
 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4964

ANOPTIMIZED ARCHITECTURE FOR ADAPTIVE DIGITAL FILTER

Britto Pari J. and Joy Vasantha Rani S. P.
Department of Electronics Engineering, MIT campus, Anna University, Chennai, India

E-Mail: brittopari@yahoo.co.in

ABSTRACT
 In this paper, we propose an efficient adaptive FIR filter architecture using a single multiplier and adder
irrespective of number taps using the concept of time sharing multiplier architecture. For efficient optimization of
multiplier architectures, Output Product Coding and parallel pipelined multiplier are applied. The proposed Adaptive FIR
filter architecture is implemented for 32-tap using Verilog and synthesized using XILINX VIRTEX-5 FPGA device. The
results are validated using FPGA in Loop (FIL), where simulation is done using MATLAB/Simulink-xPC target tool box.
This design provides substantial area reduction compared to the conventional Adaptive FIR filter architectures for the
FPGA implementation. The proposed Adaptive FIR filter supports up to 323 MHz input sampling frequency for FPGA
implementation.

Keywords: filter, look up table (LUT), odd multiple storage, output product coding (OPC), least mean square (LMS), FPGA in loop
(FIL).

1. INTRODUCTION

 The current research is highly focused in the area
of adaptive signal processing applications such as channel
equalization, acoustic echo cancellation, interference
cancellation, system identification and so on. These
applications require higher order Digital filters thereby
making the hardware complex. Hence the area occupied to
be large when implemented in FPGA chips. Therefore
researchers have been continuously focusing their work on
reduction in the hardware complexity. [1]- [3].

 Finite Impulse Response (FIR) digital filter is
widely used as a basic block in signal and image
processing applications. Since the number of multiply-
accumulate (MAC) operations required per filter output
increases linearly with the filter order, the real-time
implementation of the higher order filters is a challenging
task. Several attempts havebeen made and continued to
develop low-complexity dedicated VLSI systems for these
filters [4]–[10].

 There are two basic variants of memory-based
techniques used for avoiding the usage of embedded
multipliers They are based on Distributed Arithmetic (DA)
for inner product computation [11]-[16] and computation
of multiplication by look-up-table (LUT) [17]–[24]. In the
LUT based approach, multiplications of input values with
a fixed-coefficient are performed by an LUT consisting of
all possible pre-computed product values corresponding to
all possible values of input multiplicand while in the DA-
based approach, an LUT is used to store all possible values
of inner-products of a fixed-point vector. If the inner-
products are implemented in a straight-forward way, the
memory-size for implementation of LUT-multiplier
increases exponentially with the word length of input
values, whereas the memory size of the DA-based
approach increases exponentially with the inner-product-
length. It is observed that the reduction of memory-size
achieved by such decompositions is accompanied by
increase in latency as well as the number of adders and
latches.

 In Adaptive FIR filter architecture, the direct
implementation of N-tap FIR filter requires N MAC
operations, which are too expensive in hardware
implementation due to its logic complexity and area
constraint. Therefore an architecture has to be designed
which overcomes the above constraints. In this paper, a
filter is implemented with time sharing multiplier
architecture across single MAC core irrespective number
of taps by increasing the filter operating frequency. For
optimizing the performance of the multiplier, Output
Product Coding (OPC) scheme [5] and parallel pipelined
multiplier architectures are implemented. The main
advantages of these two architecture schemes are that they
reduce complexity and increase the speed of the
architecture in the design by manipulating the odd
multiples of The main advantages of OPC architecture
scheme is that it reduces complexity and increase the
speed of the architecture in the design by manipulating the
odd multiples of the fixed coefficient Where as in
pipelined parallel multiplier the speed of the architecture is
improved by changing the combinational logic into
sequential logic with inserting pipelined registers. The
performances of the proposed architectures are analysed in
terms of area and time. The results are validated using
FPGA in the Loop (FIL) technique.

 The rest of the paper is organized as follows. In
Section II describes about efficient Multiplier structures
for Adaptive FIR filter. Section III describes the details of
architecture design of Adaptive FIR Filter. The
performance of the design are analyzed and discussed in
Section IV. Finally, Section V concludes the paper in
brief.

