW

 UPLOAD

 DOWNLOAD SET DEFAULT POLICY

VERSION

SERVER 1

SERVER n

.

.

. .

.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4814

Figure-2. Various states of user’s transaction request.

3.1. Policy updates

The relation represents

the average execution time of a transaction, where Puis the

probability function of a policy update. Given, (Ts)

represents the average commit time of a short transaction

with no policy changes and (Tl) represents the average

commit time of a long transaction, where the policy

updations, force the proofs of authorizations to be

revaluated multiple number of times [1].

3.2. Trusted transactions

We present a concept of trusted transactions which

do not violate both the policy and credential consistencies

during the lifetime of a transaction. [13]. Given a

transaction T and its view V(T) where

, represents the number of queries

evaluated within that particular transaction. Tcan be called

as a trusted transaction if, at timet:

))).

3.3. Proof of authorizations

The relation

denotes a proof of authorization that is being evaluated at

the server snwhere qnis the query to be evaluated at that

server at time t. denotes the proofs of authorization

enforced by the server sn, d indicates the set of data items

being that are included in the query qn. All the proofs of

authorizations are evaluated at the time tn, and finally c is a

set of credentials that are applied by the query processor to

complete all the existing proofs of authorization.

3.3.1. Authorization mechanisms

I) Deferred proofs of authorisation: In a

transaction T with its view V(T), all the available proof of

authorisations are evaluated only during the commit time to

decide whether the transaction is a trusted one. In case

weak authorisations the deferred proof of authorisation

mechanism provides a positive approach.

II) Punctual proofs of authorisation: In a

transaction T with its view V (T), all the available proof of

authorisations are evaluated at once a query processing is

initiated in the cloud server. At commit time, the proofs are

again evaluated which makes it easy to detect the unsafe

and complicated transactions at its early stage of execution.

This reduces the amount of consistency in the cloud servers

as they may falsely block access to valid data. Hence we

need some obstructive approaches to enforce consistency

among the participants.

III) Incremental punctual proofs of

authorisation: A view instance V→T can be defined as a

subset of all the proofs of authorisations evaluated by the

cloud servers involved in a transaction T at time t. With

the incremental proofs of authorisation a transaction T is

highly trusted since it is not allowed to commit until the

server achieves the specified level of policy consistency

with all other participating servers. By applying view

consistent model, all the servers will be consistent at the

commit time.

 IV) Continuous proofs of authorization: In a

transaction T with its view V(T), all the available proof of

authorisations are evaluated on accordance to the previous

proofs if any policy change is encountered at the server

entities. It comprehends two cases:

a) All servers are expected to update their policy versions

in consistent with the new set of policies.

b) Re-evaluate all the existing proofs.

Table-1. Comparison table between the proofs of authorizations

Category Deferred Punctual Incremental Continuous

Efficiency High High Moderate Moderate

Performance High High Low Low

Accuracy Moderate Moderate High Moderate

Precision High Moderate Moderate Low

 The above table illustrates a comparison between

the different proofs of authorization. The deferred proofs

may be less accurate when compared to other approaches,

because while executing the deferred proofs the policies

used by the transaction manager are not updated during

regular intervals. Whereas, the punctual proofs of

authorizations are monitored locally throughout a

transaction. Continuous and Incremental proofs of

authorizations provide a low performance in comparison

with the other approaches, especially when the transaction

manager frequently updates the policies present in the

WAITING
•REQUEST SENT TO

SERVER

PENDING

•REQUEST

SENT TO

TM

APPROVED

•POLICY

SET BY TM

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4815

master policy records. However, the deferred proofs

provide a much better performance overall.

Algorithm 1: Two phase validation commit protocol

(TM)

Prepare to Validate ()

{

Send validation request to servers;

Select latest version of a policy;

If(reply=False)

{ Abort transaction; }

Else

Call Prepare to commit ()

{

Send commit request to servers;

If (all servers accept the policy version){

For each unique policy

{

If (reply=False)

Call Abort () ;}

Else

{

Commit transaction ();

}

}}

For each server with old policies

{

Send (update message);

Wait time for reply from all servers;

End;

}}

 In the two phase validation commit algorithm, a

validation request is sent to all the server participants. If

all the participants reply ‘yes’ the transaction manager
sends a commit request, based on the latest policy

versions. For each policy if the participants reply ‘yes’
then commit the transaction otherwise the transaction is

aborted. The policy versions are updated in all the servers

during an update request from the transaction manager.

