
 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4981

A COMPARATIVE STUDY OF ALGORITHMS IN NEURAL NETWORKS
FOR BIG DATA ANALYSIS

Hantis Vijayan1 and V. M. Priyadharshini2

1Computer Science and Engineering, Indian Institute of Information Technology, Srirangam, Trichy, India
2Department of Computer Science and Information Technology, Anna University, BIT Campus, Trichy, India

E-Mail: hantisvijayan@gmail.com

ABSTRACT
 Machine learning is a part of artificial intelligence where in a system is made to learn from the data which can be
used to make real world simulations, predictions, pattern matches and classifications of the data given. Amongst the
various approaches in machine learning under the sub-field in data classification, the use of neural networks have been
found to be useful alternatives to the other statistical methods. Artificial neural networks are mathematical models, which
are inspired by a biological neural network process – the biological neuron, and are used for the modeling of various
complex relationships of inputs and outputs and also to find and match patterns of any given data. Here, the objective is to
make understand the machine learning process by using neural networks. By the end of this paper, there will be various
comparisons of different machine learning strategies, which are currently used to increase the accuracy of predictions.
From a trained neural network to a satisfactory level, we can classify any kind of generalized input data, process as often
termed as the generalization capability of the learning system.

Keywords: MSE (mean square error), neural network, neuron, ANN (artificial neural network).

1. INTRODUCTION
 The natural metaphor for artificial neural
networks is the “Brain” of any individual. The basic
concept of machine learning by using neural networks is
that it is based on the learning process of any living being,
like how we learn any new thing through our own
experiences, trials and errors since childhood. Artificial
neural networks can be defined or called as a computation
system which is made up of a number of simple, highly
interconnected processes/elements which process the
information using their dynamic state response to the
external inputs. Information processing is carried out
through connectionist approach to computation. An
example of such a neural network appears in Figure-1

Figure-1. An artificial neural network.

 Here, there can be any number of inputs, hidden
layers and output layers that are connected in the network.
In the simplest of terms, a neural network initially makes

random guesses and tries to see how far the answer is from
the actual answers and tries to make an appropriate
adjustment to its node – connection weights.

Some advantages in using neural networks
 A few of the benefits when using neural networks
in big data analysis are:

(i) Nonlinearity: The Linearity of a process permits
researchers to make assumptions and close estimations so
that the basic computation of results can be done. But
however, the assumptions made, cannot be done easily in a
nonlinear method. Hence a nonlinear process is usually
impossible or hard to model or foresee the behavior. So
however, the neurons that are present in the neural
network have the capability to approximate a nonlinear
process effectively, and hence giving the researcher a
promising result.

(ii) Adaptivity: An ANN is considered as an adaptive
system which changes the structure of itself based on the
data input which flows through the network, or in other
words, an ANN does its learning by trial and error [4].

(iii) Graceful degradation: This is also called as a fault
tolerance. It is a system that can continue to perform at a
reduced level of performance even if one of the
components of the system fails to work. In neural
networks, failing which, if one of the neurons are
damaged, the network will not reduce its performance
drastically.

(iv) Quite similar to an actual nervous system: In a
neural network, the structure gets its inspiration from an
actual nervous system. Hence having a good
understanding of the nervous system can allow researchers
to make better improvements in neural networks which
can make it perform in an effective manner.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4982

(v) Parallel organization: Computation process of a
neural network is done in a parallel fashion. This helps us
to bring solutions to the various problems faced. There are
certain specialized hardware that are designed that take the
advantage of parallel organization [5].

(vi) Input–output mapping: It is possible for aneural
network to be able to train its input and this training
function is repeated till the system reaches a stable state of
behavior, which can be said in other words that when the
error lies in between the actual response and the desired
response is minimized to a low value. It helps to make the
improve the accuracy of the prediction.

(vii) Various changes give varied results: In aneural
network, a change in the activation function produces
varied results that help minimize the error rate and bring
about a system where the accuracy is more correct to the
rate at which it learns [5].

Some disadvantages in neural networks
Some of the disadvantages in neural networks that have
been found are:

(i) Neural Networks can be called as “slow learners”. They
could take quite a long time to converge and train itself in
order to find a solution [6].

(ii) Sometimes a neural network might not actually
produce favorable results in all the times as compared to
certain other methods that are used. Choosing the right
method will be a wise choice.

(iii) Parameters of a neural network need to be designed
by hand or by using hill-climbing techniques to attain
optimized results, which could be quite time consuming
[8].