2. EFFICIENT MULTIPLIER STRUCTURES FOR

ADAPTIVE FIR FILTER
 In the filter the MAC structure and delay blocks
are the main building blocks. The performance of the DSP
algorithms entirely depends upon the multipliers in terms

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4965

of critical path. The two schemes discussed here are OPC
and pipelined parallel multiplier architectures.

a) OPC scheme

 When the both negative and positive sample of
the signal exist in case of bipolar signals, odd multiple
scheme method [5] fails. This disadvantage can be
overcome by Output Product Coding proposed by [5].
Consider the input and the co-efficient to be in L-bit sign
magnitude format. The most significant bit of both input
and co-efficient corresponds to the sign value while the
remaining (L-1) bits correspond to the magnitude. In order
to obtain the complete product value in the sign magnitude
representation, the magnitude and the sign bits are
processed separately and finally appended. Memory
optimization is also achieved by applying the OPC
technique in LUT.

 From Table-1 it is observed that the address value
of ith row is the two’s complement of (128+2-i)th row for
2 ≤ i ≤ 64. The sum of product values on these two rows is
128A. Let the product values on the ith and the (128+2-i)th
be u and v, respectively. The relation between ‘u’ and ‘v’
is given as

u v v u
u

2 2

     
and

u v v u
v

2 2

      (1)

where (u+v) is 128A. From Table-1 it is observed that
there are three considerations namely, a constant value,
value accessed from the look up table and also whether an
addition or a subtraction is to be performed. The constant
value is nothing but the value obtained after the
computation of (u+v) which is given by 128A. The value
accessed from the memory array depends upon the
magnitude portion of the input vector. i.e., for an input of
L bits, only (L-2) bits are considered for memory access.

 The block diagram shown in Figure-1
corresponds to the architecture for the computation of the
product value using OPC method for an input of 8-bits
(inclusive of the sign bit). It has an encoder that converts
an input of 7 bits (magnitude alone) to a 6 bit address
value. The conversion is controlled by logical relations
(1a) to (1g).

5 6 5D X .X

(1.1a)

4 6 4D X .X (1.1b)

3 6 3D X .X (1.1c)

2 6 2D X .X (1.1d)

1 6 1D X .X (1.1e)

0 6 0D X .X (1.1f)

The control circuit decides the operation of two’s
complement to be performed on (L-2) bit. If L-2 bit is ‘1’
two’s complement address is considered and the normal
address for ‘0’ which becomes the final address to access
the value from the memory array consisting of stored
value in the LUT as tabulated in Table-1. The next unit to

be considered is the add/subtract unit which decides
whether to add or subtract the value accessed from the

memory array with the constant value of . Here the

value of is 64A. The add/subtract unit makes a

decision on this and performs the operation accordingly.
The sign value of the output is given by the logical

relation 7 7s x A 
. This sign bit is concatenated with

the magnitude in the append block for a complete product.
Therefore, for an input of N-bits, this method makes use of
2L-2memory locations thereby reducing the number of
memory locations further.

Table-1. Look up table for OPC scheme.

Address Product
value

Product
can be

written as

Stored
value in

LUT X6X5X4X3X2X1X0

0 0 64A-64A 64A

1 A 64A-63A 63A
10 2A 64A-62A 62A

11 3A 64A-61A 61A

100 4A 64A-60A 60A
. . . .
. . . .
. . . .

111100 60A 64A-4A 4A

111101 61A 64A-3A 3A

111110 62A 64A-2A 2A

111111 63A 64A-A A

1000000 64A 64A-0 -

1000001 65A 64A+A -

1000010 66A 64A+2A -

. . . .

. . . .

. . . .

1111100 124A 64A+60A -

1111101 125A 64A+61A -

1111110 126A 64A+62A -

1111111 127A 64A+63A -

b) Parallel pipeline multiplier
 The parallel multipliers are commonly used in

high performance digital signal processors. They require
more hardware compared to the serial multiplier in order
to provide performance improvements. There are various
ways to implement the parallel multipliers [11]. The
simplest way of implementing n x n1 bit parallel multiplier
is to generate all partial products and reduce them to rows
of carry and sum signals.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4966

Figure-1. Proposed architecture for OPC scheme.

 The final step is the addition of the generated

carry and sum signals. The major disadvantage of this
process is that speed is decreased due to the bit wise
multiplier operation. In a parallel pipelined multiplier, the
first step performed is the formation of a bit-product
matrix. A bit-product matrix is simply an array of bit-
products formed by multiplication of the individual bits of
the two numbers being multiplied, a multiplicand and a
multiplier. The generated partial products and their
summed resultants are stored in the pipelined registers.
The pipelined registers are inserted to increase the speed
of the operation by changing the combinational logic into
sequential logic. The principle is illustrated in the
Figure-2.

