
 VOL. 10, NO. 12, JULY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5223

OPTIMIZING MAPREDUCE FUNCTIONALITY IN BIGDATA USING
CACHE MANAGER

Devi. L and S. Gowri

Faculty of Computing, Sathyabama University, India
E-Mail: devikanth.btech@gmail.com

ABSTRACT

The MapReduce framework generates a large amount of intermediate data. These data thrown away after the tasks
finish. MapReduce is unable to utilize these data. To improve the efficiency of MapReduce functionality by reducing
repeated jobs in data nodes, we develop cache management system inside the MapReduce framework. In which, tasks
submit their intermediate results to the cache manager. Before executing the actual computing work, task queries the cache
manager. In a Data Aware cache, cache request and cache reply mechanisms are designed. Implementing Cache by
extending Hadoop, it improves the completion time of MapReduce jobs. It detects the occurrence of repeated job in the
incremental data process. Also, stops the repeated work and minimize the processing time so that to provide the optimized
usage of MapReduce nodes.

Keywords: big data, reduce function, data node, name node, map function, intermediate results, incremental data.

1. INTRODUCTION

1.1 BigData

BigData as the name describes a large data sets
that is growing beyond the ability to manage and analysis
using with the traditional data processing tools. Big data
represents large and incremental volume of information
that is mostly untapped by existing data warehousing
systems and other analytical applications. These data is
being gathered from different sources like web search,
mobile devices, software logs, cameras, etc. As of 2012
2.5 Exabyte data created by every day and the size of the
growth gets doubled by every next year.

The main characteristics of BigData are Volume,
Variety, Velocity, Variability, Veracity and Complexity.
This describes the data is big in Volume, has multiple
categories, speed of gathering data to meet the
requirement, consistency/quality of the data and the
complexity in collecting, processing the data to get the
required information.

There are much architecture used in BigData and
Google introduced a new process called ‘MapReduce’,
which allocates the tasks parallel to the nodes and collect,
which is a very successful framework. Later this
framework was adopted by Apache open source project
called Hadoop.

Larger organizations interested in capturing the
data to add significant values like the business. BigData is
mostly used in Retail, Banking, Government, Real estate,
Science and research sectors. This helps in decision
making, cost/time reduction, market analysis etc.

1.2 Hadoop
It is an open source platform for storage and

processing of diverse data types that enables data driver
enterprises to rapidly derive the complete value from all
their data.

1.3 Overview of Hadoop

The original creators of Hadoop are Doug cutting
(used to be at Yahoo! now at Cloudera) and Mike
Cafarella (now teaching at the University of Michigan in
Ann Arbor). Doug and Mike were building a project
called “Nutch” with the goal of creating a large Web
index. They saw the MapReduce and GFS papers from
Google, which were obviously super relevant to the
problem Nutch and were trying to solve. They integrated
the concepts from MapReduce and GFS into Nutch; then
later these two components were pulled out to form the
genesis of the Hadoop project.

The name “Hadoop” itself comes from Doug’s
son, he just made the word up for a yellow plush elephant
toy that he has. Yahoo! hired Doug and invested
significant resources into growing the Hadoop project,
initially to store and index the Web for the purpose of
Yahoo! Search. That said, the technology quickly
mushroomed throughout the whole company as it proved
to be a big hammer that can solve many problems.

2. RELATED WORK

2.1 Bigtable

Referred paper “A Distributed Storage System for
Structured Data” by Fay Chang and Jeffrey Dean”-
BigTable have been developed by Google as a distributed
storage system, structured as a large Table petabytes in

 VOL. 10, NO. 12, JULY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5224

size. It is being used since 2005 in many Google services
to store items such as URLs, many versions of webpages;
over 100 TB of satellite image data; hundreds of millions
of users; and performing thousands of queries a second.

Semi- Structured storage design is used in
BigTable. It is a big map indexed by row key, column key
and timestamp used for lookup, insert and delete. It has ‘n’
number of column families and various attributes of web
pages are stored in column families. It is indexed by row
key and split into multiple subtables. The subtables are
called as tablets.

BigTable is not an RDBMS; instead it’s a
distributed, persistent and multidimensional database. The
data is stored in row key, column key and a 64bit
timestamp. The key gets generated by the database or by
the application. For example in the Google Webtable (for
Google search) the reverse URL is used as the row key
(com.google.www; com.facebook.www). Various
attributes is stored in column families of the webpage.
Each column contains multiple versions of the timestamp
helps to retrieve the recent version. The data key points are
to some content from the webpage.

Google File System is used in Bigtable and the
internal file format for storing data is called SSTable. The
application defines the number of versions to keep based
on the timestamp. Alternatively the application can also
specify how long entries to be stored.