(iv) Neural networks are capable of producing accurate
and precise prediction of data, but they cannot provide
explanation to the input data.

2. ALGORITHMS

Back propagation algorithm
 A Back propagation algorithm can be used to
train an artificial neural network as described in the
previous section. This helps to achieve the desired output
from provided inputs which are under supervised learning.

Learning parameters

Learning rate: The learning rate is the rate, which we
want a neural network to learn the training function. By
keeping the learning rate very small, the neural network
convergence to the desired results become too slow. And
by keeping the learning rate at a large value, makes the
neural network not to converge at all. Hence, it is
important to choose the right learning rate.

Hidden layer neurons: A Hidden layer neuron can be
described according to the Kolmogorov equation, that any
given continuous function can be exactly implemented by

using a 3-layer neural network having n number of
neurons in the input layer, 2n+1 number of neurons in the
hidden layer and m number of neurons in the output layer.

Weight and biases: Weights and biases are used for
reducing the difference between the actual and the desired
results. This type of learning method for a neural network
is termed as a supervised learning where the neural
network is fed with various inputs and also the
corresponding desired outputs. Hence, based on the weight
of if the function the input is matched with the desired
output.

Activation function: An activation function for a node
sets the output of a node which is given an input or set of
data. In smaller terms, an activation function is a binary—
which is, either the neuron is firing or not. An activation
function can also be termed as that which is used to
change the activation level of a neuron into an output
signal.

 Figure-2. Activation functions.

Transfer function: A transfer function calculates the
layer's outputs from the net input value. The sigmoid
function introduces a non – linearity situation in the
network. Without a transfer function, the network (node)
can only learn from functions which have linear
combinations of its input values.

 Figure-3. Transfer function: sigmoid

Association rule mining: In this rule, interesting hidden
rules which are also called as association rules which are
used in a large transactional data base is mined out. i.e.
Take the rule {milk, butter biscuit} provides us the
information where, whenever milk and butter are together
bought, biscuit is also bought, which suggests us that these
items could be placed together in a market to increase
sales of the overall sales for each of the items [3, 40].

3. CHOOSING THE RIGHT ALGORITHM

 The datasets that are provided by “The Great
Mind Challenge and The Trustworthiness Challenge” have

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4983

huge amounts of feature vectors where not all of those
features would be useful for a decision making process.
Hence if we could eliminate a false feature vector from the
lot, we can have a better chance for a positive prediction.
One way to eliminate false feature vectors is the process of
using Genetic Algorithms. Stein et al. have done similar
research on feature selection using Genetic Algorithm [4].

a) Gradient descent back-propagation algorithm
 The Back – propagation algorithm is a gradient
descent algorithm. An algorithm used for taking one
training case and computing it efficiently for all the
weights in that network, depending on how the error could
change based on that particular training case as the weight
is changed. We can also compute how fast the error will
change as we modify a hidden activity for a particular
training case. So hence instead of using the activities of
the hidden units for our desired states, we can use the error
derivatives with respect for our activities. The core of the
back propagation algorithm is to take the error derivatives
from one layer and computing the error derivatives from
them in the layer that comes before that.

Figure-4. Back – propagation.

Configuration
Learning rate = 0.02
Total number of hidden layer neurons = 639
Training function = traingd
Transfer function = tansig - tansig

Results

Table-1. Gradient descent back-propagation results.

Desired performance
(MSE)

Performance
reached

epochs

Less than 0.01 0.014 23

Figure-5. Performance graph of Back – Propagation.

 Here the graph output shows us that the
performance curve used by the gradient descent algorithm
is measured using the mean square error method. Starting
with some initial random weights of the neural network,
the learning curve shows us the good descent from within
the first little iterations and as we can see a steep reduction
in the mse from 0.09 to 0.02 in first two iterations, over
the entire training input dataset. Continuing to train the
neural network done to make the performance better for
some more iterations and finally became a
negligible/unaccountable value after 23 passes. The best
mse which is able to be reached by the network is 0.014
and within 23 epochs.

Resilient back-propagation algorithm

The fundamental inspiration behind resilient back
– propagation approach is that the size of the slope can be
altogether different for distinctive weights & can change
amid learning. Along these lines selecting a solitary global
learning rate won't be effortlessly conceivable. To turn out
with an answer we can change our stochastic plunge
calculation in such a route, to the point that it will now just
consider the indication of the incomplete subsidiary over
all examples and along these lines it can be effortlessly
connected on diverse weights autonomously. The
algorithm is as follows

(1) If there is change in indication of the
incomplete subordinates from past emphasis, then the
weight will be overhauled by a component of η−.