Algorithm 2: Hash message authentication algorithm

Procedure (HMAC (key, text))

{

while key=b, then ko =key;

//key is the secret key

// b is the hash value of key

IF key>b then key=H(k) ;

//H is the hash function

IF key<b then zeros appended after k (ko);

}

do

{

Perform ko⊕ipad;

Append, ko⊕ipad || m;

//m is the message or text to be authenticated

By applying H perform ipad,

Compute, H ((ko⊕ipad)|| m)

Perform, ko⊕opad;

Append, (ko⊕opad) || H ((ko⊕ipad) || text)

By applying the value of H Calculate,

H ((ko⊕opad) || H((ko⊕ipad) || text))

Select ‘t’ bytes of result as HMAC

}

}

4. RESULTS AND DISCUSSIONS

Figure-3. Assigning services to users.

The transaction manager monitors the servers on a

timely basis during which it checks the policy versions at

each server participant. If any discrepancy is detected in the

policy versions, it updates the hacked server with the

newest policy versions held by the master policy. The

possibility of committing a transaction varies as the policy

update probability changes. If the user request violates any

of the policies then the transaction is prohibited and a

rollback occurs. The master policy associated with the

transaction manager stores the latest policy details from

where the data is retrieved for updation. This is done

intermittently to maintain security and consistency to the

users. Before assigning a default policy to a user their

proofs of authorization are validated by the transaction

manager in three different stages.

 During this process, a specific service is allocated

to the user based on their request.A unique user ID is

automatically generated to all users.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4816

Figure-4. Assigning privilege and default policy

to users.

 In the above fFigure, allocation of services to the

users are depicted. The transaction maanger sends a

validation request to all the participating servers, to validate

the proofs of authorization of each user.

 Once the validation of user data is completed the

transaction manager assigns an initial privilege to the user

which includes viewing, uploading and downloading of

resources in the cloud. The transaction manager then sends

a commit request to all the server participants. As a result, a

default policy is set for that particular user and a unique

policy version is updated in the server.

5. PERFORMANCE ANALYSIS

 Experimental studies show the overall

performance of the proposed method in accordance with

total number of user requests made. Without applying

HMAC authentication algorithm the system suffers from

inconsistencies due to the transactions abort or rollback at

commit time. But, with the application of HMAC

authentication code the performance of the system

increases with a majority of transactions committing at the

run time. While the existing system is more vulnerable to

security attacks, the proposed system with HMAC

overcomes the system’s security loop holes by providing a
concept of trusted transactions.

 The graph shows a comparative study of

transactions failure rate with the proposed method over the

existing method. In this case the Figure explains how the

unauthorized user requests are filtered. For example, out of

800 requests 660 trusted transactions fail in the existing

method.

Figure-5. Ratio of trusted transactions failure.

 The graph shows a comparative study of

transactions failure rate with the proposed method over the

existing method. In this case the figure explains how the

unauthorized user requests are filtered and 300 trusted

transactions fail in the proposed method. Thus it proves the

efficiency of the proposed method.

Figure-6. A comparison graph for detection of

policy violations.

 The graph represents the number of policy

violations detected in the system with and without using the

HMAC authentication. The transaction manager updates

the policies to each user. As given in Figure-4 each user is

assigned a unique policy while registering to the server and

a unique policy version is updated in the server. If any user

violates the policies assigned to them, our proposed HMAC

algorithm will detect and prevent the policy violations from

affecting the efficiency of the system. For example, out of

600 user requests 500 requests undergo policy violations in

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4817

the existing method and only 300 requests undergo policy

violations in the proposed method.

