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ABSTRACT 
 The paper aims to provide an idea of the genetic algorithm parameters and its importance in the evolution of 
circuits through embedded evolvable hardware. Evolvable Hardware is an integration of evolutionary algorithms with 
programmable devices. A Genetic Algorithm fused into the soft processor of a Field Programmable Gate Array is termed, 
Evolvable Embedded Hardware. The system has the ability to converge to a solution faster due to the evaluation in a single 
device, when compared to the conventional evolvable hardware structure. An insight into the genetic algorithm and 
optimization of genetic parameters for design of combinational circuits is discussed. An experimental model for a 2 bit 
adder for different genetic parameters is validated to demonstrate the systematic evolution of evolvable embedded system 
hardware. This experimental setup is carried out on Virtex 6 (XC6VLX240T-1FFG1156) ML605 Evaluation Kit FPGA 
using the Xilinx Platform Studio 14.6 tools.  
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1. INTRODUCTION 
   Conventional VLSI design methods using the 
Hardware Description Languages (HDL) are sometimes 
inadequate as the system complexity increases. The 
complexity of circuits has made design through human 
intervention all the more complicated. As the design 
complexity increases exponentially it becomes difficult to 
optimize the system in terms of speed, area and power. To 
overcome the hurdle of design ability and to reduce the 
human interference in the design we go in for a technique 
which is known as “Evolvable Hardware” or EHW. EHW 
was a concept introduced by Hugo De Garis in 1992 
which was an integration of evolutionary algorithms with 
programmable devices [2]. In EHW, the circuit is designed 
and implemented in a programmable device by adaptively 
changing an algorithm which uses the Darwinian principle 
of natural selection [1]. The evolutionary algorithms 
include genetic algorithms, genetic programming, 
evolutionary computing, and so on, whereas the 
programmable devices are preferably Field Programmable 
Gate Arrays (FPGA). The benefits of implementing the 
circuits through evolutionary algorithms are – reduced 
complexity, smaller circuits, better performing and 
efficient circuits, and the user can bring about new ideas 
and innovations to the design [1]. The scope of this paper 
is limited to the integration of Genetic Algorithms (GA) 
with FPGAs in EHW.  
 The integration of GAs with FPGA in EHW is 
with regard that the configuration bit strings to the FPGA 
are the chromosomes of the GA as shown in Figure-1. An 
initial population of chromosomes for a target solution are 
evaluated for their fitness. The chromosomes are ranked 
based on their fitness and undergo genetic operations like 
crossover, mutations and selection. The final fit 
chromosomes are encoded as configuration bits of the 
FPGA, to form the new evolved circuit. A best fit solution 
is obtained after undergoing several iterations, to obtain 
the final optimized circuit. A new circuit configurations 

are evolved at every iteration based on the fitness 
probability. A fitness function is designed, such that the 
GA can autonomously find the best solution for the 
design, to be implemented in the FPGA. FPGA based 
EHW can be classified based on evaluation of the 
solutions - extrinsic evolution and intrinsic evolution as 
shown in Figure-1. In extrinsic evolution the development 
of circuits uses a simulation approach of determining the 
best evaluation and the solutions are implemented in the 
device. In intrinsic evolution, each candidate solution is 
directly mapped and implemented in the target device. The 
latter offers better accuracy of self evolved circuits [3]. In 
conventional works on EHW, the GA operations were 
conducted out in computer or workstations, which would 
make the system robust and slow. In recent works the GA 
operation is performed on the same FPGA chip either by 
hardware or by software in a dedicated core. The paper 
discusses this concept, where the GA operation is 
performed on a soft core processor, known as MicroBlaze, 
on the Virtex 6 FPGA. This type of evolution of circuits is 
termed as Evolvable Embedded System [4].  
 The concept of the Evolvable Embedded System 
is - an evolutionary algorithm is utilized to dynamically 
modify some of the system components, in order to adapt 
the behavior of the system to a changing environment [4]. 
A 32 bit MicroBlaze soft processor computes the GA for 
the evolution of a target system. The best fit chromosomes 
from the GA, configure the FPGA to give birth to an 
optimized or novel system. The process of evaluation of 
the best fit chromosomes, and evolution of the system 
takes place in the same FPGA. An evolvable embedded 
system architecture for a 2 bit adder circuit using the 
intrinsic mode of evolution is discussed, changing the 
hardware based on the fitness evaluation from the GA. 
This evolvable embedded hardware architecture was 
implemented on Virtex 6 (XC6VLX240T-1FFG1156) 
ML605 Evaluation Kit. GA results displayed on a PC. 
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Figure-1. Basic structure of EHW. 
 

