
 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4908

OPTIMIZING GA OPERATORS FOR SYSTEM EVOLUTION OF
EVOLVABLE EMBEDDED HARDWARE ON VIRTEX 6 FPGA

Ranjith C., S. P. Joy Vasantha Rani, Priyadharsheni B., Medhuna Suresh and Madhusudhanan M.

Department of Electronics Engineering, MIT Campus, Anna University, Chennai, India
E-Mail: ranjith.kmct@gmail.com

ABSTRACT
 The paper aims to provide an idea of the genetic algorithm parameters and its importance in the evolution of
circuits through embedded evolvable hardware. Evolvable Hardware is an integration of evolutionary algorithms with
programmable devices. A Genetic Algorithm fused into the soft processor of a Field Programmable Gate Array is termed,
Evolvable Embedded Hardware. The system has the ability to converge to a solution faster due to the evaluation in a single
device, when compared to the conventional evolvable hardware structure. An insight into the genetic algorithm and
optimization of genetic parameters for design of combinational circuits is discussed. An experimental model for a 2 bit
adder for different genetic parameters is validated to demonstrate the systematic evolution of evolvable embedded system
hardware. This experimental setup is carried out on Virtex 6 (XC6VLX240T-1FFG1156) ML605 Evaluation Kit FPGA
using the Xilinx Platform Studio 14.6 tools.

Keywords: evolvable hardware, evolutionary algorithm, genetic algorithm, evolvable embedded hardware, FPGA, VLSI.

1. INTRODUCTION
 Conventional VLSI design methods using the
Hardware Description Languages (HDL) are sometimes
inadequate as the system complexity increases. The
complexity of circuits has made design through human
intervention all the more complicated. As the design
complexity increases exponentially it becomes difficult to
optimize the system in terms of speed, area and power. To
overcome the hurdle of design ability and to reduce the
human interference in the design we go in for a technique
which is known as “Evolvable Hardware” or EHW. EHW
was a concept introduced by Hugo De Garis in 1992
which was an integration of evolutionary algorithms with
programmable devices [2]. In EHW, the circuit is designed
and implemented in a programmable device by adaptively
changing an algorithm which uses the Darwinian principle
of natural selection [1]. The evolutionary algorithms
include genetic algorithms, genetic programming,
evolutionary computing, and so on, whereas the
programmable devices are preferably Field Programmable
Gate Arrays (FPGA). The benefits of implementing the
circuits through evolutionary algorithms are – reduced
complexity, smaller circuits, better performing and
efficient circuits, and the user can bring about new ideas
and innovations to the design [1]. The scope of this paper
is limited to the integration of Genetic Algorithms (GA)
with FPGAs in EHW.
 The integration of GAs with FPGA in EHW is
with regard that the configuration bit strings to the FPGA
are the chromosomes of the GA as shown in Figure-1. An
initial population of chromosomes for a target solution are
evaluated for their fitness. The chromosomes are ranked
based on their fitness and undergo genetic operations like
crossover, mutations and selection. The final fit
chromosomes are encoded as configuration bits of the
FPGA, to form the new evolved circuit. A best fit solution
is obtained after undergoing several iterations, to obtain
the final optimized circuit. A new circuit configurations

