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ABSTRACT 

Open access electric network faces severe congestions due to the increasing demand for power, multiple 
transactions in the transmission line and outage of network equipment, causing uncertainty and affecting the system 
security. In this article, different operating states are considered for congestion management in an electric power network. 
An effective algorithm to reschedule the generating units is implemented for relieving congestion as well as maintaining 
optimal settings of electrical parameters in the network. The main objective of our algorithm is to minimize rescheduling of 
power using generator sensitivity factor method and hence minimize congestion cost through the adjustment of generator 
price bids submitted by independent power producers. The proposed algorithm has been validated on IEEE 30-bus, IEEE 
57-bus and IEEE 118-bus systems. 
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1. INTRODUCTION 

Open-access electric energy market is a complex 
system with a diversity of participants. If the desire arises 
to produce and consume power in amounts causing the 
transmission system to operate at or beyond the transfer 
limits, the system is said to be congested. System 
congestion may occur on active limits of transmission 
lines, voltage levels and thermal limits. In the power 
market, system security plays a vital role from the 
operator’s point of view. An independent system operator 
(ISO) is a regulating entity independent from the power 
producer and optimizes the overall system operations. 

An OPF problem is generally a nonlinear and a 
multi-objective optimization problem, with more than one 
local optimum solution. Thus, local optimization 
techniques are lesser suitable for such complex problems, 
because they may not be able to provide a global optimum 
solution. Recently, many of the evolutionary algorithms 
have been successfully applied in solving OPF problems 
[1-8].  

Elaborate literature on congestion management in 
competitive power market is available elsewhere [9]. 
Optimal rescheduling of generators has also been 
discussed by different evolutionary algorithms [10-13]. 
Voltage profile and transmission congestion management 
in open-access power market have also been described 
previously [14]. Sensitivity-based optimal power 
rescheduling of generators has been discussed earlier [15]. 
Congestion due to voltage instability and thermal overload 
has also been elaborated [16]. Network reconfiguration for 
congestion management by deterministic method and 
genetic algorithm has been described elsewhere [17]. 

In a congested power system, incremental or 
decremented change in power output may not affect power 
transmission alike. Therefore, no need arises to reschedule 
the output of generators that are less critical to congestion. 
In order for a generator to participate in congestion 
management, its sensitivity to the congested line must be 
considered. The objective is to choose generators in such a 
way that the number of participating generators may be 
limited. 

The present article aims to explore the ability of 
adaptive real-coded biogeography-based optimization 
(ARCBBO) in solving the congestion problem. 
Bhattacharya and Chattopadhyay employed biogeography-
based optimization (BBO) to solve OPF problems [4]. 
However, the BBO method was reported to lack 
exploration ability and poorly supports population 
diversity. In the ARCBBO approach, adaptive Gaussian 
mutation is integrated into the OPF problem, thereby 
avoiding premature convergence, improving population 
diversity, and enhancing the exploration ability.  
 
2. REVIEW OF BIOGEOGRAPHY BASED 
 OPTIMIZATION 

Dan [18] proposed a comprehensive algorithm 
(BBO) for solving optimization problems based on the 
study of geographical distribution of species. A BBO 
algorithm has two main operators: migration operator and 
mutation operator. 
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2.1 Migration 
Migration is a process of probabilistically 

modifying each individual in the habitat randomly. A 
geographical area with high habitat suitability index (HSI) 
tends to have a large number of species, high emigration 
rate, and low immigration rate. Suitability index variables 
(SIVs) define the characteristics of a habitat. A habitat 
with a high HSI tends to be more static in its species 
distribution. Such a habitat signifies a good solution in 
terms of an optimization problem. Immigration rate, λk, 
and emigration rate, μk, are functions of the number of 
species in a habitat. For a habitat with no species, its 
immigration rate can be the highest. λk is given by: 
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where I is the maximum possible immigration rate, k is the 
number of species of kth individual, and n is the maximum 
number of species. μk is given by: 
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where E is the maximum possible emigration rate. 