 The rest of this paper is organized as follows. 
Section II gives a detail study of GA and its parameters. 
Section III describes the modeling of an evolvable 
embedded system. Section IV gives a complete system 
design to implement a 2 bit adder. Section V discusses the 
results with Section VI giving a brief conclusion of the 
paper. 

 
2. GENETIC ALGORITHM 
 The Evolutionary Algorithm (EA) brings about a 
hypothesis that a population of individuals exists in an 
environment with limited resources, and the competition 
for these resources causes selection of fitter individuals 
that are better accommodated to the environment [1]. 
Genetic Algorithm is an EA developed by John Holland in 
1970's and popularized by David Goldberg. They are 
adaptive heuristic search algorithm based on the principle 
of the Charles Darwin theory of natural selection and 
genetics. GA is capable of solving a myriad of design 
parameters and multiple design goals, thus finding an 
optimal combination [6]. With the advent of the evolvable 
hardware concept, the role of GA became popular in the 
field of VLSI design. The aim of the algorithm to find an 
optimum solution to the problem was utilized here, to 
evolve circuits that may be optimized in area, speed or 
power. It can also lead to novel circuit structures 
compared to the manual design. A detail study of the GA 
and its characteristics is explained below. 
 
a) GA terminology 

 A brief description of the terms associated with 
the GA is described: 
 Population: it is a collection of several alternative 

solutions to the given problem. 
 String or Chromosomes: it is the individual in the 

population. 
 Genes: it is the individual characters in the string. 
 Genotype: the bit string (chromosomes) that 

provides a possible solution. 
 Phenotype: the genotype encoded into a physical 

structure 

 Population size: it determines the amount of 
information stored. 

 Fitness function: it is the user defined problem 
specification. 
 

b) GA characteristics 
 There are five main characteristics of GA [1][6], 

which are problem dependent. Depending on the problem 
definition the characteristics differ in their approach. 

 

1) Representation: it is a mode of representing the 
individuals in an optimized way, to store the 
representations. The representation can be either binary or 
real-valued representations. This paper deals with only 
binary representations 
 

2) Selection: defined as selecting fit candidates from the 
pool, to pass on their genes to future generations. Different 
types of selection processes are - Truncation selection, 
Roulette wheel selection, Tournament selection, 
Neighborhood selection. 

 

3) Mutation: genes are randomly altered in hopes of 
bringing out new properties into the next iteration.  

4) Fitness function: gives an intuition of how well the 
individual is and depends on the problem. 

 

5) Survivor decision: it is the survival of the best 
individuals, also known as Elitism factor. In general, the 
overall best individual is stored as a different individual, 
but they are not used during operations.  
 
c) GA operators 

 The basic GA operators are crossover, mutation 
and selection, which establish the main algorithm, whereas 
the population and fitness function can be seen as external 
entities. Both crossover and mutation are probabilistic 
operations and their frequencies of occurrence are 
controlled by predefined probabilities. As a crossover 
plays the key role in improving the solution, it is assigned 
a high frequency of occurrence. The frequency of 
occurrence of mutation is kept fairly low, to prevent the 
GA from producing a large number of random solutions. 

 

1) Crossover: recombination of genetic material of the 
parent to form one or more offspring, by preserving some 
of the useful traits of the parents. The goal is to generate 
new chromosomes that are more fit than their ancestors, 
thereby leading to the overall convergence of the 
population. There are many ways of performing crossover 
- one-point, two-point, or uniform crossover is used with 
binary encoding.  
 One point crossover: a random position in the 
chromosome is chosen. Child 1 is head of chromosome of 
parent 1 with the tail of chromosome of parent 2. Child 2 
is head of chromosome of parent 2 with the tail of 
chromosome of parent 1 as shown in Figure-2.                      
Two point Crossover: two random positions on the 
chromosome are chosen. The genes at the head and the 
tail, of a chromosome are always split and then 
recombined as shown in Figure-3. 
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Figure-2. One point crossover. 
 

