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ABSTRACT 

This paper theoretically analyzes free transverse vibrations of an elastically connected rectangular plate-
membrane system with a Pasternak layer in-between. Solutions of the problem are formulated by using the Navier method. 
Also natural frequencies of the system are determined. The effect of Pasternak layer on the natural frequencies of this 
mixed system is discussed in a numerical example. Increasing shear foundation modulus of the Pasternak layer causes an 
increase in the value of natural frequency of the system (ωimn); however this influence of the shear foundation modulus of 
the Pasternak layer is different at some particular frequencies. That is, this effect is stronger at ω2mn frequencies rather than 
what is seen at ω1mn frequencies. The mixed system has an interesting feature which allows each natural frequency to 
change as a function of shear foundation modulus of the Pasternak layer, whilst other constructional and physical 
parameters of the system can remain unchanged. The important result on which this paper puts an emphasize, is that the 
magnitudes of the frequencies become larger with increasing shear foundation modulus of the Pasternak layer and the 
Pasternak layer can increase the magnitude of frequencies more than Winkler elastic layer can. Thus the Pasternak layer 
can be used instead of Winkler elastic layer to more effectively suppress the excessive vibrations associated with plate-
membrane systems. Numerical results of the present method are verified once compared with those available in the 
literature. 
 
Keywords: free transverse vibration, rectangular plate-membrance system, membrane tension, Pasternak layer, Navier method. 

 
1. INTRODUCTION 

Structural members such as plate-type (beam-
type) structures made of two parallel simply supported 
plates (beams) continuously joined by a linear, elastic 
Winkler type layer are increasingly used in aeronautical, 
mechanical and civil engineering applications. As a matter 
of fact, the phenomenon of transverse vibration and 
dynamical problems of such systems has a wide 
application in engineering practice. 

In classical vibration plate theory, two basic and 
well known analytical methods are applied for analyzing 
free vibrations of a single rectangular plate, namely the 
Levy and Navier methods. Such structures have been 
extensively covered by many investigators. 

Zhang et al. (2008a) studied vibration and 
buckling of a double-beam system under compressive 
axial loading. They investigated the properties of free 
transverse vibration and buckling of a double-beam system 
under compressive axial loading on the basis of the 
Bernoulli-Euler beam theory. They assumed that the two 
beams of the system are simply supported and 
continuously joined by a Winkler elastic layer. They 
derived explicit expressions for the natural frequencies. 
They also obtained the associated amplitude ratios of the 
two beams, and the analytical solution of the critical 
buckling load. They showed that the critical buckling load 
of the system is related to the axial compression ratio of 
the two beams and the Winkler elastic layer, and the 

properties of free transverse vibration of the system 
greatly depend on the axial compressions. They also 
studied effect of compressive axial load on forced 
transverse vibrations of a double-beam in another paper 
(Zhang et al., 2008b). The effects of compressive axial 
load on the forced vibrations of the double-beam system 
are discussed for two cases of particular excitation 
loadings and the properties of the forced transverse 
vibrations of the system are found to be significantly 
dependent on the compressive axial load. 

Stojanovic and Kozic (2012) considered forced 
transverse vibration and buckling of a Rayleigh and 
Timoshenko double-beam system continuously joined by a 
Winkler elastic layer under compressive axial loading. In 
their paper, deflections of the beams based on the 
Timoshenko beam theory are shown and general solutions 
of forced vibrations of beams subjected to arbitrarily 
distribute continuous loads are found. The analytical 
solution of forced vibration with associated amplitude 
ratios is determined. Also dynamic responses of the 
system caused by arbitrarily distributed continuous loads 
are obtained. Vibrations caused by harmonic exciting 
forces are discussed, and conditions of resonance and 
dynamic vibration absorption are formulated.  

Oniszczuk (2003) theoretically analyzed 
undamped free transverse vibrations of an elastically 
connected rectangular plate-membrane system with 
Winkler elastic layer in-between. Solutions of the problem 
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are formulated by using the Navier method and natural 
frequencies of the system are determined in the form of 
two infinite sequences. Also Normal mode shapes of 
vibration expressing two kinds of vibration, synchronous 
and asynchronous, are presented. In a numerical example, 
the effect of membrane tension on the natural frequencies 
of this mixed system is discussed. 