(2) If there is no adjustment in indication of the
fractional subordinates from past emphasis, then the
weight will be upgraded by an element of η+.
Every weight is changed by its own upgrade esteem, the
other way of that weight's fractional subordinate. This
system is one of the most fast and memory proficient
weight overhaul components when contrasted with
standard steepest plunge calculation.

Configuration
Learning rate = 0.01
Number of hidden layer neurons =639
Training function = trainrp
Transfer function used = tansig - tansig
Delta_increase = 1.3This decides the addition to the
weight change
Delta_increase = 0.6 It decides the Decrement to the
weight change
Delta_initial = 0.07 .it determines the initial weight change
Delta_Maximum = 50 .it determines the maximum amount
by which the weights can be
Updated

Results

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4984

Table-2. Resilient back-propagation results.

Desired performance
(MSE)

Performance
reached

epochs

Less than 0.01 0.014 20

Figure-6. Performance graph of Resilient back-
propagation

 The figure demonstrates the logarithmic
execution bend of the strong back-spread calculation
measured utilizing mse of the system regarding the
emphases over the preparation dataset. At begin, with
introductory arbitrary weights, the preparation performing
was deteriorating, as opposed to diminishing the slip
distinction between the yield anticipated and the sought
yield, the preparation was redesigning weights bringing
about expanded mse for starting emphases delivering steep
slant upwards for the initial two cycles. Contrasted with
angle plummet, the outcomes are totally inverse of the
beginning learning periods of the preparation. The
diagram demonstrates couple of spikes produced because
of the approach of upgrading weight by η+. Alternately
η−. The best mse ready to reach by the system was 0.0145
in 20 ages just. in spite of the fact that the preparation was
quick as thought about slope plunge however had a
reduction in mse from 0.014 to 0.0.

Scaled conjugate gradient back-propagation
 The fundamental back- propagation calculation
changes the weights in the steepest plunge heading while
in a scaled conjugate angle drop a hunt is performed in
light of conjugate headings. It doesn't perform a line look
at every emphasis/iteration. This calculation is ended up
being quicker than the fundamental gradient descent back-
propagation.

Configuration
Learning rate = 0.02
Number of hidden layer neurons =639
Training function = trainscg
Transfer function used = tansig - tansig
sigma = 5.0e-5 .It determines the change in the weight for
the second derivative approximation.
lambda = 5.0e-7. This parameter is used for regulating the
indecisiveness of the Hessian

Results

Table-3. Scaled conjugate gradient back-propagation
results.

Desired performance
(MSE)

Performance
reached

epochs

Less than 0.01 0.010 22

Figure-7. Performance graph of Scaled conjugate gradient
back-propagation.

 The figure here demonstrates the execution bend
of the scaled conjugate calculation utilizing mse
concerning the quantity of cycles over the preparation
dataset. Amid the starting learning period of the
preparation the execution was very much alike to that of
angle plummet calculation creating a precarious incline
down inside initial two cycles of the preparation yet beats
it later on by coming to the best mse of 0.010 when
contrasted with 0.014 from inclination drop inside 22
passes of the preparation dataset.

Momentum back-propagation algorithm
 Not like in mini – batch machine learning, in
Momentum method we utilize the adjustment in slope to
redesign the speed and not the position of weight parts. In
this system, we take the portion of the past weight
overhauls and add that to the current one. The principle
thought behind doing this is to enhance the productivity of
the neural system by keeping the framework to join to a
neighborhood least or to meet to a seat point.
Considering the fact that we have taken high momentum
as a parameter which may help us accelerate the merging
rate of the neural system, yet this may additionally cause
the danger of overshooting the energy and making
framework temperamental creating more capacity treks.
Then again, in the event that we take force parameter little,
it may happen that neural system adapts gradually. The
tradeoff in the middle of high and low esteem must be
remembered before picking the energy size for preparing.

Configuration
Learning rate = 0.02
Total number of hidden layer neurons used =639
Training function = traingdm
Transfer function used = tansig - tansig
Momentum = 0.9 .Thisunit helps determine the
momentum constant of the system.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4985

Results

Table-4. Momentum back-propagation results.