 
2.2 Mutation 

Mutation tends to increase the diversity of a 
species in a habitat. Due to natural events, the HSI of a 
habitat can change dramatically, causing the species count 
to shift away from its equilibrium value. Species count 
may be a probability value (Pi). If this probability value is 
very low, an individual solution is thought to have been 
mutated with other solutions. So, mutation rate of an 
individual solution can be calculated using species count 
probability, given by: 
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where Mi is the mutation rate; Mmax is the maximum 
mutation rate, which is a user-defined parameter; and Pmax 
is the maximum probability of species count. In BBO, a 
mutation characteristic function is given by:  
 

)()1,0( minmax'
iiii XXrandXX       (4) 

 

where Xi is the decision variable; Ximax and Ximin are 
the lower and upper limits of the decision variable, 
respectively. 
 
 
 

3. ADAPTIVE REAL CODED BIOGEOGRAPHY 
BASED OPTIMIZATION  

In BBO, Migration operator can improve the 
performance of BBO. It is used to modify habitat by 
simply replacing similar kind of habitat that means habitat 
shares less information from the others. Hence, migration 
operator is lacking of exploration ability. 

Differential evolution (DE) is a direct real 
parameter optimization algorithm [19]. It uses the 
mutation operation to improve the quality of the solutions. 
In order to share more information between habitats, BBO 
is inspired with differential evolution. The migration 
operation is improved by applying a DE mutation strategy, 
which enhances the exploration ability. The following 
operation is used as migration operation in this paper, 
 

)( 21 rrbesti XXFXX        (5) 

 
where Xi is the i-th habitat, Xbest is the best habitat, Xr1 and 
Xr2 are the random habitats among the total population and 
F is the scaling factor. The value of scaling factor 
increases, exploration ability of the algorithm will be 
increased but their exploitation ability will be decreased 
and vice versa, therefore F is the vital role to balance the 
exploration and exploitation ability.  

In BBO, individuals are encoded by a floating 
point for the continuous optimization problems and 
random mutation is used which deficient the exploration 
ability. In RCBBO [20], individuals are represented by a 
D-dimensional real parameter vector, and a 
probabilistically based Gaussian mutation operator is used, 
which improves the diversity of the population and its 
searching ability. The Gaussian mutation characteristic 
function is given by: 
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where N(μ,σi

2) represents the Gaussian random variable 
with mean μ and variance σ2. The values of mean and 
variance are considered 0 and 1, respectively [20]. 

Generally, a probability-based mutation operation 
affects the convergence characteristics. Therefore, 
adaptive Gaussian mutation is applied in the present work 
to improve the solution of worst half of individuals in the 
population. In equation (6), μ=0 and σi is found using the 
following equation [21]: 
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where β is the scaling factor or mutation probability; Fi is 
the fitness value of i-th individual; and fmin is the minimum 
fitness value of the habitat in the population. Adaptive 
mutation probability is given by  
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where βmax=1, βmin=0.005, Tmax is the maximum 
iteration, and T is the current iteration. 

The adaptive Gaussian mutation has the ability to 
prevent premature convergence and hence to produce a 
smooth convergence. This method of mutation can be 
easily used with real-coded variables, which have been 
widely used in evolutionary programming (EP), and hence 
to carry out local as well as global searches. It is namely 
adaptive real coded biogeography-based optimization 
(ARCBBO). 
 
The pseudo code of an ARCBBO algorithm 
Initialize the ARCBBO parameters  
Generate the individuals (SIV) randomly within their 
feasible region 

)()1,0( minmaxmin
kkkk XXrandXX   

Calculate the fitness (HSI) value for each habitat in the 
population 
While halting criteria is not satisfied do 
Sort the SIVs from best to worst according the fitness 
value 
Map the HSI values to the number of species  
Compute immigrate rate and emigration rate for each 
individual  
For i=1 to NP 
Select Xi according to immigration rate λi 
For j=1 to NP 
Generate two integer randomly     r1≠r2 
Select Xj according to emigration rate μi   
 If rand (0, 1) <μi 

ji XX 
 

Else  
  )( 21 rrbesti XXFHSIXX   

End If 
End For 
End For                             
//Adaptive Gaussian Mutation  
For i = (NP/2) +1 to NP 
For j=1 to Nvar 
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End For 
End For 
Compute HSI for new habitats 
Sort SIV from best to worst 
End While 
 

4. PROBLEM FORMULATION 
As mentioned earlier, generators in the system 

under consideration have different sensitivities to power 
flow on the congested line. A change in power flow in a 
transmission line connected between bus j and bus k due 
to change in power generation by generator i can be 
termed generator sensitivity. Mathematically, generator 
sensitivity factor (GSF) for bus j to bus k may be written 
as 
 

Gi

jk
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where Pji is the active power flow in the congested 
transmission line between buses j and k, and PGi is the 
active power produced by unit-i.  