Forced transverse vibrations of an elastically 
connected complex rectangular simply supported double-
plate system with a Winkler elastic layer in-between was 
also studied by Oniszczuk (2004). Undamped motion of 
the system excited by arbitrarily distributed continuous 
loadings applied transversely to both plates was derived 
based on the Kirchhoff-Love plate theory. On the basis of 
general solutions obtained, three particular cases of the 
action of exciting stationary harmonic loads were 
considered.  

The behavior of foundation materials in 
engineering practice cannot be represented by foundation 
model which consists of independent linear elastic springs. 
In order to find a physically close and mathematically 
simple foundation model, Pasternak proposed a so-called 
two-parameter foundation model with shear interactions. 
In an attempt to find a physically close and mathematically 
simple representation of an elastic foundation for these 
materials, Pasternak (1954) proposed a foundation model 
consisting of a Winkler foundation with shear interactions. 
This may be accomplished by connecting the ends of the 
vertical springs to a beam consisting of incompressible 
vertical elements, which deforms only by transverse shear. 
In Wang et al. (1977) and De Rosa (1995), the natural 
vibration of a Timoshenko beam on a Pasternak-type 
foundation is studied. Frequency equations are derived for 
beams with different end restraints. A specific example is 
given to show the effects of rotary inertia, shear 
deformation, and foundation constants on the natural 
frequencies of the beam. 

Free transverse vibrations of an elastically 
connected rectangular plate-membrane system with a 
Pasternak layer in-between are studied in the present 

paper. Free transverse vibrations of this mixed system are 
studied by using the Navier method. 
 
2. FORMULATION OF THE PROBLEM 

Figure-1 shows a complex continuous system 
which consists of a rectangular three-layered structure 
composed of isotropic plate and parallel membrane 
stretched uniformly by constant tensions applied at the 
edges and separated by the Pasternak layer. It is assumed 
that both plates and membrane are thin, homogeneous, 
uniform, and perfectly elastic. For the sake of simplicity of 
vibration analysis it is also assumed that the plates as well 
as the membrane are governed by simply supported 
boundary conditions. In the general case, the system is 
subjected to arbitrarily distributed transverse continuous 
loads. 
 

 
 

Figure-1. The physical model of an elastically connected 
rectangular plate-membrane complex system with a 

Pasternak layer in-between. 
 

According to the Kirchhoff-Love plate theory, 
transverse vibrations of an elastically connected 
rectangular plate-membrane system with a Pasternak layer 
in-between are described by the following differential 
equations:
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The subscripts 1 and 2 refer to the plate and the 
membrane, respectively. The boundary conditions and 
initial conditions for the simply supported plate and 
membrane are as follows: 
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and 
 

2 ,1  ,  ),()0,,(  ,  ),()0,,( 00  iyxwyxwyxwyxw iiii &&    (4) 

 
3. SOLUTION OF THE FREE VIBRATION  
    PROBLEM 

Free vibrations of a rectangular plate-membrane 
system (see Figure-2) are governed by the following 
homogeneous partial differential equations: 
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The above equation system with the boundary 

conditions (3) can be solved by the Navier method 
assuming solutions in the following form: 
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Where, ),( yxWmn  satisfies the corresponding 

boundary conditions (3) for the simply supported plate and 
membrane as well as the homogeneous differential 
equations (5). 
�

�
 

Figure-2. The physical model of an elastically connected 
rectangular plate-membrane system with a Pasternak layer 

in-between analyzed for free vibrations. 
 

Substituting solutions equations (6) into 
equations (5) gives the following expressions: 
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Where, ])()[( 21212222 nbmabak nmmn
   . From 

which a set of ordinary differential equations for the 
unknown time functions is obtained 
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The solutions of equations (9) are as follows: 
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Introducing them into equations (9) results in a 

system of algebraic equations with unknown constants of 
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For non-trivial solutions of the above equations, 
the determinant of the system coefficient matrix is set 
equal to zero, yielding the following frequency equation: 
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and thus the frequency equation (12) has two roots: 
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The time functions (10) can be assumed to have the following forms 
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or in trigonometric form 
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Finally, the forced vibrations of an elastically 

connected rectangular plate–membrane system with a 
Pasternak layer in-between can be described by 
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The unknown constants  and  in 

expressions (18) and (19) are calculated by solving the 
initial-value problem. By multiplying the relations (18) 

and (19) by the eigen-function , then integrating them 

and using orthogonality condition 

 