Desired performance
(MSE)

Performance
reached

epochs

Less than 0.02 0.014 2

Figure-8. Performance graph of Momentum back-

propagation.

 Figure shows the performance curve of the
momentum back-propagation using mse with respect to
the number of iterations over the training dataset. The
Steep drop in mse showing by the graph for the first two
iterations is similar to that of gradient descent and SCG
but it differs at a point that the best mse of 0.014, which is
similar to that SCG and not too far from gradient descent,
was achieved in first two epochs only. Although there was
no any further/accountable decrease in network mse over
the next few iterations continuously.
 The figure demonstrates the execution bend of
the Momentum back-proliferation utilizing mse
concerning the quantity of emphases over the preparation
dataset. The Precarious drop in mse indicating by the chart
for the initial two cycles is like that of angle plunge and
SCG yet it varies at a point that the best mse of 0.014,
which is like that SCG and not very a long way from slope
plummet, was attained to in initial two epochs, though
there was no further/responsible decline in system mse,
throughout the following couple of iterations persistently.

Adaptive learning rate back-propagation algorithm
 We have utilized multi-layer neural system,
henceforth, we have to consider that there is a wide variety
on what will be the suitable learning rate at every relating
layer i.e. the particular inclination sizes at every layer are
for the most part diverse. This circumstance spurs to
utilize a worldwide learning rate in charge of every weight
overhaul. With versatile learning system, the
experimentation hunt down the best starting qualities for
the parameters can be dodged. Ordinarily the adaption
methodology has the capacity to rapidly receive from the
beginning offered qualities to the proper ones. Likewise,
the measure of weight that can be permitted to adjust relies
on upon the state of the blunder surface at every specific
circumstance. The estimations of the learning rate ought to
be sufficiently expansive to permit a quick learning
process additionally sufficiently little to ensure its
adequacy. On the off chance that at some minute the quest

for the base is being done in the gorge, it is attractive to
have a little learning rate, subsequent to generally the
calculation will waver between both sides of the gorge.

Configuration
Learning rate = 0.02
Total number of hidden layer neurons =639
Training function = traingda
Transfer function used = tansig - tansig
learningrate_increase = 1.04 .This helps determine the
increase in the learning rate.
learningrate_decrease = 0.6 .This helps determine the
decrease in the learning rate.

Results

Table-5. Adaptive learning rate back-propagation results.

Desired performance
(MSE)

Performance
reached

epochs

Less than 0.02 0.014 2

Figure-9. Performance graph of Adaptive learning rate
back-propagation.

 The figure demonstrates the execution bend of
the adaptive back – propagation utilizing mse regarding
the quantity of cycles over the preparation dataset. Taking
after the comparable example of mse (mean square error)
bend as prior calculations the diminishment in mse
demonstrated a lofty slant inside the initial couple of
cycles over the dataset however it varies at a point that it
had the capacity achieve the best mse of approx. 0.014 in
28 cycles. which by a long shot is the most elevated mse
up till now obliging biggest number of iterations.

Momentum back-propagation with Adaptive learning

Rate back-propagation
This technique utilizes a combination of both momentum
back-propagation strategy and the adaptive learning rate
algorithm in order to train the neural network.

Configuration
Learning rate = 0.01
Total number of hidden layer neurons =639
Training function = traingda
Transfer function used = tansig - tansig

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4986

Momentum = 0.9 . This helps determines the momentum
constant used.
learning rate _increase = 1.04 .This helps determine the
increase in the learning rate.
learning rate _decrease = 0.6 . This helps determine the
decrease in the learning rate.

Results

Table-6. Momentum back-propagation with Adaptive
learning rate back-propagation results.

Desired performance

(MSE)
Performance

reached
epochs

Less than 0.01 0.014 3

Figure-10. Performance graph of Momentum back-

propagation with Adaptive Learning Rate back-
propagation.

Here the figure demonstrates the performance graph of
momentum back-propagation with adaptive learning
algorithm using mse to the number of iterations on the
training data input. This curve is quite similar to the
adaptive learning rate algorithm technique and reaching a
mse of 0.014. But this technique is much faster than the
previous method where the number of total iterations
required for this is 3 which is reduced from 28.