2.2 MapReduce

In the paper “Simplified Data Processing on
Large Clusters” by Jeffrey Dean and Sanjay Ghemawatat -
MapReduce is designed for processing large volumes of
data by dividing the work into a set of independent tasks.
The input data format is specified by the user and it is
application-specific. Output is set of <key, value> pairs.
Map and Reduce are the two functions used. The Map
function applied on the input data and it produces a list of
intermediate <key, value> pairs. These intermediate pairs
are applied by the reduce functions using the same key.
The output pairs may be zero or more and it’s produced by
some kind of merging operation. Finally, with their key
value, the output pairs are sorted. The programmer
provides only the Map function in the simple MapReduce
programs. Other functionalities like grouping of
intermediate pairs that have same key and sorting the final
result is provided at the runtime. Unit of work in
MapReduce is Job. A Job has two phases, they are map
and reduce phase. For example, MapReduce job counts the
words across documents. Map phase counts the words in
the document and reduce will collate the data into word
counts. At map phase, inputs are divided into splits and are
made to run parallel across Hadoop clusters. Hadoop
Distributed File System (HDFS) is the file system used in
Hadoop. The Reduce tasks collate the final results and
stores the results in HDFS.

2.3 Improving MapReduce performance
MapReduce performance is improved by

prefetching before scheduling based on virtual reality. For
big data sets the communication between Data nodes and
Name node affect the performance of MapReduce
functionality. Hadoop schedules tasks to the nodes near
the data locations which will preferentially decrease the
data transmission overhead and this works well in
homogeneous and in dedicated MapReduce environments.
Unfortunately, it’s difficult to take advantage of data
locality in heterogeneous or shared environments. The
performance of MapReduce in heterogeneous or shared
environments is improved by data pre-fetching mechanism
which is proposed in this paper. In the pre-fetching
mechanism the data is fetched to the corresponding
compute nodes in advance. It is proved that data
transmission overhead is reduced effectively with the
theoretical analysis. The main idea of data pre-fetching
mechanism proposed in this is to overlap the data
transmission process with data processing process. By this
way, the overall performance of MapReduce could be
improved.

By analyzing the process of map tasks in Hadoop,
when the input data is not local the serial execution of data
transmission and data processing is discovered to cause
overhead. Map tasks can be pre-fetched to nodes where
map tasks are executed. Experiments are carried out in
both heterogeneous and shared environments. Parameters
includes map run time, data transmission time, total input
data size and input split size of map tasks in the
experimental applications. The experiment results show:
up to 94% of data transmission time is reduced and 15%
performance improvement in jobs’ execution.

2.4 Smart speculative execution strategy

MapReduce performance is improved by smart
speculative execution strategy. MapReduce is widely used
parallel computing framework for large data processing.
MapReduce two major performance metrics are job
execution time and cluster throughput. This can be
seriously impacted by straggler-machines in which the
tasks take an unusually long time to finish. The common
approach for dealing this straggler problem is speculative
execution, which is by simply backing up those slow
running tasks on alternative machines. We do have
multiple speculative execution strategies that has been
proposed, but they have some drawbacks: (i) average
progress rate to identify slow tasks (ii) Difficult to handle
the situation when there exists data twist among the tasks,
(iii) Will not consider whether backup tasks can finish
earlier when choosing backup worker nodes To improve
the effectiveness of speculative execution they developed
a new strategy, maximum cost performance (MCP). In
MCP, the following methods are used to identify
stragglers accurately and promptly: (i) Slow tasks are
selected by using the progress rate and the process

 VOL. 10, NO. 12, JULY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5225

bandwidth within a phase, (ii) By using exponentially
weighted moving average (EWMA) the process speed and
the task's remaining time is calculated, (iii) Cost-benefit
model is used to determine which task to backup based on
the load of a cluster. Cluster of 101 virtual machines
running in a variety of applications on 30 physical servers,
we evaluated MCP and the experiment results show that
compared to Hadoop-0.21, MCP can run jobs up to 39
percent faster and improve the cluster throughput by up to
44 percent.

3. PROPOSED SYSTEM

Data aware cache overcomes the limitations of
the existing system. Cache aims at extending the
MapReduce framework. It provides a cache layer for
efficiently identifying and accessing cache items in a
MapReduce job. In which, tasks submit their intermediate
results to the cache manager. Before actual computing
work Task queries the cache manager before executing
the.

A scheme to describe the cache, a cache request
and reply protocols are designed. Cache is implementing
by extending Hadoop. It improves the completion time of
MapReduce jobs by preventing the repeated jobs.

