
 VOL. 10, NO. 14, AUGUST 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5730

IEEE 754 COMPLIANT FLOATING POINT FUSED ADD SUB UNIT

Sharmila Hemanandh1 and Siva Subramanian2

1Department of Electronics and Communication Engineering, Sathyabama University, India
2School of Electronics, Vellore Institute of Technology, Tamil Nadu, India

E-Mail:sharmilaahemanandh@gmail.com

ABSTRACT

Floating point arithmetic is a key component in the development of many algorithms for DSP applications that
require large dynamic range and high level of accuracy. This paper proposes a floating point fused add sub unit that
computes the sum and the difference of two operands simultaneously. Algorithms like FFT and DCT require the sum and
the difference of two operands. The proposed fused unit is compliant with both single precision and double precision IEEE
754 standard of floating point representation. It also supports all rounding modes. When compared with the conventional
floating point adder, the results obtained using the fused unit are more accurate since the number of rounding operations is
reduced in the proposed unit. The fused unit is implemented using Verilog HDL and synthesized using Xylinx 14.1.

Keywords: IEEE 754 standard, floating point arithmetic, fused add sub, Xylink 14.1.

1. INTRODUCTION

Numbers in real life are almost numbers with
fractional part. These fractional numbers in general are
represented using fixed point representation or floating
point representation to ease storage and manipulation. A
fixed point number consists of an integer and a fraction
part. The term fixed point refers to the fact that the number
of digits after the radix point is fixed. Fixed point number
representation is characterized based on the position of the
radix point and the number of bits used to represent the
number [1]. The bits to the right of the radix point
represent the fraction and those to the left represent the
integer part of the number. Though fixed point
representation is a simple way to represent fractional
numbers, it represents the range of numbers limited by the
significant digits used to represent the number.

1.1 Representation of floating point numbers

In floating point number representation the radix
point can float. It can be placed anywhere relative to the
significant digits of the number. Here the number of bits
before and after the radix point is not fixed. In general a
number is represented by scientific notation using two
fields, namely the mantissa (also called the significant)
and the exponent. Moreover, using this representation very
small numbers or very large numbers can be represented

with a great deal of precision. In general, a floating point
number is represented by three parts, namely sign(s),
mantissa (m), and exponent (e).

The sign bit is 0 for a positive number and 1 for a
negative number. Mantissa is always a positive number
that holds the significant digits of the floating point
number [2]. The exponent is the integer power to which
the radix is raised. The radix here is 2 for binary, 10 for
decimal, and 16 for hexadecimal representations.

1.2 EEE 754 floating point standard

In the early years major microprocessor
manufacturers designed floating point units with varying
word sizes. No uniform rounding procedure or overflow/
underflow conditions were handled. In 1980 IEEE
standardized the format used to represent floating point
numbers to deal with the problem of non standard floating
point representations [3]. Since then the IEEE 754
standard has been the commonly used format for all
floating point computations.

The IEEE standard for binary floating point
arithmetic defines two basic floating point formats,
namely single precision (32 bit) and double precision (64
bit). The number of bits used to represent the sign,
exponent and mantissa is as shown in Table-1.

Table-1. Floating point representation.

1:S.No. Forma Sign Exponent Mantissa

1 Single Precision 1[31] 8[30-23] 23[22-0]

2 Double precision 1[63] 11[62-52] 52[51-0]

This standard not only specifies the basic and

extended floating point number formats but also supports
basic arithmetic operations such as addition, subtraction,
multiplication, and division of two floating point numbers.

 VOL. 10, NO. 14, AUGUST 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5731

Rounding modes, conversion of integer into floating point
format and vice versa, conversion among different floating
point formats, floating point exceptions and handling are
also a part of the standard [4]. Nowadays, all modern
engineering and technology applications prefer floating
point in the field of signal processing for scientific
computations due to its high dynamic range when
compared with fixed point representation.

2. FLOATING POINT FUSED ADD SUB UNIT

The implementation of many DSP algorithms like
FFT and DCT require the sum and the difference of two
operands simultaneously to perform butterfly operation
[5]. Such applications are benefited by fused units such as
Fused add sub unit (FAS). The FAS unit shown in Fig 1
computes the sum and the difference of two operands
simultaneously.

Figure-1. Fused add sub unit.