For congestion management, it is preferable to 
choose generators with non-uniform and large magnitudes 
of sensitivity values because these are the ones most 
sensitive to power flow on the congested line. Based on 
the bids received from participating power producers, the 
amount of rescheduling required is computed by solving 
the following optimization problem. The flowchart for 
congestion management by ARCBBO is shown in Figure- 
1. 
 
4.1 Objective function 
 

 Minimization of fuel cost 
 It represents the quadratic cost function whose 
objective function is expressed as follows: 
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 Where FC is the total fuel cost; Ng is the number 
of generating units; PGi is the generated active power; and 
ai, bi and ci are fuel cost coefficients of the ith unit. 
 

 Minimizing the Congestion Cost 
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where Ci

+and Ci
- are the incremental and decremented 

bidding cost submitted by independent power producer of 
unit-i, respectively. ΔPGi

+ and ΔPGi
- are the change in 

active power from preferred schedule.    
 
4.2 Constraints   
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where ΔPGi is the active power adjustment at bus i and 
MVAk

0 is the power flow in kth transmission line at base 
case. PGi and QGi are the active and reactive power injected 
at bus i, PDi and QDi are the active and reactive power 
demand at bus i, Vi and δi are the magnitude and phase 
angle of voltage at bus i, Gij and Bij are the real and 
imaginary part of admittance of transmission line, 
MVAk

max is the power flow capacity of kth transmission 
line, min and max represents the minimum and the 
maximum limits of the parameter, respectively 
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where Pg , Qg , V  and Pf are penalty factors.    
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Figure-1. Flow chart for congestion management 
using ARCBBO. 
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5. RESULT AND DISCUSSIONS 
To compare the performance of the proposed 

ARCBBO method with DE, and BBO, experiments were 
performed on IEEE 30-bus, IEEE 57-bus and IEEE 118-
bus systems. Fifty trails were performed independently 
with both algorithms and the results (best, mean, worst and 
standard deviation) of the objective function are presented. 
MATPOWER 4.1 package was used for calculations [24]. 
Simulations were carried out in MATLAB 10a 
programming environment on Core i3 2.53 GHz, 2.0 GB 
RAM personal computer. 

Optimal power flow was carried out using 
proposed ARCBBO method. The control parameter 
settings for the proposed method were obtained by number 
of simulation results and hence optimal control parameters 
were chosen, scaling factor = 0.6, habitat size = 50, habitat 
modification probability = 1, immigration probability = 1, 
maximum immigration and emigration rate = 1 and 
maximum number of iterations for IEEE 30-bus, IEEE 57-
bus, and IEEE 118-bus systems were taken as 200, 500 
and 1000, respectively. Simulation results obtained by the 
proposed ARCBBO for different test cases are presented 
in Table-1. 

  
Table-1. Simulation results obtained by ARCBBO for OPF. 

 

System 
Fuel cost ($/h) 

Best Average Worst 

IEEE 30-bus system 799.0828 799.0904 799.1096 

IEEE 57-bus system 41679.9467 41697.1934 41724.77896 

IEEE 118-bus 
system 

129630.2758 129722.8237 129890.6305 

 
In the present congestion management problem, 

preferred schedule was obtained from ARCBBO-based 
OPF. The parameter settings for DE [2] and BBO [4] 
method were taken from the literature, they were scaling 
factor =0.9 and crossover probability =0.5. And BBO 
parameters were habitat modification probability = 1, 
immigration probability = 1, maximum immigration and 
emigration rate = 1, mutation probability = 0.005. Number 
of population and iterations were considered as 50 and 
200, respectively for both optimization methods. 
 
5.1 IEEE 30-bus system 

The system consists of 6 generator buses, 24 load 
buses and 41 transmission lines. Shunt VAR compensator 
were connected at buses 10, 12, 15, 17, 20, 21, 23, 34 and 
29 [23]. Bus 1 is taken as slack bus. The system load is 
283.4 MW and 126.2 MVAR. The system has 25 control 
variables, comprises 6 generator active power outputs and 
bus voltages, 4 transformer tap settings, and 9 shunt 
compensator VAR injections. The bus data, line data and 
generator cost coefficient [22] and the minimum and 
maximum limits for control variables [23] were obtained 
from literature. Generator price bidding data were taken 
from publication [12].  
 