 
 

Figure-3.  Two point crossover. 
 
Uniform Crossover: a random mask is generated. The 
sequence of the mask determines the crossover from 
parent 1 and parent 2. Bit density in mask determines how 
much material is taken from the other parent as shown in 
Figure-4. 
 

 
 

Figure-4.  Uniform crossover. 
 

Mutations: it randomly changes the bit of an offspring 
after crossover. Mutation is treated as supporting operator 
for the purpose of restoring lost genetic material. Bit flip 
mutation is the most common mutation operator for 
binary- encoded GAs. This is realized by simply inverting 
one or more bits in the chromosome string based on the 
probability of mutation as shown in Figure-5. 
 

 
Figure-5. Mutation operator in binary representation. 
 

Selection: different selection methods are available, but 
the most commonly applied methods are roulette- wheel, 
tournament and ranking. In the Roulette - wheel selection 
each individual’s probability of being selected in the next 
population is proportional to its fitness value. Rank 
selection involves ranking the individuals from ‘best’ to 
‘worst’ on the basis of their measured fitness values. In 
Tournament selection, a group of individuals is chosen 
iteratively by holding a tournament and the one with the 
best fitness value is chosen until it is filled with a 

predetermined number of individuals. This can be avoided 
by ensuring that a number of individuals deemed to be the 
best are always passed on to the next generation 
unchanged. This method is called elitism and it often 
increases the convergence speed at the expense of a risk of 
getting stuck around the so-called elite solutions.  
 
d) GA flow 

 The complete flow graph of the GA program is 
illustrated in Figure-6. The flowchart can be explained as 
follows. 
 

Step-1: Create an initial population of random solutions 
(chromosomes) by some means. 
 

Step-2: Assess the chromosomes for fitness using the 
criteria imposed on the required solution and create an 
elite set of chromosomes by selecting a number of 
chromosomes that best satisfy the requirements imposed 
on the solution. 
 

Step-3: If the top-ranking chromosome in the elite set 
satisfies fully the requirements imposed on the solution, 
output that chromosome as the required solution, and stop. 
Otherwise, continue to Step-4. 
 

Step-4: Apply crossover between pairs of chromosomes in 
the elite set to generate more chromosomes and subject 
certain chromosomes chosen at random to mutations, and 
repeat from Step-2. 

 
 

Figure-6. Flowchart of GA. 
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3. STRUCTURE OF EVOLVABLE EMBEDDED 
HARDWARE 

 The architecture uses the concept of the Virtual 
Reconfigurable Architecture (VRA) core [12] [13]. Here 
the VRA is modeled as an IP core using HDL. This 
hardware description of the architecture was layered over 
the reconfigurable chip, to implement the evolutionary 
structure. The main idea of this concept is that the designer 
has the flexibility in modeling the GA program to produce 
configuration bits to program the FPGA. GA program was 
fused in the MicroBlaze soft processor, where the 
evaluations are displayed on the PC through a UART 
peripheral. The complete system is housed in the ML605 
FPGA board. The complete structure is as shown in 
Figure-7. 

 

 
 

Figure-7. Structure of evolvable embedded system. 
 
VRA is described in HDL, and is considered as a second 
reconfigurable layer on upper side of the FPGA [12]. The 
main advantage of this concept is to provide a much 
simpler intrinsic evolution [8]. The VRA concept is 
similar to the Cartesian Genetic Programming (CGP) [8] 
and provides other benefits, which includes (i) The VRA 
and the GA are housed in the same FPGA, making the 
communication faster (ii) The VRA is modeled in HDL 
making it easier to modify and synthesize in other FPGA 
target platforms (iii) The VRA architecture modeled can 
be utilized for similar problem definitions. Figure-8 shows 
the VRA structure implemented for the purpose. An array 
of configurable ‘cells’ is arranged in rows and columns. 
Each ‘cell’ input is connected to the outputs of the two 
previous columns with the exception of the first array 
column, which is connected to the inputs and its invert [9]. 
The architecture of the ‘cell’ is modeled based on the 
problem definition. Configuration bits from the GA 
provide the connectivity and logic based on the input 
combinations to the ‘cell’. 
 

