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ABSTRACT 
 In this paper, we propose an efficient adaptive FIR filter architecture using a single multiplier and adder 
irrespective of number taps using the concept of time sharing multiplier architecture.  For efficient optimization of 
multiplier architectures, Output Product Coding and parallel pipelined multiplier are applied. The proposed Adaptive FIR 
filter architecture is implemented for 32-tap using Verilog and synthesized using XILINX VIRTEX-5 FPGA device.  The 
results are validated using FPGA in Loop (FIL), where simulation is done using MATLAB/Simulink-xPC target tool box. 
This design provides substantial area reduction compared to the conventional Adaptive FIR filter architectures for the 
FPGA implementation. The proposed Adaptive FIR filter supports up to 323 MHz input sampling frequency for FPGA 
implementation. 
 
Keywords: filter, look up table (LUT), odd multiple storage, output product coding (OPC), least mean square (LMS), FPGA in loop 
(FIL). 
 
1. INTRODUCTION 

 The current research is highly focused in the area 
of adaptive signal processing applications such as channel 
equalization, acoustic echo cancellation, interference 
cancellation, system identification and so on. These 
applications require higher order Digital filters thereby 
making the hardware complex. Hence the area occupied to 
be large when implemented in FPGA chips. Therefore 
researchers have been continuously focusing their work on 
reduction in the hardware complexity. [1]- [3]. 

 Finite Impulse Response (FIR) digital filter is 
widely used as a basic block in signal and image 
processing applications. Since the number of multiply-
accumulate (MAC) operations required per filter output 
increases linearly with the filter order, the real-time 
implementation of the higher order filters is a challenging 
task. Several attempts havebeen made and continued to 
develop low-complexity dedicated VLSI systems for these 
filters [4]–[10]. 

 There are two basic variants of memory-based 
techniques used for avoiding the usage of embedded 
multipliers They are based on Distributed Arithmetic (DA) 
for inner product computation [11]-[16] and computation 
of multiplication by look-up-table (LUT) [17]–[24]. In the 
LUT based approach, multiplications of input values with 
a fixed-coefficient are performed by an LUT consisting of 
all possible pre-computed product values corresponding to 
all possible values of input multiplicand while in the DA-
based approach, an LUT is used to store all possible values 
of inner-products of a fixed-point vector. If the inner-
products are implemented in a straight-forward way, the 
memory-size for implementation of LUT-multiplier 
increases exponentially with the word length of input 
values, whereas the memory size of the DA-based 
approach increases exponentially with the inner-product-
length. It is observed that the reduction of memory-size 
achieved by such decompositions is accompanied by 
increase in latency as well as the number of adders and 
latches. 

 In Adaptive FIR filter architecture, the direct 
implementation of N-tap FIR filter requires N MAC 
operations, which are too expensive in hardware 
implementation due to its logic complexity and area 
constraint. Therefore an architecture has to be designed 
which overcomes the above constraints. In this paper, a 
filter is implemented with time sharing multiplier 
architecture across single MAC core irrespective number 
of taps by increasing the filter operating frequency. For 
optimizing the performance of the multiplier, Output 
Product Coding (OPC) scheme [5] and parallel pipelined 
multiplier architectures are implemented. The main 
advantages of these two architecture schemes are that they 
reduce complexity and increase the speed of the 
architecture in the design by manipulating the odd 
multiples of The main advantages of OPC architecture 
scheme is that it reduces complexity and increase the 
speed of the architecture in the design by manipulating the 
odd multiples of the fixed coefficient Where as in 
pipelined parallel multiplier the speed of the architecture is 
improved by  changing the combinational logic into 
sequential logic with inserting pipelined registers. The 
performances of the proposed architectures are analysed in 
terms of area and time. The results are validated using 
FPGA in the Loop (FIL) technique. 

 The rest of the paper is organized as follows. In 
Section II describes about efficient Multiplier structures 
for Adaptive FIR filter. Section III describes the details of 
architecture design of Adaptive FIR Filter. The 
performance of the design are analyzed and discussed in 
Section IV. Finally, Section V concludes the paper in 
brief. 