Case A: Sudden load variation  

Congestion is created by stepwise loading 
incremental at bus-14 and also thermal limit of line 26 
(connected between buses 10 and 17) is reduced to 6.99 
MVA, due to that line 26 is congested. Unconstrained 
power flow at line 26 is 7.01 MVA Therefore, congestion 
has to be relieved by active power generation rescheduling 

of generators. Generator sensitivity factors for this case are 
shown in Table-2. From the table, we understand that all 
generators showed high sensitivity to congested lines 
except slack bus, due to the system being small in size. 
Therefore, all generators can participate in the 
rescheduling process. Rescheduled power and congestion 
cost calculated using various methods are presented in 
Table 3, which shows best, mean and worst value of 
congestion cost. It is observed that best cost obtained by 
the proposed method is lesser than DE and BBO. In this 
case, the sum of change in rescheduled power is 8.1554 
MW which is equivalent to sum of load increment at bus-
14 and excess line loss due to load variation.  
 

Table-2. Generator sensitivity factor for case A. 
 

Gen. 
No. 

GSF 
Gen. 
No. 

GSF 
Gen. 
No. 

GSF 

1 0 5 -0.1320 11 -0.3034 

2 0.0567 8 -0.3202 13 -0.2605 
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Table-3. Comparison of simulation results of congestion 
management for case a. 

 

Parameter ARCBBO DE BBO 

ΔPG1(MW) 0.0001 0.0184 0.3900 

ΔPG2(MW) 0.0390 0.0944 0.3454 

ΔPG5(MW) 0.0227 0.1683 0.0791 

ΔPG8(MW) 7.2886 6.9944 6.0444 

ΔPG11(MW) 0 0.0604 0.3392 

ΔPG13(MW) 0.8050 0.8207 1.0000 

Rescheduled power 
(MW) 

8.1554 8.1566 8.1981 

Best Congestion 
cost ($/h) 

332.7778 333.8845 338.9445 

Mean Congestion 
cost ($/h) 

333.8706 334.6615 342.2011 

Worst Congestion 
cost ($/h) 

334.0863 336.4360 348.0776 

Std. Congestion 
cost 

0.4720 0.6394 4.0172 

Simulation time 
(sec) 

129.58 147.71 106.11 

 
5.2 IEEE 57-bus system  

The system consists of 7 generator buses, 50 load 
buses and 80 transmission lines. Shunt VAR compensators 
were connected at buses 18, 25 and 53 [4]. Bus 1 is taken 
as slack bus. The system has 34 control variables, 
comprises 7 generator active power outputs and bus 
voltages, 17 transformer tap settings, and 3 shunt 
compensator VAR injections. The system data were taken 
from [26]. The voltage magnitude limits for generator 
buses are in the range of 0.9-1.1 p.u., and the voltage 
magnitude limits for load buses are in the range of 0.94-
1.06 p.u. The system active and reactive power demand 
were 1250.8 MW and 336.4 MVAR, respectively. Line 
limits and generator price bidding data were taken from 
publication [13].  
 
Case B: Transformer outage 

Transmission lines 8 (connecting buses 8 and 9) 
and 10 (connecting buses 9 and 11) were congested due to 
transformer (placed at line connecting buses 24-26) 
outage. Unconstrained power flow at lines 8 and 10 were 
201.1383 MVA and 50.3248 MVA respectively, but 
thermal limits of those lines are as 200 MVA and 50 MVA 
respectively and hence total power violation was 1.4633 
MVA. GSF for this case is presented in Table-4. 
Generators 6, 8, 9 and 12 have shown high sensitivity with 
respect to congested line, so these generators have been 
participated in active power rescheduling process. 
Rescheduled active power is presented in Table-5. Total 
rescheduled power obtained by the proposed method is 

4.2842 MW and hence congestion cost is 179.6299, which 
is lesser than that obtained by DE and BBO methods.  
 
Case C: Transmission line outage 

Transmission line 8 was congested due to 
transmission line 5 (connecting bus 4 and bus 6) outage. 
Unconstrained power flow at lines 8 was 201.5280 MVA, 
but thermal limit of this line is 200 MVA and hence total 
power violation was 1.5281 MVA. Congestion has to be 
managed by strong influence generators with respect to 
congested line from Table-4. Rescheduled active power is 
presented in Table-6. Total rescheduled power calculated 
by the proposed method is 4.0159 MW which is lesser 
than previous case, so congestion cost also minimum. It is 
observed that congestion cost varies with respect to 
rescheduling power. 
 