In the conventional method two design
approaches are possible. In the first case two floating point
adders are connected in parallel to compute the sum and
the difference of two operands. Since two floating point
adders use the area, power consumption is a limitation and
this approach is expensive. In the second case only a
single adder is used to compute the sum first and the same
adder calculates the difference between the same operands
in a serial manner [6]. Though this approach is efficient in
terms of area the time required to complete the operation
is high.

Hence an FAS unit is designed to increase the
throughput which is a major parameter of concern in many
signal processing applications. There is also a significant
reduction in power and silicon area because FAS unit
executes the shared logic when compared with the
traditional approach. This paper proposes the FAS unit
that increases the performance and accuracy of DSP
algorithms.

2.1 Design approach

Let X and Y be the two operands. The FAS unit
computes the sum(X+Y) and the difference(X-Y)
simultaneously. To begin with the exponent compare logic
compares the exponents of the two operands to identify the
smaller number and also computes the difference between
the two exponents. The exponents of the two operands
must be made equal before addition or subtraction. If the
exponent of X is greater than that of Y, then right shift the
mantissa of Y by the difference value of the two

exponents. Similarly if the exponent of Y is greater than
that of X, then right shift the mantissa of X by the
difference value of the two exponents. By doing so the
exponents of the two operands are made equal. Next the
sum of the two operands is computed. Normalization is
required if the results lie outside the permitted range. If the
result obtained after adding the two operands is not in the
prescribed format, then it has to be rounded.

The IEEE floating point arithmetic supports four
rounding modes:

Round to +∞: The result obtained is rounded up
to a representable value close to positive infinity but not
greater than the true result.

Round to -∞: The result obtained is rounded
down to a representable value close to negative infinity but
not less than the true result.

Round to zero: The number of bits required is
retained and the rest of the bits are discarded (also called
truncation)

Round to the nearest: It is the most commonly
used rounding mode in floating point applications. Here
the result is rounded up or down. When the result is
exactly half way through, then the result is rounded to the
nearest even.

The proposed fused add sub unit supports all the
four rounding modes.

The IEEE 754 standard allows the representation
of four types of special values:

Signed zero: Two types of zero exist based on
the sign, namely +0 and -0. Though the magnitudes are
equal in both the cases, But certain operations like 1/ (+0)
= +∞ and 1/ (-0) = -∞ yield different results based on the
sign.

Subnormal numbers: Also called de-normalized
numbers where the value of the exponent is the smallest
value and the leading significant bit is 0 instead of 1.

Infinites: The standard allows the representation
of positive infinity and negative infinity. This
representation is much useful when the results of certain
operations are undefined. The sign bit is either zero
(positive infinity) or one (negative infinity). The
significant bits are all zeros and the exponent bits are all
ones.

Nan: It is used to represent the result of an
invalid operation such as dividing by zero, finding the
square root of a negative number. The sign bit is either
zero or one, all the bits of the exponent being are one and
the significant is a combination of zero’s and one’s. Each
combination represents the type of invalid operation.

The proposed fused add sub unit is designed to
handle all the four special values described above.

2.2 Algorithm

The steps involved in the proposed fused add sub
unit are as follows:

 VOL. 10, NO. 14, AUGUST 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5732

The two operands are represented by means of
IEEE floating point standards i.e., exponent, mantissa, and
sign bit. The exponents of the two operands are compared
and the sign bit is obtained from the highest exponent
value. Find the difference between the two exponents to
get the value by which the smaller mantissa should be
shifted. Add the mantissas of the two operands. Shift the
mantissa if required so that the MSB of the resultant
mantissa is 1. Add the two exponents to obtain the final
exponent value. Obtain the difference between the two
operands by taking the 2s complement of the smaller
number before step-4.

3. RESULTS AND DISCUSSION
The proposed floating point fused add sub unit is

simulated using Isim simulator. The unit is placed and
routed on Virtex 6 FPGA and synthesized on Xylinx 14.1.
Figure-2 shows the simulation results of single precision
floating point fused add sub unit. The two operands A and
B are represented using single precision format. The sum
and the difference of the two operands are computed and
the result is also represented in the same format.

Figure-2.Simulation result of single preision floating point fused add sub unit.

The RTL schematic of single precision floating point fused add sub unit is shown in Figure-3.