3.1 Advantages

 Redundant tasks: The proposed system helps

MapReduce framework to avoid redundant tasks to
retrieve the existing data from the cache manager.

 Efficiency: By implementing cache in Hadoop, the
efficiency for computing incremental data is improved
to greater extent.

 This significantly saves the completion time as
well as the work load assigned to the nodes and reduces
the task of MapReduce.

3.2 System architecture
Input data is first split and then feed to workers in

the map phase. Records are individual data items. Cache
manager works as a centralized system. All the unique
input and output data performed by clients are feed in to
the cache manager. The data in cache is stored as a log
which contains the input and the place where the output is
available. Each client checks the cache before it starts the
functioning. If the cache contains that task then the client
machine can easily retrieve information from it, else the
cache accept task from the client.

Figure-1. System architecture.

Below example portray the MapReduce
functionality in detail. For an example,we are considering
one line as each. However, this is not necessarily true in a
real-time scenario. Map() in the below case holds the
occurance of each word captured as (SQL, 1), (DW, 1),
(SQL, 1) and so on. The output of Map() is IMR-
Intermediate Results. Reduce phase produce the final sum
of words.

Figure-2. MapReduce functionality.

 VOL. 10, NO. 12, JULY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5226

Input: First the input data are split into fixed
number of pieces and then they are feed to different
workers (data nodes) in the mapreduce environment.
Records are individual data items. Each worker process
the input file as per the user program.

Map phase: In this phase, each input split is fed
to the mapper who has the function map (). This map ()
has the logic on how to process the input data. For
example, map () is containing the logic to count the
occurrence of each word and each occurrence is captured
and arranged as (Key, value) pairs. After processing the
intermediate results are stored in the data node’s hard disk.

Cache management phase: Cache manager
works as a centralized system. All the unique input and
output data performed by clients are feed in to the cache
manager. The data in cache is stored as a log which
contains the input and the place where the output is
available. Each client checks the cache before it starts the
functioning. If the cache contains that task then the client
machine can easily retrieve information from it, else the
cache accept data from the client. Cache prevents the
occurrence of repeated tasks. Thus it decreases the
Processing time of system.

Cache request and reply protocol: We use
cache request and reply protocol to get the results that are
stored in data nodes. Before processing the splits, the data
node sends the request to Cache Manager. All the unique
input and output data performed by clients are feed to the
cache manager. The data is stored as a log in cache which
contains the input and the place where the output is
available. Each client checks the cache before it starts the
functioning. If the cache contains that task then the client
machine can easily retrieve information from it, else the
cache accept task from the client. If data is already
processed, the Cache Manager sends the positive reply to
the data node. Otherwise send the negative reply. If
negative reply obtained, the data node do the process on
the split file. If positive reply obtained, the data node need
not process the splits. So, no need to process the repeated
data. Cache Manager ensures the repeated input split files
need not process more than one time. Finally all the
intermediate files are reduced by data node and the final
result is stored in Name node.

 Reduce phase: In this step, for each unique key,
the framework calls the application's Reduce () function.
The Reduce can iterate through the values that are
associated with that key and produce zero or more outputs.
In the word count example, the input value is taken by
reduce function, sums them and generates a single output
of the word and the final sum. The output of the Reduce is
writing to the stable storage, usually a distributed file
system.

4. RESULT AND PERFORMANCE ANALYSIS
 There are several steps for installing and
configuring Hadoop. First install the following software,
and then configure hadoop.

 VMware Player 5.0.
 Create new virtual machine and install Cent OS 6.3
 Install Java SE 7
 Install Eclipse Juno Release 1.0
 Install Apache Hadoop 1.0.3

Figure-3. Hadoop configuration.

Below is the Hadoop console output, this actually
splits the tasks into several records and allocate it to the
available data nodes. This console output will update the
status of Map () and Reduce () and the task completion
status.

Figure-4. Hadoop console output.

Bigdata usually process large size and
incremental data’s in nature. Incremental data means, the
data to be processed is increasing continuously. The
systems which process the bigdata get the undetermined
number of input files. Consider the Hadoop system can
accept 10 input files for understanding the concept of
cache system inside the Hadoop framework.

4.1 Case-1: More than 4 files are duplicates (the files
 having the same content and may have different file
 names or extensions)

In this case, Map phase unwantedly process the
same file content again, it split the entire file into different
pieces, and send it to the datanodes to process. Datanodes
are unaware of redundant data. So the wastage of time is

 VOL. 10, NO. 12, JULY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5227

more and performance of the MapReduce is decreased
without any mechanism to identify the redundancy. If the
cache mechanism is used inside the Hadoop, the
redundancy of input file is checked which in turn
tremendously increase the performance.
If 5 files are duplicates,

Figure-5. More redundant input.