 
 

Figure-8. An 8 X 5 VRA core. 
 
 The evolvable embedded architecture is carried 

out on a ML605 Evaluation board with Virtex 6 FPGA. 
[15]. The use of Virtex 6 FPGA was mandatory due to 
simple and flexible implementation of a 32 bit soft core 
MicroBlaze processor [16]. This processor computes the 
GA, so faster evaluation time is achieved and also the 
complete EHW process can be implemented on a single 
chip.  

 
4. SYSTEM DESIGN AND IMPLEMENTATION 

 This section explains the overall view of the 
complete evolvable embedded system design. The main 
components to be modeled are the configuration ‘cells’ of 
the VRA and the GA program for the optimization. The 
configuration ‘cells’ and the GA program is interlinked, as 
the logic and the interconnection of the cells in the VRA 
are based on the configuration bits of the GA program. 
The configuration ‘cell’ for the 2 bit adder circuit is 
modeled as shown in Fig 9. It consists of three 16:1 
multiplexers, and an 8X1 bit RAM. Three multiplexers are 
used to select the inputs to the RAM (lookup table – 
LUT), which are driven from one of the set of sixteen 
inputs. A 20 bit configuration register is required to drive 
the ‘cell’ as illustrated in the figure, i.e.,                     
3 * 4 select lines of MUX + 8 select lines to RAM. These 
configuration cells are interconnected in 'm' rows and 'n' 
columns to organize an array. For the design of a 2 bit 
adder an 8 x 5 cell array was selected, hence a total of 400 
configuration bits (40 cells * 20 configuration bits) were 
asked to do the logical functions and interconnection 
between the cubicles. These configuration bits are 
provided by the GA program after matching the fitness at 
each iteration. The fitness measure is the truth table of the 
2 bit adder circuit, having 5 inputs and 3 outputs. A fitness 
of 96 was calculated which has to match the hardware 
outputs from the cell array [8].  

 The evolutionary system was developed using 
Xilinx Platform Studio (XPS 14.6) tool. An embedded 
system with hardware and software elements was created 
in the EDK (Embedded Development Kit) and SDK 
(Software Development Kit) respectively; a 32 bit 
MicroBlaze soft core CPU with a clock frequency of 50 
MHz was selected. The cell array VRA block was 
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imported as an IP core and interfaced as a peripheral to the 
Microblaze processor. Thus a hardware setup of the 
problem was synthesized using the EDK platform. A GA 
program has to be coded to configure the logic and 
interconnection, by matching the fitness criteria. 
Considering a large search space for finding the optimum 
solution, fitness matching was parallel performed for 8 
array structures, to improve on the evaluation time. 

 A GA program with the above hardware setup 
was coded in the SDK. A simple GA program as coded 
using C language. The GA program was developed with 
the following functions:  
(i) A simple GA program to provide a best fit 
configuration to the cell. The fitness function is the truth 
table of the 2 bit adder. 
 

 
 

Figure-9. Architecture of the cell. 
 

No. of iterations: 1000 
Population size: 128 with 16 sets of population for each 
cell array (8 cell arrays in parallel) 
Crossover rate: uniform crossover rate is used and tuned 
by trial and error method to get minimum generations. 
Mutation rate: bit flip mutation is used and tuned by trial 
and error method to get minimum generations. 
Selection method: tournament selection is implemented 
with the number of selections to be optimized based on the 
generations. 
 (ii) The truth table for a 2 bit adder circuit was loaded in 
the memory. The hardware fitness matching for 8 parallel 
arrays was performed by taking the values from the 
memory. 
(iii) Configure the input and output registers of the array 
with the bit placing as shown in the Fig 10. For the 2 bit 
adder the first 5 bits of the input register represent the 2 bit 
input, and a carry (Cin, A0, A1, B0, B1) whereas the first 
3 bits of output register represent the outputs (C0, S0, S1). 
 