are evolved at every iteration based on the fitness
probability. A fitness function is designed, such that the
GA can autonomously find the best solution for the
design, to be implemented in the FPGA. FPGA based
EHW can be classified based on evaluation of the
solutions - extrinsic evolution and intrinsic evolution as
shown in Figure-1. In extrinsic evolution the development
of circuits uses a simulation approach of determining the
best evaluation and the solutions are implemented in the
device. In intrinsic evolution, each candidate solution is
directly mapped and implemented in the target device. The
latter offers better accuracy of self evolved circuits [3]. In
conventional works on EHW, the GA operations were
conducted out in computer or workstations, which would
make the system robust and slow. In recent works the GA
operation is performed on the same FPGA chip either by
hardware or by software in a dedicated core. The paper
discusses this concept, where the GA operation is
performed on a soft core processor, known as MicroBlaze,
on the Virtex 6 FPGA. This type of evolution of circuits is
termed as Evolvable Embedded System [4].
 The concept of the Evolvable Embedded System
is - an evolutionary algorithm is utilized to dynamically
modify some of the system components, in order to adapt
the behavior of the system to a changing environment [4].
A 32 bit MicroBlaze soft processor computes the GA for
the evolution of a target system. The best fit chromosomes
from the GA, configure the FPGA to give birth to an
optimized or novel system. The process of evaluation of
the best fit chromosomes, and evolution of the system
takes place in the same FPGA. An evolvable embedded
system architecture for a 2 bit adder circuit using the
intrinsic mode of evolution is discussed, changing the
hardware based on the fitness evaluation from the GA.
This evolvable embedded hardware architecture was
implemented on Virtex 6 (XC6VLX240T-1FFG1156)
ML605 Evaluation Kit. GA results displayed on a PC.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4909

Figure-1. Basic structure of EHW.

 The rest of this paper is organized as follows.
Section II gives a detail study of GA and its parameters.
Section III describes the modeling of an evolvable
embedded system. Section IV gives a complete system
design to implement a 2 bit adder. Section V discusses the
results with Section VI giving a brief conclusion of the
paper.

2. GENETIC ALGORITHM
 The Evolutionary Algorithm (EA) brings about a
hypothesis that a population of individuals exists in an
environment with limited resources, and the competition
for these resources causes selection of fitter individuals
that are better accommodated to the environment [1].
Genetic Algorithm is an EA developed by John Holland in
1970's and popularized by David Goldberg. They are
adaptive heuristic search algorithm based on the principle
of the Charles Darwin theory of natural selection and
genetics. GA is capable of solving a myriad of design
parameters and multiple design goals, thus finding an
optimal combination [6]. With the advent of the evolvable
hardware concept, the role of GA became popular in the
field of VLSI design. The aim of the algorithm to find an
optimum solution to the problem was utilized here, to
evolve circuits that may be optimized in area, speed or
power. It can also lead to novel circuit structures
compared to the manual design. A detail study of the GA
and its characteristics is explained below.

a) GA terminology

 A brief description of the terms associated with
the GA is described:
 Population: it is a collection of several alternative

solutions to the given problem.
 String or Chromosomes: it is the individual in the

population.
 Genes: it is the individual characters in the string.
 Genotype: the bit string (chromosomes) that

provides a possible solution.
 Phenotype: the genotype encoded into a physical

structure

 Population size: it determines the amount of
information stored.

 Fitness function: it is the user defined problem
specification.

b) GA characteristics
 There are five main characteristics of GA [1][6],

which are problem dependent. Depending on the problem
definition the characteristics differ in their approach.

1) Representation: it is a mode of representing the
individuals in an optimized way, to store the
representations. The representation can be either binary or
real-valued representations. This paper deals with only
binary representations

2) Selection: defined as selecting fit candidates from the
pool, to pass on their genes to future generations. Different
types of selection processes are - Truncation selection,
Roulette wheel selection, Tournament selection,
Neighborhood selection.

3) Mutation: genes are randomly altered in hopes of
bringing out new properties into the next iteration.

4) Fitness function: gives an intuition of how well the
individual is and depends on the problem.

5) Survivor decision: it is the survival of the best
individuals, also known as Elitism factor. In general, the
overall best individual is stored as a different individual,
but they are not used during operations.

c) GA operators

 The basic GA operators are crossover, mutation
and selection, which establish the main algorithm, whereas
the population and fitness function can be seen as external
entities. Both crossover and mutation are probabilistic
operations and their frequencies of occurrence are
controlled by predefined probabilities. As a crossover
plays the key role in improving the solution, it is assigned
a high frequency of occurrence. The frequency of
occurrence of mutation is kept fairly low, to prevent the
GA from producing a large number of random solutions.