Figure-3.RTL schematic of single precision floating point
FAS unit.

Figure-4 shows the simulation results of double

precision floating point fused add sub unit. The two
operands A and B are represented using double precision

format. The sum and the difference of the two operands
are computed and the result is also represented in the same
format.

 VOL. 10, NO. 14, AUGUST 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5733

Figure-4. Simulation result of double preision floating point fused add sub unit.

The RTL schematic of the double precision floating point fused add sub unit is shown in Figure-5.

Figure-5.RTL schematic of double precision floating point FAS unit.

Table-2 summarizes the device utilization of the
fused unit in single and double precision representations.
The logic utilization of double precision is more by 49%

when compared to single precision format. However
double precision fused unit exhibits high level of precision
when compared to single precision representation.

Table-2.Device utilization summary of single double precision floating point FAS unit.

Proposed fused add sub unit

Single precision Double precision

Number of slice registers 197 387

Number of slice LUTs 388 878

Number of occupied slices 182 353

Number of bonded IOBs 131 257

 VOL. 10, NO. 14, AUGUST 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 5734

Table-3. Delay of fused add sub unit and floating point adder unit.

 Proposed Fused add sub unit Floating point add sub unit

Single

precision
Double

precision
Single

precision
Double

precision

Delay(ns) 5.485 7.038 9.262 13.532

Table-3 compares the delay of the proposed fused

add sub unit with a conventional floating point add sub
unit. The results show that the delay of the proposed fused
unit is 41% less than the floating point adds sub unit in
single precision format and 47% less in the case of double
precision format.

4. CONCLUSIONS

This paper has presented a single precision and
double precision fused floating point add sub unit. The
modules have been written in Verilog HDL. The proposed
FAS unit has been synthesizedand implemented on
Virtex6 FPGA in single precision and double precision
IEEE 754 floating point representation. Comparing the
delay, the fused unit exhibits better performance than the
floating point add sub unit. Moreover the proposed fused
add sub unit supports all rounding modes and also handles
special values. The proposed fused add-subtract unit can
be used to realize DSP algorithms, including the basic
butterfly computation of FFT and DCT.

REFERENCES

[1] P. -M. Seidel, 2003, Multiple Path IEEE Floating-

Point Fused Multiply-Add. Proceedings of the
46thIEEE International Midwest Symposium on
Circuits and Systems. pp. 1359-1362.

[2] 2008. IEEE Standard for Floating-Point Arithmetic,
ANSI/IEEE Standard 754-2008, New York: IEEE,
Inc.

[3] Sohnet al. 2012. Improved Architectures for a Fused
Floating point add-subtract unit. IEEE Transactions
on Circuits and Systems-1: Regular Papers. 59: 2285-
2291.

[4] William Stallings, 2010, Computer Organization and
Architecture, 8th edition Pearson, 345-361.ISBN 978-
81-317-3245-8.

[5] A. Amaricai, O. Boncalo, C.E. Gavriliu, 2013, Low
Precision DSP Based Floating Point Multiply-Add
Fused for FPGAs. IET Computing AND Digital
Techniques. 8:187-197.

[6] JongwookSohn and Earl E. Swartzlander. 2012.
Improved Architectures for a Fused Floating-Point
Add-Subtract Unit. IEEE transactions on Circuits and
Systems. 59:2285-2291.

[7] Hani Saleh and Earl Swartzlander, Jr. 2008. A
Floating-Point Fused Dot Product Unit, IEEE
International Conference on Computer Design
(ICCD), Lake Tahoe, CA, 427-431, 2008.

[8] E. E. Swartzlander, Jr. and H. H. Saleh. 2012. FFT
implementation with fused floating-pointoperations,
IEEE Trans. Comput.61: 284-288.

[9] A. Akkas, M.J. Schulte. 2011. A decimal floating-
point fused multiply-add unit with a novel decimal
Leading -zero anticipator, Application- Specific
Systems, Architectures and Processors (ASAP),IEEE
International Conference. 43: 11-14.

[10] R Samy, H.A.H. Fahmy, Raafat, R, A. Mohamed, T.
El Deeb, Y. Farouk. 2010. A decimal Floating-point
fused-multiply-add unit, Circuits and Systems
(MWSCAS), IEEE International Midwest
Symposium. 529:1-4.