 
 

Figure-10. Input and output array configuration for a 2 
bit adder circuit. 

5. RESULTS  
 The results of the GA program are monitored on 

a PC. The results indicate the number of generations 
undergone to evolve a 2 bit adder circuit. The results on 

the PC indicate the number of generations to evaluate the 
fitness probability. The best and the optimum solution has 
to be displayed which would prove to evolve an optimal or 
novel circuit for a 2 bit adder circuit compared to our 
manual design method. The result would display the 
configuration bits generated to perform the logic and 
interconnections in the VRA core. The optimization of the 
GA program to perform the evaluation and evolution of 
the circuit is based on the variation of the GA parameters 
like crossover rate, mutation rate or the number selection. 
A variation of the GA parameters manually to optimize the 
number of generations in the evolution process was 
considered a bad option, as it would be time consuming. 
An adaptive GA program to measure the mutation rate and 
crossover rate could be foreseen as an option, wherein the 
program manipulates the crossover and mutation rates 
adaptively, depending on fitness criteria and the number of 
populations. 

Here an experimental analysis was taken to 
illustrate the variance of the GA operators with the number 
of generations required to optimize the development 
process. Figure-11 -13, illustrates this experimental 
process graphically. From the graphs it can be seen that 
improper selection of the GA parameters would sometimes 
destabilize the GA program to converge to a solution. 
Figure-11 gives the graphical representation of the 
crossover rate with the number of evolutions. From the 
graph it can be determined that a crossover rate of 45% 
gives an optimum evolution in 88 generations, but a 
variation in the crossover rate from 40% to 60% would 
vary the number of generations to 156 and 302 
respectively as shown in Figure-11. 

 Similar findings were observed in Figure-12 and 
Figure-13. Figure-12 demonstrates the variation of the 
mutation rate with the number of generations. Here it can 
be observed that an optimum value of 88 generations was 
attributed to mutation rate of 10%. A mutation rate of 20% 
would evolve the 2 bit adder circuit in 943 generations. 
From Figure-13 a tournament selection of 5 individuals 
was taken to get an optimum value of 88 generations. In 
summary, for an optimum 88 number of evolutions, a 
crossover rate = 45%, mutation rate = 10% and the number 
of selections = 5. 
 

 
 

Figure-11. Variation of crossover rate vs. no. of 
generations. 
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Figure-12. Variation of mution rate vs. no. of generations. 
 

 
 

Figure-13. Variation of selections vs. no. of generations. 
 
A complete evolution of a 2 bit adder using the above 
parameters was validated with the GA program. The 
results are shown in Figure-14. From the Figure it is 
validated that 88 generations were required to evolve a 2 
bit adder circuit. The least number of generations was 
observed after varying the operators of the GA program. 
 

 
 

Figure-14. GA configuration generation for a 2 bit adder 
circuit. 

 

5. CONCLUSIONS 
 This paper describes the importance of crossover, 

mutation and the number of selections in the working of a 
GA program. These GA operator values have to be tuned, 
such that optimum numbers of generations are required in 
obtaining a solution. Usually the crossover rates are 
maintained high, so the off springs attain the maximum fit 
chromosomes of the parent. Likewise the mutation rates 
are kept low, to prevent the GA from producing a large 
number of random solutions. A tournament selection mode 
is used to take the best fit chromosomes to the next 
generation. This process increases the speed of 
convergence for a GA. The above conditions are 
theoretically proved. In this experimental setup, it can be 
seen that a minimal number of generations were observed 
when the crossover rate was 45% rather than a 60% 
mutation rate. Likewise the same holds good for mutation 
rate and the number of chromosomes in tournament 
selection which are taken to be 10% and 5 respectively to 
get the minimum number of generations for our evolution.  
Therefore, this paper can be concluded that theoretical and 
practical analyses show high crossover rates and low 
mutation rates, but it also shows that, the GA operators are 
problem dependent. They attain optimum value for the 
minimum number of generations at certain levels only, and 
that the designer has to choose the values intelligently for 
a better GA convergence. 
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