1) Crossover: recombination of genetic material of the
parent to form one or more offspring, by preserving some
of the useful traits of the parents. The goal is to generate
new chromosomes that are more fit than their ancestors,
thereby leading to the overall convergence of the
population. There are many ways of performing crossover
- one-point, two-point, or uniform crossover is used with
binary encoding.
 One point crossover: a random position in the
chromosome is chosen. Child 1 is head of chromosome of
parent 1 with the tail of chromosome of parent 2. Child 2
is head of chromosome of parent 2 with the tail of
chromosome of parent 1 as shown in Figure-2.
Two point Crossover: two random positions on the
chromosome are chosen. The genes at the head and the
tail, of a chromosome are always split and then
recombined as shown in Figure-3.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4910

Figure-2. One point crossover.

Figure-3. Two point crossover.

Uniform Crossover: a random mask is generated. The
sequence of the mask determines the crossover from
parent 1 and parent 2. Bit density in mask determines how
much material is taken from the other parent as shown in
Figure-4.

Figure-4. Uniform crossover.

Mutations: it randomly changes the bit of an offspring
after crossover. Mutation is treated as supporting operator
for the purpose of restoring lost genetic material. Bit flip
mutation is the most common mutation operator for
binary- encoded GAs. This is realized by simply inverting
one or more bits in the chromosome string based on the
probability of mutation as shown in Figure-5.

Figure-5. Mutation operator in binary representation.

Selection: different selection methods are available, but
the most commonly applied methods are roulette- wheel,
tournament and ranking. In the Roulette - wheel selection
each individual’s probability of being selected in the next
population is proportional to its fitness value. Rank
selection involves ranking the individuals from ‘best’ to
‘worst’ on the basis of their measured fitness values. In
Tournament selection, a group of individuals is chosen
iteratively by holding a tournament and the one with the
best fitness value is chosen until it is filled with a

predetermined number of individuals. This can be avoided
by ensuring that a number of individuals deemed to be the
best are always passed on to the next generation
unchanged. This method is called elitism and it often
increases the convergence speed at the expense of a risk of
getting stuck around the so-called elite solutions.

d) GA flow

 The complete flow graph of the GA program is
illustrated in Figure-6. The flowchart can be explained as
follows.

Step-1: Create an initial population of random solutions
(chromosomes) by some means.

Step-2: Assess the chromosomes for fitness using the
criteria imposed on the required solution and create an
elite set of chromosomes by selecting a number of
chromosomes that best satisfy the requirements imposed
on the solution.

Step-3: If the top-ranking chromosome in the elite set
satisfies fully the requirements imposed on the solution,
output that chromosome as the required solution, and stop.
Otherwise, continue to Step-4.

Step-4: Apply crossover between pairs of chromosomes in
the elite set to generate more chromosomes and subject
certain chromosomes chosen at random to mutations, and
repeat from Step-2.

Figure-6. Flowchart of GA.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4911

3. STRUCTURE OF EVOLVABLE EMBEDDED
HARDWARE

 The architecture uses the concept of the Virtual
Reconfigurable Architecture (VRA) core [12] [13]. Here
the VRA is modeled as an IP core using HDL. This
hardware description of the architecture was layered over
the reconfigurable chip, to implement the evolutionary
structure. The main idea of this concept is that the designer
has the flexibility in modeling the GA program to produce
configuration bits to program the FPGA. GA program was
fused in the MicroBlaze soft processor, where the
evaluations are displayed on the PC through a UART
peripheral. The complete system is housed in the ML605
FPGA board. The complete structure is as shown in
Figure-7.

Figure-7. Structure of evolvable embedded system.