3. EFFICIENT ADAPTIVE FIR FILTER

ARCHITECTURE USING LMS ALGORITHM
 Filters with fixed coefficients are suitable at the

condition of known characteristics of signal and noise.
However, they become inapplicable when the
characteristics are not known or in other words when the
input signal is not stationary. Therefore, an adaptive filter
is used whose coefficients vary depending upon the input.
One of the basic and simple adaptive algorithms is the
gradient based algorithm. The LMS (least mean square)
algorithm is one of the adaptive algorithms based on the
method of steepest descent. This algorithm aims at
reducing the gradient of the squared error value. The
adaptive filter also has the same kind of implementation as
that of a fixed filter with the usage of delay elements,
adder, and multiplier.
 This magnitude or the difference value is given as
a feedback input to the system. Adaptive algorithm makes
use of the input and the error magnitude in order to vary
the weight values such that the obtained actual output is
very much near to the desired output i.e., e(n) value is
minimizedor ideally zero. Therefore, this process of
varying the weights continues in a recursive manner until
the lowest possible value is reached. The minimum value

of e(n) can be obtained only if d(n) the desired output and
the actual output Y(n) are equal.
 However, in practical situations the ideal value of
the error value being zero cannot be obtained but it can be
done to get the lowest possible e(n) value. The most basic
and the familiar adaptive algorithm is the least mean
square algorithm (LMS).The equation governing the LMS
algorithm is given as shown in equation (2).

Figure-2. Parallel pipeline multiplier.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4967

Figure-3. Conventional Adaptive architecture.

w(n+1) = w(n) - µ∆ε[n] (2)

The equation (2) is called as the weight update

equation. The parameter µ is called as the step size and the
value ε[n] represents the mean square error value. Figure-3
shows the conventional architecture scheme implemented
in Adaptive FIR filter. In these Adaptive FIR filter
architecture, by increasing the number of taps, number of
multipliers is also increased linearly. In order to overcome
these difficulties, the efficient architecture is proposed
with time sharing multiplier architecture across the single
MAC core by increasing the output filter frequency.
Suppose for 2 tap FIR filter, the input sampling rate is
1Mega samples per second(MSPS), by increasing the
sampling rate of output filter to ‘2x’ MSPS, for each
clock cycle, data is injected to the multiplier to do filter
operation and the output is obtained within two clock
cycles.
 The proposed adaptive FIR architecture consists
of following elements as shown in Figure-4 Multiplexer is
used to select the data across the registers and perform the
multiplier operation with the filter coefficients are stored
in registers. Accumulator block is used to add the previous
data value to the present data value and is set to zero after
2 clock cycles. Multiplexer Select lines and an
accumulator operation are selected by only one generic
counter. For sixteen tap filter, 16 clock cycles are required.
Similarly implementation for any number of taps can be
done by using single multiplier and adder by increasing
operating frequency of FIR filter. The error signal is the
difference between desired signal ‘din’ and filter output
‘Y_out’ and is fed back to the input. The error signal is
multiplied with a step index of μ =0.06, the resultant is
multiplied to x_in to simultaneously update the filter
coefficients c0_reg and c1_reg.

Figure-4. Proposed Adaptive FIR filter architecture.

 The performance of the filter further enhanced by
the introduction of two architecture schemes which
reduces the complexity and critical path. Therefore,
Parallel pipeline multipliers are used in systems where
increased performance is required. In these multiplier, the
pipelined registers are inserted to increase the speed of the
operation by changing the combinational logic into
sequential. By means of OPC based LUT multiplier, the
number of memory locations needed to store partial
products is reduced from 2L to 2L-2. Hence the memory
size is greatly reduced as compared to odd schematic
based multiplication, which leads to reduction in
complexity.

4. RESULTS AND DISCUSSIONS
 The proposed Adaptive FIR Filter architectures are
implemented using two methods: (i) Output product
coding and (ii) Parallel Pipelined Multiplier, and both are

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4968

synthesized using XILINX VIRTEX-5(XC5VSX95T-
1FF1136.

Figure-5. Input signal of Adaptive FIR filter (400HZ).

Figure-6. FPGA IN LOOP(FIL) simulation results
obtained through Adaptive FIR filter implementation on
Altera DE2 -115 board a) desired input(100HZ) b) error

signal c) filter output.

Figure-7. FPGA in loop (FIL) simulation setup.

FPGA In Loop (FIL) Simulation is done using
MATLAB/Simulink-xPC target tool box which provides
connection to Altera DE2 -115 FPGA kit. This helps in
testing the models in real time. Figure-5 and Figure-6
shows the time domain input/output curve based on LMS
algorithm, the results shown LMS algorithm can remove
the noise signal, and output signals can converge to the
input signal. The 400 HZ sine wave is used as the input.