 
2. EFFICIENT MULTIPLIER STRUCTURES FOR 

ADAPTIVE FIR FILTER 
 In the filter the MAC structure and delay blocks 
are the main building blocks. The performance of the DSP 
algorithms entirely depends upon the multipliers in terms 
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of critical path. The two schemes discussed here are OPC 
and pipelined parallel multiplier architectures. 
 
a) OPC scheme 

 When the both negative and positive sample of 
the signal exist in case of bipolar signals, odd multiple 
scheme method [5] fails. This disadvantage can be 
overcome by Output Product Coding proposed by [5]. 
Consider the input and the co-efficient to be in L-bit sign 
magnitude format. The most significant bit of both input 
and co-efficient corresponds to the sign value while the 
remaining (L-1) bits correspond to the magnitude. In order 
to obtain the complete product value in the sign magnitude 
representation, the magnitude and the sign bits are 
processed separately and finally appended. Memory 
optimization is also achieved by applying the OPC 
technique in LUT. 

 From Table-1 it is observed that the address value 
of ith row is the two’s complement of (128+2-i)th row for 
2 ≤ i ≤ 64. The sum of product values on these two rows is 
128A. Let the product values on the ith and the (128+2-i)th 
be u and v, respectively. The relation between ‘u’ and ‘v’ 
is given as 

 

u v v u
u

2 2

     
and

u v v u
v

2 2

           (1)
 

  

where (u+v) is 128A. From Table-1 it is observed that 
there are three considerations namely, a constant value, 
value accessed from the look up table and also whether an 
addition or a subtraction is to be performed. The constant 
value is nothing but the value obtained after the 
computation of (u+v) which is given by 128A. The value 
accessed from the memory array depends upon the 
magnitude portion of the input vector. i.e., for an input of 
L bits, only (L-2) bits are considered for memory access. 

 The block diagram shown in Figure-1 
corresponds to the architecture for the computation of the 
product value using OPC method for an input of 8-bits 
(inclusive of the sign bit). It has an encoder that converts 
an input of 7 bits (magnitude alone) to a 6 bit address 
value. The conversion is controlled by logical relations 
(1a) to (1g). 
 

5 6 5D X .X
  

(1.1a) 

4 6 4D X .X   (1.1b) 

3 6 3D X .X   (1.1c) 

2 6 2D X .X   (1.1d) 

1 6 1D X .X   (1.1e) 

0 6 0D X .X   (1.1f) 

 
The control circuit decides the operation of two’s 
complement to be performed on (L-2) bit. If L-2 bit is ‘1’ 
two’s complement address is considered and the normal 
address for ‘0’ which becomes the final address to access 
the value from the memory array consisting of stored 
value in the LUT as tabulated in Table-1. The next unit to 

be considered is the add/subtract unit which decides 
whether to add or subtract the value accessed from the 

memory array with the constant value of . Here the 

value of  is 64A. The add/subtract unit makes a 

decision on this and performs the operation accordingly. 
The sign value of the output is given by the logical 

relation 7 7s x A 
. This sign bit is concatenated with 

the magnitude in the append block for a complete product. 
Therefore, for an input of N-bits, this method makes use of 
2L-2memory locations thereby reducing the number of 
memory locations further. 

Table-1. Look up table for OPC scheme. 
 

Address Product 
value 

Product 
can be 

written as 

Stored 
value in 

LUT X6X5X4X3X2X1X0 

0 0 64A-64A 64A 

1 A 64A-63A 63A 
10 2A 64A-62A 62A

11 3A 64A-61A 61A 

100 4A 64A-60A 60A 
. . . . 
. . . . 
. . . . 

111100 60A 64A-4A 4A 

111101 61A 64A-3A 3A 

111110 62A 64A-2A 2A 

111111 63A 64A-A A 

1000000 64A 64A-0 - 

1000001 65A 64A+A - 

1000010 66A 64A+2A - 

. . . .

. . . . 

. . . . 

1111100 124A 64A+60A - 

1111101 125A 64A+61A - 

1111110 126A 64A+62A - 

1111111 127A 64A+63A - 

 

b) Parallel pipeline multiplier 
 The parallel multipliers are commonly used in 

high performance digital signal processors. They require 
more hardware compared to the serial multiplier in order 
to provide performance improvements. There are various 
ways to implement the parallel multipliers [11]. The 
simplest way of implementing n x n1 bit parallel multiplier 
is to generate all partial products and reduce them to rows 
of carry and sum signals. 
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Figure-1. Proposed architecture for OPC scheme. 