VRA is described in HDL, and is considered as a second
reconfigurable layer on upper side of the FPGA [12]. The
main advantage of this concept is to provide a much
simpler intrinsic evolution [8]. The VRA concept is
similar to the Cartesian Genetic Programming (CGP) [8]
and provides other benefits, which includes (i) The VRA
and the GA are housed in the same FPGA, making the
communication faster (ii) The VRA is modeled in HDL
making it easier to modify and synthesize in other FPGA
target platforms (iii) The VRA architecture modeled can
be utilized for similar problem definitions. Figure-8 shows
the VRA structure implemented for the purpose. An array
of configurable ‘cells’ is arranged in rows and columns.
Each ‘cell’ input is connected to the outputs of the two
previous columns with the exception of the first array
column, which is connected to the inputs and its invert [9].
The architecture of the ‘cell’ is modeled based on the
problem definition. Configuration bits from the GA
provide the connectivity and logic based on the input
combinations to the ‘cell’.

Figure-8. An 8 X 5 VRA core.

 The evolvable embedded architecture is carried

out on a ML605 Evaluation board with Virtex 6 FPGA.
[15]. The use of Virtex 6 FPGA was mandatory due to
simple and flexible implementation of a 32 bit soft core
MicroBlaze processor [16]. This processor computes the
GA, so faster evaluation time is achieved and also the
complete EHW process can be implemented on a single
chip.

4. SYSTEM DESIGN AND IMPLEMENTATION

 This section explains the overall view of the
complete evolvable embedded system design. The main
components to be modeled are the configuration ‘cells’ of
the VRA and the GA program for the optimization. The
configuration ‘cells’ and the GA program is interlinked, as
the logic and the interconnection of the cells in the VRA
are based on the configuration bits of the GA program.
The configuration ‘cell’ for the 2 bit adder circuit is
modeled as shown in Fig 9. It consists of three 16:1
multiplexers, and an 8X1 bit RAM. Three multiplexers are
used to select the inputs to the RAM (lookup table –
LUT), which are driven from one of the set of sixteen
inputs. A 20 bit configuration register is required to drive
the ‘cell’ as illustrated in the figure, i.e.,
3 * 4 select lines of MUX + 8 select lines to RAM. These
configuration cells are interconnected in 'm' rows and 'n'
columns to organize an array. For the design of a 2 bit
adder an 8 x 5 cell array was selected, hence a total of 400
configuration bits (40 cells * 20 configuration bits) were
asked to do the logical functions and interconnection
between the cubicles. These configuration bits are
provided by the GA program after matching the fitness at
each iteration. The fitness measure is the truth table of the
2 bit adder circuit, having 5 inputs and 3 outputs. A fitness
of 96 was calculated which has to match the hardware
outputs from the cell array [8].

 The evolutionary system was developed using
Xilinx Platform Studio (XPS 14.6) tool. An embedded
system with hardware and software elements was created
in the EDK (Embedded Development Kit) and SDK
(Software Development Kit) respectively; a 32 bit
MicroBlaze soft core CPU with a clock frequency of 50
MHz was selected. The cell array VRA block was

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4912

imported as an IP core and interfaced as a peripheral to the
Microblaze processor. Thus a hardware setup of the
problem was synthesized using the EDK platform. A GA
program has to be coded to configure the logic and
interconnection, by matching the fitness criteria.
Considering a large search space for finding the optimum
solution, fitness matching was parallel performed for 8
array structures, to improve on the evaluation time.

 A GA program with the above hardware setup
was coded in the SDK. A simple GA program as coded
using C language. The GA program was developed with
the following functions:
(i) A simple GA program to provide a best fit
configuration to the cell. The fitness function is the truth
table of the 2 bit adder.

Figure-9. Architecture of the cell.