If each file has 5 splits, the Hadoop process only
25 splits rather than unwanted 50 splits. So it reaches
maximum performance as early as possible. So by
introducing cache in more number of duplicates the
performance is more powerful.

4.2 Case-2: One or two files are duplicates

In this case Map phase unwantedly process less
amount of repeated data. Once again datanodes are
unaware of redundant data, so the wastage of time is less
compare to previous case and performance of the
MapReduce is decreased to some level. If the cache
mechanism is used inside the Hadoop, then it will check
the redundancy of input file and increases the performance
by somewhat.
If 2 files are duplicates,

Figure-6. Less redundant input.

If each file has 5 splits, the Hadoop process only
40 splits rather than unwanted 10 splits. So it reaches
maximum performance after processing all splits. So by
introducing cache when there are minimum numbers of
duplicates, the performance is somewhat powerful.

4.3 Case-3: None of the files are duplicates
In this case Map phase process all the data, if the

cache mechanism inside the Hadoop will check the
redundancy of input file and there are no duplicates then
the performance is normal. In this case, cache is not useful
and consumes some amount of time.

Figure-7. No redundancy.

4.4 Findings

In practical, more number of input files is being
processed by MapReduce framework, and there are more
possibilities of redundant data. In first case, as per the
experimental results, if we use cache mechanism inside the
framework then there is better performance.

5. CONCLUSIONS

This project focuses on the problem of
inefficiency in incremental processing. Incremental
processing refers those applications that incrementally
grow the input data and continuously apply computations
on the input in order to generate output. There are lots of
duplicate computations being performed in this process.
MapReduce does not have a mechanism to find out these
computations. The data aware cache in MapReduce
framework helps to overcome this problem and provide
high efficiency in incremental processing. It prevents the
repeated tasks to process and increment the performance.

REFERENCES

[1] C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M.

Larsson, A. Neumann, V. B. N. Rao, V.
Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell
and X. Wang. 2011. Nova: Continuous pig/Hadoop
workflows, in Proc. of SIGMOD’2011, New York,
NY, USA.

[2] C. Olston, B. Reed, U. Srivastava, R. Kumar and A.
Tomkins. 2008. Pig latin: A not-so-foreign language
for data processing, in Proc. of SIGMOD’2008, New
York, NY, USA, 2008.

 VOL. 10, NO. 12, JULY 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5228

[3] U. A. Acar. 2009. Self-adjusting computation: An
Overview, in Proc. of PEPM’09, New York, NY,
USA.

[4] T. Karagiannis, C. Gkantsidis, D. Narayanan and A.
Rowstron. 2010. Hermes: Clustering users in large-
scale e-mail services, in Proc. of SoCC ’10, New
York, NY, USA.

[5] Memcached-A distributed memory object caching
system, http://memcached.org/, 2013.

[6] P. Scheuermann, G. Weikum, and P. Zabback. 1998.
Data partitioning and load balancing in parallel disk
systems, The VLDB Journal. 7(1): 48-66.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. 2008. Improving MapReduce performance
in heterogeneous environments, in Proc. of
OSDI’2008, Berkeley, CA, USA.

[8] H. Herodotou, F. Dong and S. Babu. 2011. No one
(cluster) size fits all: Automatic cluster sizing for
data-intensive analytics, in Proc. of SOCC’2011, New
York, NY, USA.

[9] S. Wu, F. Li, S. Mehrotra and B. C. Ooi. 2011. Query
optimization for massively parallel data processing, in
Proc. of SOCC’2011, New York, NY, USA.

[10] D. Logothetis, C. Olston, B. Reed, K. C. Webb and K.
Yocum. 2010. Stateful bulk processing for
incremental analytics, in Proc. of SOCC’2011, New
York, NY, USA.

[11] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin and
L. Zhou. 2010. Comet: Batched stream processing for
data intensive distributed computing, in Proc. of
SOCC’2011, New York, NY, USA.

[12] D. Battr’e, S. Ewen, F. Hueske, O. Kao, V. Markl and
D. Warneke. 2010. Nephele/pacts: A programming
model and execution framework for web-scale
analytical processing, in Proc. of SOCC’2010, New
York, NY, USA.

[13] P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu and H.
Hacig¨um¨uS. 2011. Activesla: A profit-oriented
admission control framework for database-as-a-
service providers, in Proc. of SOCC’2011, New York,
NY, USA.

[14] H. Gonzalez, A. Halevy, C. S. Jensen, A. Langen, J.
Madhavan, R. Shapley and W. Shen. 2010. Google
fusion tables: Data management, integration and
collaboration in the cloud, in Proc. of SOCC’2010,
New York, NY, USA.