Table-4. GSF for IEEE 57-bus system. 
 

Gen. 
No. 

Case 
B 

Case 
C 

Gen. 
No. 

Case B Case C 

1 0 0 8 0.6252 0.6643 

2 0.0201 0.0148 9 -0.2099 -0.1807 

3 0.0812 0.0597 12 -0.0896 -0.0714 

6 0.3811 0.4658 - - - 

 
Table-5. Comparison of simulation results for Case B. 

 

Parameter ARCBBO DE BBO 

ΔPG1(MW) 2.1302 2.1033 0.7887 

ΔPG6(MW) 0 0.0001 -0.2700 

ΔPG8(MW) -1.7744 -1.7733 -2.3021 

ΔPG9(MW) -0.0005 -0.0021 -1.1441 

ΔPG12(MW) 0.3791 0.4059 3.5428 

Reschedule power 
(MW) 

4.2842 4.2847 8.0477 

Best Congestion 
cost ($/h) 

179.6299 179.6482 336.1192 

Mean Congestion 
cost ($/h) 

179.9562 180.0902 346.5134 

Worst Congestion 
cost ($/h) 

180.4227 181.1316 354.2035 

Std. Congestion 
cost 

0.2995 0.4013 6.4686 

Simulation time 
(sec) 

94.2 97.38 82.69 
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Table-6. Comparison of simulation results for Case C. 
 

Parameter ARCBBO DE BBO 

ΔPG1(MW) 0 0.0027 3.6560 

ΔPG6(MW) 0 -0.0150 -0.9926 

ΔPG8(MW) -1.6413 -1.6325 -2.3021 

ΔPG9(MW) 2.3742 2.3680 0.1967 

ΔPG12(MW) 0.0004 0.0097 0.0742 

Reschedule power 
(MW) 

4.0159 4.0279 7.2216 

Best Congestion 
cost ($/h) 

168.4931 168.9607 299.2879 

Mean Congestion 
cost ($/h) 

169.8000 170.4851 332.4405 

Worst Congestion 
cost ($/h) 

170.6044 171.9241 351.5941 

Std. Congestion 
cost 

0.5280 0.9028 8.8419 

Simulation time 
(sec) 

117.48 124.11 104.69 

 
5.3 IEEE 118-bus system  

The system consists of 54 generators, 99 loads, 
and 186 transmission lines. The system load is 4242 MW 
and 1438 MVAR. Bus 69 has taken as slack bus. 
Generator price bidding data were taken from report [25]. 
Bus data, line data, and generator fuel cost coefficient 
were taken from publication [26]. Line limits were taken 
from web [27].  
 
Case D: Generator outage  

Transmission lines 37 (connecting bus 8 and bus 
30) and 54 (connecting bus 30 and bus 38) were congested 
due to outage of generator number 5 (at bus 10). 
Unconstrained power flow at lines 37 and 54 were 
241.3834 MVA (limit 175 MVA) and 189.9339 MVA 
(limit 175 MVA) respectively. Therefore, total power flow 
violation was 81.3174 MVA. GSF for this case is 
presented in Table-7. First fifteen generators have shown 
high sensitivity with respect to congested lines and hence 
can participate in the rescheduling process. Generator 
number 5 is the largest capacity in this system and hence 
total rescheduled power is also very high in this case, 
which is 401.2025 MW. Change in active power and 
congestion cost calculated using various methods are 
presented in Table-8. Best congestion cost obtained by the 
proposed method is 10748 $/h which is lesser than other 
methods. 
 
 
 
 

 

Table-7. Generator sensitivity factor for Case D. 
 

Gen. 
No. 

GSF 
Gen. 
No. 

GSF 
Gen. 
No. 