 
 The final step is the addition of the generated 

carry and sum signals. The major disadvantage of this 
process is that speed is decreased due to the bit wise 
multiplier operation. In a parallel pipelined multiplier, the 
first step performed is the formation of a bit-product 
matrix. A bit-product matrix is simply an array of bit-
products formed by multiplication of the individual bits of 
the two numbers being multiplied, a multiplicand and a 
multiplier. The generated partial products and their 
summed resultants are   stored in the pipelined registers. 
The pipelined registers are inserted to increase the speed 
of the operation by changing the combinational logic into 
sequential logic. The principle is illustrated in the     
Figure-2. 

 
3. EFFICIENT ADAPTIVE FIR FILTER 

ARCHITECTURE USING LMS ALGORITHM 
 Filters with fixed coefficients are suitable at the 

condition of known characteristics of signal and noise. 
However, they become inapplicable when the 
characteristics are not known or in other words when the 
input signal is not stationary. Therefore, an adaptive filter 
is used whose coefficients vary depending upon the input. 
One of the basic and simple adaptive algorithms is the 
gradient based algorithm. The LMS (least mean square) 
algorithm is one of the adaptive algorithms based on the 
method of steepest descent. This algorithm aims at 
reducing the gradient of the squared error value. The 
adaptive filter also has the same kind of implementation as 
that of a fixed filter with the usage of delay elements, 
adder, and multiplier. 
 This magnitude or the difference value is given as 
a feedback input to the system. Adaptive algorithm makes 
use of the input and the error magnitude in order to vary 
the weight values such that the obtained actual output is 
very much near to the desired output i.e., e(n) value is 
minimizedor ideally zero. Therefore, this process of 
varying the weights continues in a recursive manner until 
the lowest possible value is reached. The minimum value 

of e(n) can be obtained only if d(n) the desired output and 
the actual output Y(n) are equal. 
 However, in practical situations the ideal value of 
the error value being zero cannot be obtained but it can be 
done to get the lowest possible e(n) value. The most basic 
and the familiar adaptive   algorithm is the least mean 
square algorithm (LMS).The equation governing the LMS 
algorithm is given as shown in equation (2). 

 
 

 
 

Figure-2. Parallel pipeline multiplier. 
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Figure-3. Conventional Adaptive architecture. 

 
w(n+1) = w(n) - µ∆ε[n]    (2) 

 
The equation (2) is called as the weight update 

equation. The parameter µ is called as the step size and the 
value ε[n] represents the mean square error value. Figure-3 
shows the conventional architecture scheme implemented 
in Adaptive FIR filter.  In these Adaptive FIR filter 
architecture, by increasing the number of taps, number of 
multipliers is also increased linearly. In order to overcome 
these difficulties, the efficient architecture is proposed 
with time sharing multiplier architecture across the single 
MAC core by increasing the output filter frequency. 
Suppose for 2 tap FIR filter, the input sampling rate is 
1Mega samples per second(MSPS), by increasing the 
sampling rate of  output filter to ‘2x’ MSPS, for each 
clock cycle, data is  injected to the multiplier to do filter 
operation and the output is obtained within two clock 
cycles. 
  The proposed adaptive FIR architecture consists 
of following elements as shown in Figure-4 Multiplexer is 
used to select the data across the registers and perform the 
multiplier operation with the filter coefficients are stored 
in registers. Accumulator block is used to add the previous 
data value to the present data value and is set to zero after 
2 clock cycles. Multiplexer Select lines and an 
accumulator operation are selected by only one generic 
counter. For sixteen tap filter, 16 clock cycles are required. 
Similarly implementation for any number of taps can be 
done by using single multiplier and adder by increasing 
operating frequency of FIR filter. The error signal is the 
difference between desired signal ‘din’ and filter output 
‘Y_out’ and is fed back  to the input. The error signal is 
multiplied with a step index of μ =0.06, the resultant is 
multiplied to x_in to simultaneously update the filter 
coefficients c0_reg and c1_reg. 
 

 
 

Figure-4. Proposed Adaptive FIR filter architecture. 
 

 The performance of the filter further enhanced by 
the introduction of two architecture schemes which 
reduces the complexity and critical path. Therefore, 
Parallel pipeline multipliers are used in systems where 
increased performance is required. In these multiplier, the 
pipelined registers are inserted to increase the speed of the 
operation by changing the combinational logic into 
sequential. By means of OPC based LUT multiplier, the 
number of memory locations needed to store partial 
products is reduced from 2L to 2L-2. Hence the memory 
size is greatly reduced as compared to odd schematic 
based multiplication, which leads to reduction in 
complexity. 
 