                                                        (20) 
 
Where, 
 

 
 

Then substituting solutions (18) and (19) into the 
initial conditions (4), and then performing the known usual 
transformation procedure and applying the orthogonality 
condition (20), the following formulae for evaluating 

 and  are obtained: 

 

 

Where, 

 

 
4. NUMERICAL RESULTS AND DISCUSSION 

In the following the effects of shear foundation 
modulus of the Pasternak layer  on the natural 

frequencies of the system are considered. Values of the 
parameters characterizing properties of the system are 
shown in Table-1. 

 
Table-1. Values of the parameters characterizing properties of the system. 
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 are presented in Tables-2 to 7 and in Figures-3 

to 8. In any case, increasing  causes an increase in

. An evident influence of shear foundation modulus 

of the Pasternak layer on the frequencies of the system is 
observed and it can be seen that with increasing  the 

frequencies increase as well. However this influence of the 
membrane tension and shear foundation modulus of the 

Pasternak layer is different on some particular frequencies, 
being stronger on  frequencies while weaker on the 

 frequencies. If we introduce  in the whole 

equations of this paper we can obtain the vibration 
equations of the plate-membrane system with a Winkler 
elastic layer in-between, the results of which are verified 
by comparing with those available in Oniszczuk (2003). 
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Table-2. Natural frequencies of the rectangular plate-membrane system  for . 
 

      
 

500 400 300 200 100 0 

10.1677 9.6499 9.0019 8.1606 7.0042 5.2276  

127.644 122.7581 117.6773 112.3774 106.8294 100.9978  

13.0322 12.5938 12.0248 11.2542 10.1432 8.3638  

141.3192 134.1955 126.6828 118.712 110.1926 101.002  

21.3707 21.1256 20.7836 20.2731 19.4292 17.7686  

176.1773 163.8728 150.579 136.0162 119.7469 101.0273  

24.2351 24.0298 23.7383 23.2923 22.5253 20.9016  

186.3671 172.6493 157.7559 141.3262 122.7739 101.0403  

 

Table-3. Natural frequencies of the rectangular plate-membrane system  for . 
 

      
 

500 400 300 200 100 0 

11.5931 11.1973 10.7184 10.1252 9.3673 8.3546  

132.3645 127.6545 122.77 117.6908 112.3931 106.8478  

14.7141 14.3903 13.9848 13.462 12.7608 11.7669  

148.1144 141.3272 134.2049 126.694 118.7259 110.2103  

23.3924 23.2185 22.9872 22.6648 22.1842 21.392  

187.687 176.1816 163.8782 150.5861 136.0263 119.7627  

26.3113 26.1665 25.9714 25.6945 25.2709 24.543  

199.1513 186.3707 172.654 157.7622 141.3354 122.789  

 

Table-4. Natural frequencies of the rectangular plate-membrane system  for . 
 

      
 

500 400 300 200 100 0 

12.8286 12.5127 12.1386 11.6881 11.134 10.4333  

136.9254 132.3739 127.6651 122.782 117.7045 112.4089  

16.1859 15.9355 15.6299 15.2484 14.7586 14.1059  

154.6149 148.1213 141.3352 134.2143 126.7054 118.74  

25.2249 25.0954 24.9293 24.7085 24.4007 23.9423  

198.5341 187.6905 176.1859 163.8836 150.5934 136.0366  

28.2107 28.1034 27.9644 27.7772 27.5114 27.1046  

211.1662 199.1543 186.3744 172.6587 157.7686 141.3448  
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Table-5. Natural frequencies of the rectangular plate-membrane system  for . 
 

      
 

500 400 300 200 100 0 

13.9305 13.6707 13.3681 13.0107 12.5819 12.0571  

141.3416 136.934 132.3835 127.6758 122.7941 117.7184  

17.5083 17.3083 17.0689 16.7773 16.414 15.949  

160.8559 154.621 148.1282 141.3433 134.2239 126.717  

26.9143 26.8144 26.6896 26.5296 26.3169 26.0204  

208.821 198.5371 187.6941 176.1903 163.8892 150.6008  

29.9737 29.8913 29.7876 29.6533 29.4721 29.2149  

222.5356 211.1687 199.1572 186.3781 172.6636 157.7751  

 

Table-6. Natural frequencies of the rectangular plate-membrane system  for . 
 