 The desired signal (dut_ref) 100HZ was
generated by filtering the input with an FIR filter whose
coefficients are evaluated by LMS algorithm. The step
index taken as µ=0.06 and Figure-7 shows the FPGA in
loop simulation setup. The application uses Simulink®
and an FPGA development board to verify the HDL
implementation of LMS Adaptive FIR filter.

 The performance results of Adaptive FIR filter
architectures are analyzed in Table-2 and Table-3. From
the Table-2 and 3, it is observed that time sharing
multiplier architecture using Single MAC core achieved
drastic area reduction. The speed of the architecture is
further improved by pipelining registers across the
multiplier and filter output. From Table-2 and 3, it can be
analyzed that the design has drastic area reduction
compared to the conventional Adaptive FIR filter
architectures for the FPGA implementation.

5. CONCLUSIONS
 The proposed method shown as efficient schemes
for high-throughput single MAC based implementation of
adaptive FIR digital filters. It is shown that the hardware
cost could be substantially reduced by time sharing
multiplier architecture across single MAC core.
Thismethod resulted in substantial area reduction
compared to the conventional Adaptive FIR filter
architectures for the FPGA implementation. The
proposed structure of 16-tap Adaptive FIR filter for FPGA
implementation supports up to 323 MHz input sampling
frequency. Thus the efficient Adaptive FIR filter
architectures achieve high speed, low complexity and the

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4969

flexibility of FPGA technology making the architectures a
viable alternative to the development of reconfigurable

hardware for real time signal processing applications.

Table-2. Performance results of Adaptive FIR filter using XILINX VIRTES-5 (XC5VSX95T-1FF1136).

Performance measures
Conventional Adaptive FIR filter with
OPC

Proposed Adaptive FIR filter with OPC

No. of taps 2-tap 8-tap 16-tap 32-t ap 2-tap 8-tap 16-tap 32-tap

Number of slices 117 411 808 1586 142 149 220 341

Number of slice registers 168 624 1232 2448 247 224 352 608

Number of slice Luts 4848 19454 38946 78012 1281 1360 1488 1664

Minimum sampling period(ns) 4.125 8.360 11.697 16.817 2.081 3.075 3.096 3.118

Maximum sampling
frequency(MHz)

242.432 119.622 85.489 59.465 480.558 325.223 323.043 320.718

Table-3. Performance results of adaptive FIR filter using XILINX VIRTES-5 (XC5VSX95 T-1FF1136).

Performance measures
Conventional Adaptive FIR filter with parallel
pipeline multiplier

Proposed Adaptive FIR filter with parallel pipeline
multiplier

No. of taps 2-tap 8-tap 16-tap 32-tap 2-tap 8-tap 16-tap 32-tap

Number of slices 42 121 240 412 70 119 164 280

Number of slice registers 112 400 784 1552 233 210 338 594

Number of slice Luts 593 2336 4179 9225 197 284 374 577

Minimum sampling
period(ns)

12.859 15.525 19.129 23.684 6.418 6.686 7.092 7.481

Maximum sampling
frequency(MHZ)

77.766 64.412 52.276 42.222 155.823 149.575 141.002 133.672

REFERENCES

[1] J. G. Proakis and D. G. Manolakis. 1996. Digital

Signal Processing: Principles, Algorithms and
applications. Upper Saddle River, NJ: Prentice-Hall.

[2] G. Mirchandani, R. L. Zinser Jr. and J. B. Evans.
1995. “A new adaptive noise cancellation scheme in
the presence of crosstalk [speech signals],”IEEE
Trans. Circuits Syst. II, Analog. Digit. Signal Process.
Vol. 39, No. 10, pp. 681–694, October.

[3] D. J. Allred, H. Yoo, V. Krishnan, W. Huang and D.
V. Anderson. 2005. “LMS adaptive filters using
distributed arithmetic for high throughput,” IEEE
Trans. Circuits Systems I, Reg. Papers, vol. 52, no.7,
pp. 1327–1337, July.

[4] D. Xu and J. Chiu. 1999. “Design of a high-order FIR
digital filtering and variable gain ranging seismic data
acquisition system,” in: Proc. IEEE Southeastcon’93,
Apr. 1993, p. 6. K. K. Parhi, VLSI Digital Signal
Processing Systems: Design and Implementation.
New York: Wiley.

[5] Pramod Kumar Meher. 2010. “New Approach to
Look-Up-Table Design and Memory-Based
Realization of FIR Digital Filter,” IEEE Transactions
on circuits and systems—irregular papers, Vol.
57, No. 3, March.