6. CONCLUSIONS

 The services in cloud are widely adopted by many

organisations for the purpose of resource sharing. Even

though they are popular, the vendors of cloud services

generally lack security as well as consistency in policy and

data storage. All these consistency problems arising due to

weak consistency models in the cloud hosted transactions

are identified in this paper. The user access mechanism is

controlled by the policy-based authorization systems stored

in the master policy. To overcome the inconsistent policies,

we have developed a proof based authorization and

consistency models such as the Deferred and Punctual

consistency models, Whereas, the Incremental and

Continuous models can apply increasingly strong

protections with minimal runtime outlays. Also, we have

used simulated jobs to experimentally evaluate the

operations of our projected consistency models relative to

performance of transaction processing, security and

authentication. Furthermore, the implementation of hash

message authentication code generates a secret key

between the transaction manager and the cloud servers,

such that any violations in the server policies is notified to

the transaction manager which updates the policy versions

enhancing the security of the proposed system. Results

show that the failure rates of trusted transactions are

reduced in the proposed system in comparison with the

existing system. Moreover, with the proposed method users

violating the assigned policies to access the resources are

identified and prevented. Hence, the security level of the

trusted transactions and the overall efficiency of the system

is considerably improved.

REFERENCES

[1] Iskander M., et al. 2014. Balancing Performance,

Accuracy, and Precision for Secure Cloud

Transactions. IEEE Transactions on Parallel and

Distributed Systems. 25(2): 417-426.

[2] Wang Boyang, Baochun Li and Hui Li. 2012. Oruta:

Privacy-preserving public auditing for shared data in

the cloud. Cloud Computing (CLOUD), 2012 IEEE 5th

International Conference on. IEEE.

[3] Varadharajan Vijay and UdayaTupakula. 2014.

Counteracting security attacks in virtual machines in

the cloud using property based attestation. Journal of

Network and Computer Applications. 40: 31-45.

[4] Ray Indrajit, et al. 2013. Secure Logging as a Service

Delegating Log Management to the Cloud. IEEE

systems journal. 7: 323-334.

[5] Justin Samuel S, Koundinya RVP, Kotha Sashidhar,

2015. Service Oriented Secured Privacy Enhancement

for Health Care Applications. International Journal of

Applied Engineering Research. 10(3): 6207-6216.

[6] Hsiao, Hung-Chang, et al. 2013. Load rebalancing for

distributed file systems in clouds. Parallel and

Distributed Systems, IEEE Transactions on 24.5. 951-

962.

[7] Williams, Peter, RaduSion, and Dennis Shasha. 2009.

The Blind Stone Tablet: Outsourcing Durability to Un

trusted Parties. NDSS.

[8] http://csrc.nist.gov/publications/fips/dfips-HMAC.pdf.

[9] http://en.wikipedia.org/wiki/Hashbased_message_auth

entication_code

[10] Arasu S., Ezhil B., Gowri and S. Ananthi. 2013.

Privacy-Preserving Public Auditing In Cloud Using

HMAC Algorithm. International Journal of Recent

Technology and Engineering. 2(1).

[11] Wei Lifei, et al. 2014. Security and privacy for storage

and computation in cloud computing. Information

Sciences. 258: 371-386.

[12] Mohammed M, Subramanian. 2014. Enhancement of

the Private Cloud Data Transaction by using an

Orthogonal Handshaking Authentication Protocol

(OHSAP). International Journal of computer

Applications. 96(23).

[13] M. K. Iskander, D. W. Wilkinson, A. J. Lee and P. K.

Chrysanthis. 2011. Enforcing policy and data

consistency of cloud transactions. In Proceedings of

the Second International Workshop on Security and

Privacy in Cloud Computing, ser. ICDCS-SPCC 2011.

Washington, DC, USA: IEEE Computer Society.

[14] Wobber Ted, Thomas L. Rodeheffer and Douglas B.

Terry. 2010. Policy based access control for weakly

consistent replication. Proceedings of the 5th European

conference on Computer systems. ACM.

http://en.wikipedia.org/wiki/Hashbased_message_authentication_code
http://en.wikipedia.org/wiki/Hashbased_message_authentication_code