5. CONCLUSIONS
 Beginning with performing distinctive analyses
with all the different training algorithms to discover the
best calculation with the most reduced conceivable mse on
the preparation dataset, the outcomes from inclination
drop and scaled conjugate angle plunge gave great mse
when contrasted with other preparing calculations. The
scaled conjugate slope drop delivered the slightest mse of
0.192 among all the preparation calculations, consequently
kept preparing with more progressed systematic strategies
utilizing these specific calculations setups as the premise
for the analyses. In the arrangement of distinctive
expository models, at first extremely encouraging results
were accomplished with the assistance of the variety in the
edge strategy which helped the score increment from 0.54
prior to 0.69 on the Innocentive leadership dashboard.
In later phases of the examination, the procedure of
retraining the effectively prepared systems for the
imperative columns discovered exceptionally powerful in
lessening the mse from 0.192 to 0.185.

The avoidance of commotion from the system further took
mse to one of the best conceivable esteem so far
accomplished.
At long last, as the last two methodologies looked
exceptionally encouraging in expanding the system
execution hence consolidate both the systems brought
about a level 4 neural system which delivered the most
reduced ever mse of 0.127 just, which was much closer to
the craved mse of 0.1

6. FUTURE WORK
 As the quantity of highlights in the application
dataset increment, similar to on account of expansive scale
applications, the layers size (neurons) of the fake neural
system needs to be expanded to suit the expanded
measurements of the information dataset. After certain
point, the system size gets to be huge to the point that it
gets to be very nearly infeasible to be executed effectively
on account of the expanded unpredictability affected
because of the exponential development of the between
associations among the hubs (neurons) in the system. This
marvel is by and large expressed as "the condemnation of
dimensionality" in the field of machine learning. Along
these lines, there is a need to turn out with a calculation to
process extensive dataset productively keeping the neural
system size significant little by upgrading the quantities of
neurons and the interconnection between them.. The future
work will be on streamlining the neural systems. There are
a few paper distributed with diverse ways to deal with
attain to this, yet the two most encouraging ones are
hereditary calculations and particular configuration
method.

REFERENCES

[1] Proceedings / International Work Conference on

Artificial and Natural Neural Networks, IWANN '99.
(1999). Berlin: Springer.

[2] Hassoun M. H. 1995. Fundamentals of artificial
neural networks. Cambridge, Mass.: MIT Press.

[3] Bishop C. M. 1998. Neural networks and machine

learning. Berlin: Springer.

[4] Wikipedia, Artificial neural network, 2007.

[Online].[Accessed on 26th November 2014].
http://en.wikipedia.org/wiki/Artificial_neural_networ
k.

[5] C. Stergiou& D. Siganos, Neural network, 1996.

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/
cs11/report.html.

[6] D. D. Olmsted, History and principles of neural

networks from 1960 to 1990, 2006. [Accessed on 13th
December2014].http://www.neurocomputing.org/NN
HistoryTo1990.aspx.

 VOL. 10, NO. 11, JUNE 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

4987

[7] Gary Stein, Bing Chen, Annie S. Wu, and Kien A.
Hua. 2005. Decision tree classifier for network
intrusion detection with GA-based feature selection.
In Proceedings of the 43rd annual Southeast regional
conference - Volume 2 (ACM-SE 43), Vol. 2.

[8] V. M. Rivas, J. J. Merelo, P. A. Castillo, M. G.

Arenas and J. G. Castellano. 2004. Evolving RBF
neural networks for time series forecasting with
EvRBF, InformationSciences, 165, 207-220.

[9] Anderson, J. R., Michalski, R. S., Carbonell, J. G.,

and Mitchell, T. M. 1983. Machine learning: an
artificial intelligence approach. Palo Alto, Calif.:
Tioga Pub. Co.

[10] R. Nicole. “Title of paper with only first word

capitalized,” J. Name Stand. Abbrev., inpress.
[11] Twinkle Bedi. 2014. “Green Cloud Computing using

Artificial Neural Networks”, International Journal of
Advanced Research in Computer Science and
Software Vol. 4, No. 5, May.

[12] Azadeh S. F. Ghaderi and S. Sohrabkhani. 2007.

Forecasting electrical consumption by integration of
neural network, time series and ANOVA, Applied
Mathematics and Computation, Vol 186, No. 2, pp.
1753-1761.

[13] Ashish Ghosh, Nikhil R. Pal and Sankar K. Pal.

Fellow, IEEE, “Modeling of Component Failure in
Neural Networks for Robustness Evaluation: An
Application to Object Extraction”, IEEE Transactions
On Neural Networks, Vol. 6, No. 3. May.