[6] H. H. Dam, A. Cantoni, K. L. Teo and S. Nordholm.
2007. “FIR variable digital filter with signed power-
of-two coefficients,” IEEE Trans. Circuits Syst. I,
Reg. Papers, Vol. 54, No. 6, pp. 1348–1357, June.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4970

[7] Pramod Kumar Meher. 2008. “FPGA Realization of
FIR Filters by Efficient and Flexible Systolization
Using Distributed Arithmetic”, IEEE Transactions on
signal processing, Vol. 56, No. 7, July.

[8] P. K. Meher and S. Y. Park. 2011. “High-throughput
pipelined realization of adaptive FIR filter based on
distributed arithmetic,” in: Proc. IEEE/IFIP 19th Int.
Conf. VLSI-SOC, October. pp. 428–433.

[9] Sang Yoon park and promodkumarmeher. 2014.
“Efficient FPGA and ASIC Realizations of a DA-
based Reconfigurable FIR Digital Filter”, IEEE
Transactions on Circuits and systems-II: Express
Briefs, Vol.61, No.7, July.

[10] Logi CORE IP FIR Compiler v5.0, Xilinx, Inc., San
Jose, CA, USA, 20103.

[11] C. R. Baugh and B. A. Wooley. 1973. “A two’s
complement parallel array multiplication algorithm,”
IEEE Trans. Comput., Vol. C- 22, pp. 1045–1047,
December.

[12] Asgar Abbaszadeh and Khostov D. Sadeghipour.
2011.“A New Hardware Efficient Reconfiqurable FIR
Filter architecture suitable for FPGA applications”
proc IEEE DSP.

[13] J. Park, et al. 2004. "Computation Sharing
Programmable FIR Filter for Low-Power and High-
Performance Applications", IEEE J. Solid stateCir.
Sys., Vol.39, No.2, pp.348-357, February.

[14] R. Mahesh, and A. PVinod. 2010. “New
Reconfigurable Architectures for implementing FIR
Filter with low complexity,” IEEE Transactions on
computer aided design of integrated circuits and
systems, Vol. 29, February.

[15] S. A. White. 1989. “Applications of the distributed
arithmetic to digital signal processing: Atutorial
review,” IEEE ASSP Mag., Vol. 6, No. 3, pp. 5–19,
July.

[16] M. Mehendale, S. D. Sherlekar and G. Venkatesh.
1997. “Area-delay tradeoff in distributed arithmetic

based implementation of FIR filters,” in: Proc.10th Int.
Conf. VLSI Design, January. pp. 124–129.

[17] H. Yoo and D. V. Anderson. 2005. “Hardware-
efficient distributed arithmetic architecture for high-
order digital filters,” in: Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing, (ICASSP’05),
Mar. Vol.5, pp. v/125–v/128.

[18] S.-S. Jeng, H.-C. Lin and S.-M. Chang. 2006. “FPGA
implementation of FIR filter using M-bit parallel
distributed arithmetic,” in: Proc. 2006 IEEE Intl.
Symp. Circuits Syst. ISCAS, May.

[19] Y. H. Chan and W. C. Siu. 1992. “On the realization
of discrete cosine transform using the distributed
arithmetic,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., Vol. 39, No. 9, pp. 705–712,
September.

[20] H.-C. Chen, J.-I. Guo, T.-S. Chang and C.-W. Jen.
2005. “A memory-efficient realization of cyclic
convolution and its application to discrete cosine
transform,” IEEE Trans. Circuits Syst. Video
Technol., Vol. 15, No. 3, pp. 445–453, March.

[21] Pramod Kumar Meher, S. Chandrasekaran and A.
Amira. 2008. “FPGA realization of FIR filters by
efficient and flexible systolization using distributed
arithmetic,” IEEE Trans. Signal Process, Vol. 56, No.
7, pp. 3009–3017, July.

[22] Pramod Kumar Meher. 2006. “Unified systolic-like
architecture for DCT and DST using distributed
arithmetic,” IEEE Trans. Circuits Syst. I, Reg. Papers,
Vol.53, No. 5, pp. 2656–2663, December.

[23] J.-I. Guo, C.-M. Liu and C.-W. Jen. 1992. “The
efficient memory-based VLSI array design for DFT
and DCT,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., Vol. 39, No. 10, pp. 723–733,
October.

[24] D. F. Chiper. 1999. “A systolic array algorithm for an
efficient unified memory-based implementation of the
inverse discrete cosine transform,” in: IEEE Conf.
Image Process., October. pp. 764–768.