GSF 

1 0.5398 42 -0.0090 80 0.0179 

4 0.5517 46 -0.0032 85 0.0210 

6 0.5429 49 -0.0062 87 0.0210 

8 0.5752 54 -0.0097 89 0.0204 

10 0.5752 55 -0.0100 90 0.0204 

12 0.5322 56 -0.0098 91 0.0203 

15 0.4332 59 -0.0128 92 0.0202 

18 0.4553 61 -0.0141 99 0.0191 

19 0.4077 62 -0.0137 100 0.0196 

24 0.3618 65 -0.0168 103 0.0196 

25 0.4926 66 -0.0124 104 0.0196 

26 0.5317 69 0.0253 105 0.0196 

27 0.4756 70 0.1066 107 0.0196 

31 0.4811 72 0.2403 110 0.0196 

32 0.4691 73 0.1287 111 0.0196 

34 0.0018 74 0.0710 112 0.0196 

36 -0.0025 76 0.0457 113 0.4995 

40 -0.0106 77 0.0250 116 0 

 
Table-8. Comparison of simulation results of congestion 

management for Case D. 
 

Parameter ARCBBO DE BBO 

ΔPG1(MW) 74.4074 74.4074 74.4074 

ΔPG4(MW) 0.0001 0 0 

ΔPG6(MW) 0.0026 0.4459 0.6483 

ΔPG8(MW) 0 0.3644 1.000 

ΔPG12(MW) 98.6686 92.7299 97.8425 

ΔPG15(MW) 6.9724 7.4693 6.1853 

ΔPG18(MW) 0.0024 0.2462 0.5727 

ΔPG19(MW) 0.0002 0.0449 1.6066 

ΔPG24(MW) 0.0013 1.5554 2.0000 

ΔPG25(MW) 4.5938 7.5888 32.9042 

ΔPG26(MW) 132.8522 132.8531 131.8531 

ΔPG27(MW) 0 0.2043 -0.0645 

ΔPG31(MW) 0.0012 1.1402 0.0387 

ΔPG32(MW) 83.7003 82.6614 55.7003 

ΔPG69(MW) 0 -0.2418 -2.0959 
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Rescheduled power 
(MW) 

401.2025 401.9530 406.9195 

Best Congestion 
cost ($/h) 

10748 10869 11053 

Mean Congestion 
cost ($/h) 

10787 10910 11089 

Worst Congestion 
cost ($/h) 

10805 10923 11125 

Std. Congestion 
cost 

7.3616 11.4317 22.3831 

Simulation time 
(sec) 

230.89 245.14 175.03 

 
For each case study, power flows in congested 

line before and after rescheduling is presented in Table-9. 
The comparisons of convergence characteristics of 
ARCBBO, DE and BBO for congestion management are 
shown in Figure-2. Simulation time is presented in each 
case which represents time taken for 200 iterations per 
trail. Simulation time taken by BBO is lesser than 
ARCBBO and DE, but ARCBBO provides much better 
results than BBO and DE even in the first 50 iterations, it 
can be observed from Figure-5, which shows the 
exploration ability of the proposed method. Congestion 
cost and standard deviation of congestion cost obtained by 
ARCBBO are lesser than DE and BBO in all case studies, 
which represent accuracy and reliability of the proposed 
method. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Figure-2. Convergence characteristics of optimization 
methods (a) Case A. (b) Case B. (c) Case C. (d) Case D.

Table-9. Power flow in congested line. 
 

 Congested lines 
Power flow before 

rescheduling 
(MVA) 

Power flow after rescheduling (MVA) 

ARCBBO DE BBO 

Case A 10 - 17 7.01 6.99 6.99 6.99 

Case B 
8 -9 201.13 200 199.99 199.51 

9 -11 50.32 50 50 49.64 

Case C 8 - 9 201.52 199.99 199.99 199.45 

Case D 
8 - 30 241.38 143.63 146.1 143.83 

30 - 38 189.93 71.57 71.31 71.85 
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6. CONCLUSIONS 
Using case studies approach, ARCBBO has been 

implemented successfully in different power systems for 
congestion management. From the results of 50 trails, it is 
evident that this algorithm has better convergence 
characteristics, computational efficiency, and robustness, 
compared with other approaches. This algorithm is ideal 
for independent system operators to solve different 
objective functions in deregulated environments. Whether 
this technique may be implemented in more complex 
multi-objective problems is worthy to investigate. 
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