No. of iterations: 1000
Population size: 128 with 16 sets of population for each
cell array (8 cell arrays in parallel)
Crossover rate: uniform crossover rate is used and tuned
by trial and error method to get minimum generations.
Mutation rate: bit flip mutation is used and tuned by trial
and error method to get minimum generations.
Selection method: tournament selection is implemented
with the number of selections to be optimized based on the
generations.
 (ii) The truth table for a 2 bit adder circuit was loaded in
the memory. The hardware fitness matching for 8 parallel
arrays was performed by taking the values from the
memory.
(iii) Configure the input and output registers of the array
with the bit placing as shown in the Fig 10. For the 2 bit
adder the first 5 bits of the input register represent the 2 bit
input, and a carry (Cin, A0, A1, B0, B1) whereas the first
3 bits of output register represent the outputs (C0, S0, S1).

Figure-10. Input and output array configuration for a 2
bit adder circuit.

5. RESULTS
 The results of the GA program are monitored on

a PC. The results indicate the number of generations
undergone to evolve a 2 bit adder circuit. The results on

the PC indicate the number of generations to evaluate the
fitness probability. The best and the optimum solution has
to be displayed which would prove to evolve an optimal or
novel circuit for a 2 bit adder circuit compared to our
manual design method. The result would display the
configuration bits generated to perform the logic and
interconnections in the VRA core. The optimization of the
GA program to perform the evaluation and evolution of
the circuit is based on the variation of the GA parameters
like crossover rate, mutation rate or the number selection.
A variation of the GA parameters manually to optimize the
number of generations in the evolution process was
considered a bad option, as it would be time consuming.
An adaptive GA program to measure the mutation rate and
crossover rate could be foreseen as an option, wherein the
program manipulates the crossover and mutation rates
adaptively, depending on fitness criteria and the number of
populations.

Here an experimental analysis was taken to
illustrate the variance of the GA operators with the number
of generations required to optimize the development
process. Figure-11 -13, illustrates this experimental
process graphically. From the graphs it can be seen that
improper selection of the GA parameters would sometimes
destabilize the GA program to converge to a solution.
Figure-11 gives the graphical representation of the
crossover rate with the number of evolutions. From the
graph it can be determined that a crossover rate of 45%
gives an optimum evolution in 88 generations, but a
variation in the crossover rate from 40% to 60% would
vary the number of generations to 156 and 302
respectively as shown in Figure-11.

 Similar findings were observed in Figure-12 and
Figure-13. Figure-12 demonstrates the variation of the
mutation rate with the number of generations. Here it can
be observed that an optimum value of 88 generations was
attributed to mutation rate of 10%. A mutation rate of 20%
would evolve the 2 bit adder circuit in 943 generations.
From Figure-13 a tournament selection of 5 individuals
was taken to get an optimum value of 88 generations. In
summary, for an optimum 88 number of evolutions, a
crossover rate = 45%, mutation rate = 10% and the number
of selections = 5.

Figure-11. Variation of crossover rate vs. no. of
generations.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4913

Figure-12. Variation of mution rate vs. no. of generations.

Figure-13. Variation of selections vs. no. of generations.

A complete evolution of a 2 bit adder using the above
parameters was validated with the GA program. The
results are shown in Figure-14. From the Figure it is
validated that 88 generations were required to evolve a 2
bit adder circuit. The least number of generations was
observed after varying the operators of the GA program.

Figure-14. GA configuration generation for a 2 bit adder
circuit.

5. CONCLUSIONS
 This paper describes the importance of crossover,

mutation and the number of selections in the working of a
GA program. These GA operator values have to be tuned,
such that optimum numbers of generations are required in
obtaining a solution. Usually the crossover rates are
maintained high, so the off springs attain the maximum fit
chromosomes of the parent. Likewise the mutation rates
are kept low, to prevent the GA from producing a large
number of random solutions. A tournament selection mode
is used to take the best fit chromosomes to the next
generation. This process increases the speed of
convergence for a GA. The above conditions are
theoretically proved. In this experimental setup, it can be
seen that a minimal number of generations were observed
when the crossover rate was 45% rather than a 60%
mutation rate. Likewise the same holds good for mutation
rate and the number of chromosomes in tournament
selection which are taken to be 10% and 5 respectively to
get the minimum number of generations for our evolution.
Therefore, this paper can be concluded that theoretical and
practical analyses show high crossover rates and low
mutation rates, but it also shows that, the GA operators are
problem dependent. They attain optimum value for the
minimum number of generations at certain levels only, and
that the designer has to choose the values intelligently for
a better GA convergence.