4. RESULTS AND DISCUSSIONS 
 The proposed Adaptive FIR Filter architectures are 
implemented using two methods: (i) Output product 
coding and (ii) Parallel Pipelined Multiplier, and both are 
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synthesized using XILINX VIRTEX-5(XC5VSX95T-
1FF1136. 
 

 
 

Figure-5. Input signal of Adaptive FIR filter (400HZ). 
 

 
 

Figure-6. FPGA IN LOOP(FIL) simulation results 
obtained through Adaptive FIR filter implementation on 
Altera DE2 -115 board a) desired input(100HZ) b) error 

signal  c) filter output. 
 

 
 

Figure-7. FPGA in loop (FIL) simulation setup. 
 
FPGA In Loop (FIL) Simulation is done using 
MATLAB/Simulink-xPC target tool box which provides 
connection  to Altera DE2 -115 FPGA kit. This helps in 
testing the models in real time. Figure-5 and Figure-6 
shows the time domain input/output curve based on LMS 
algorithm, the results shown LMS algorithm can remove 
the noise signal, and output signals can converge to the 
input signal. The 400 HZ sine wave is used as the input.  

 The desired signal (dut_ref) 100HZ was 
generated by filtering the input with an FIR filter whose 
coefficients are evaluated by LMS algorithm. The step 
index taken as µ=0.06 and Figure-7 shows the FPGA in 
loop simulation setup. The application uses Simulink® 
and an FPGA development board to verify the HDL 
implementation of LMS Adaptive FIR filter. 

 The performance results of Adaptive FIR filter 
architectures are analyzed in Table-2 and Table-3. From 
the Table-2 and 3, it is observed that time sharing 
multiplier architecture using Single MAC core achieved 
drastic area reduction. The speed of the architecture is 
further improved by pipelining registers across the 
multiplier and filter output. From Table-2 and 3, it can be 
analyzed that the design has drastic area reduction 
compared to the conventional Adaptive FIR filter 
architectures for the FPGA implementation. 

 
5. CONCLUSIONS 
 The proposed method shown as efficient schemes 
for high-throughput single MAC based implementation of 
adaptive FIR digital filters. It is shown that the hardware 
cost could be substantially reduced by time sharing 
multiplier architecture across single MAC core. 
Thismethod resulted in substantial area reduction 
compared to the conventional Adaptive FIR filter 
architectures for the FPGA implementation. The 
proposed structure of 16-tap Adaptive FIR filter for FPGA 
implementation supports up to 323 MHz input sampling 
frequency. Thus the efficient Adaptive FIR filter 
architectures achieve high speed, low complexity and the 
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flexibility of FPGA technology making the architectures a 
viable alternative to the development of reconfigurable 

hardware for real time signal processing applications. 
 

 
Table-2. Performance results of Adaptive FIR filter using XILINX VIRTES-5 (XC5VSX95T-1FF1136). 

 

Performance measures 
Conventional Adaptive FIR filter with 
OPC 

Proposed Adaptive FIR filter with OPC 

No. of taps 2-tap 8-tap 16-tap 32-t ap 2-tap 8-tap 16-tap 32-tap 

Number of slices 117 411 808 1586 142 149 220 341 

Number of slice  registers 168 624 1232 2448 247 224 352 608 

Number of slice Luts 4848 19454 38946 78012 1281 1360 1488 1664 

Minimum sampling period(ns) 4.125 8.360 11.697 16.817 2.081 3.075 3.096 3.118 

Maximum sampling 
frequency(MHz) 

242.432 119.622 85.489 59.465 480.558 325.223 323.043 320.718 

 
Table-3. Performance results of adaptive FIR filter using XILINX VIRTES-5 (XC5VSX95 T-1FF1136). 

 

Performance measures 
Conventional Adaptive FIR filter with parallel 
pipeline multiplier 

Proposed Adaptive FIR filter with parallel pipeline 
multiplier 

No. of taps 2-tap 8-tap 16-tap 32-tap 2-tap 8-tap 16-tap 32-tap 

Number of slices 42 121 240 412 70 119 164 280 

Number of slice  registers 112 400 784 1552 233 210 338 594 

Number of slice Luts 593 2336 4179 9225 197 284 374 577 

Minimum sampling 
period(ns) 

12.859 15.525 19.129 23.684 6.418 6.686 7.092 7.481 

Maximum sampling 
frequency(MHZ) 

77.766 64.412 52.276 42.222 155.823 149.575 141.002 133.672 
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