REFERENCES

[1] A E Eiben and J E Smith. 2003. "Introduction to

Evolutionary Algorithm", Springer, Natural
Computing Series, 1st Edition, ISBN 3-540-40184-9.

[2] Garisson W Greenwood and Andrew M Tyrell. 2007.

"Introduction to Evolvable Hardware: A practical
guide for designing Self Adaptive Systems", IEEE
press series on Computational Intelligence. John
Wiley Intercsience publication.

[3] Jim Torresen. 2004. “An Evolvable Hardware

Tutorial”, Field Programmable Logic and
Application, Lecture Notes in Computer Science Vol.
3203, , pp. 821-830.

[4] Lukas Sekanina and Vladimır Drabek. 2004. “Theory

and Applications of Evolvable Embedded Systems”,
Proceedings of the 11th IEEE Computer-Based
Systems (ECBS’04), IEEE Computer Society Press,
August.

[5] Vedavathi. A, Meena. K.V. and Gayatri Malhotra.

2012. "VHDL Implementation of Genetic Algorithm
for 2-bit Adder", International Conference on
Electronics and Communication Engineering, 20th, pp
57 – 63, May.

[6] Kumara Sastry, David Goldberg and Graham Kendall.

2003. "Genetic Algorithm", Springer, Introductory

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4914

Tutorial in Optimization and Decision Support
Techniques, pp. 97 – 125.

[7] P. Soleimani, S. Mirzakuchaki, K. Mohammadi and

M. Bagheri. 2011. "A Novel Evolutionary design of
Sequential Logic Circuits by using Genetic
Algorithm", International Journal of Modeling and
Optimization, Vol. 1, No. 3, August, pp. 231 – 235.

[8] Lucas Sekanina and Stepan Friedl. 2008. “An

Evolvable Combinational Unit for FPGAs",
Computing and Informatics, Vol. 23, pp 461- 486.

[9] Andrew Greensted, “Evolving Digital Hardware",
Lecture 1, EHW Module.

[10] Lucas Sekanina. 2006. “Evolutionary Design of

Digital Circuits: Where are current limits?”,
Proceedings of the first NASA/ESA Conference on
Adaptive Hardware and Systems, IEEE.

[11] Kaifeng Zhang, Huanzhang Lu, Weidong Hu and Jian

Wang. 2014. “A LUT manipulation based intrinsic
evolvable system”, IEICIE Electronics Express, Vol.
11, No. 4, pp 1-7.

[12] J Wang, Q.S Chen and C. H. Lee. 2008. "Design and

implementation of a virtual reconfigurable
architecture for different applications of intrinsic
evolvable hardware", IET computers and Digital
Techniques, Vol. 2, No. 5, pp 386 - 400.

[13] Ruben Salvador, Andrea Otera, Javier Mora, Eduardo

de la Torre, Teresa Riesgo and Lucas Sekanina. 2013.
"Self Reconfigurable Evolving Hardware system for
Adpative Image Processing", IEEE Transactions on
Computers, Vol. 62, No. 8, Aug.

[14] JingXia Wang and Sin Ming Loo. 2010. "Case study

of Finite Resource Optimization in FPGA using
Genetic Algorithm", IJCA, Vol. 17, No. 2, June, pp.
95 - 101.

[15] Xilinx. 2012. "ML605 hardware User Guide",

Application UG534, October.

[16] Rod Jesman, Fernando Martinez Vallina and Jafar

Saniie. "MicroBlaze Tutorial Creating a Simple
Embedded System and Adding Custom Peripherals
Using Xilinx EDK Software Tools", Embedded
Computing and Signal Processing Laboratory, Illinois
Institute of Technology.