      
 

500 400 300 200 100 0 

14.9322 14.714 14.463 14.1709 13.8268 13.415  

145.6259 141.3495 136.9427 132.3932 127.6867 122.8064  

18.7182 18.5545 18.3616 18.1309 17.8503 17.5012  

166.8658 160.8614 154.6272 148.1353 141.3515 134.2336  

28.4908 28.4114 28.3145 28.1936 28.0384 27.832  

218.626 208.8235 198.5401 187.6977 176.1947 163.8948  

31.6275 31.5623 31.4822 31.3814 31.2506 31.0744  

233.3532 222.5377 211.1712 199.1603 186.3819 172.6684  

 

Table-7. Natural frequencies of the rectangular plate-membrane system  for . 
 

      
 

500 400 300 200 100 0 

15.8558 15.6694 15.4571 15.2131 14.9296 14.5962  

149.7893 145.6332 141.3574 136.9515 132.403 127.6977  

19.8397 19.7031 19.5442 19.357 19.1334 18.8615  

172.6683 166.8707 160.8669 154.6335 148.1425 141.3598  

29.9751 29.9106 29.8332 29.7388 29.6209 29.4696  

228.011 218.6282 208.8261 198.5431 187.7013 176.1992  

33.1909 33.1381 33.0745 32.9962 32.8977 32.7699  

243.6922 233.355 222.5399 211.1738 199.1634 186.3857  
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Figure-3. The natural frequencies of the plate-membrane 
system  as a function of 

membrane tension  and . 

 

 
 

Figure-4. The natural frequencies of the plate-membrane 
system  as a function of 

membrane tension  and . 

 

 
 

Figure-5. The natural frequencies of the plate-membrane 
system  as a function of 

membrane tension  and . 

 

 
 

Figure-6. The natural frequencies of the plate-membrane 
system  as a function of 

membrane tension  and . 
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Figure-7. The natural frequencies of the plate-membrane 
system  as a function of 

membrane tension  and . 

 

 
 

Figure-8. The natural frequencies of the plate-membrane 
system  as a function of 

membrane tension  and . 

 
It can be seen that the mixed system discussed 

has an interesting feature, which allows each natural 
frequency to change as a function of membrane tension 
and shear foundation modulus of the Pasternak layer 
whilst the other constructional and physical parameters of 
the system can remain unchanged. Selecting suitable 
tension of the membrane and shear foundation modulus of 
the Pasternak layer gives desirable values of the system 
frequencies in certain limited domains, so that it is 
possible, for instance, to avoid resonance phenomena or to 

generate a dynamic vibration absorption phenomenon. As 
is well known, vibration absorption can be used to 
suppress excessive forced vibration amplitudes.  
 
5. CONCLUDING REMARKS 

In this study, free transverse vibrations of an 
elastically connected rectangular plate–membrane system 
with a Pasternak layer in-between are theoretically 
analyzed. The vibratory system model considered 
comprises a three-layered structure which is composed of 
a thin plate, a Pasternak layer in-between, and a parallel 
membrane stretched uniformly by suitable constant 
tensions applied at the edges. The problem is solved by 
using the Navier method. It should be noted that the 
natural frequencies of the system may be varied by 
changing shear foundation modulus of the Pasternak layer 
without the necessity to vary parameters characterizing 
physical and geometrical properties of the system. This 
possibility is of great practical importance. Magnitudes of 
the frequencies become larger when the shear foundation 
modulus of the Pasternak increases and Pasternak layer 
can increase the magnitudes of frequencies more than 
Winkler elastic layer can. Thus in order to suppress the 
excessive vibrations of corresponding plate-membrane 
systems, one can use a Pasternak layer instead of Winkler 
elastic layer. The considered system has an interesting 
feature which enables to change each natural frequency 
within a certain limited interval as a function of the 
membrane tension and shear foundation modulus of the 
Pasternak layer only. With proper control of the membrane 
tension and shear foundation modulus of the Pasternak 
layer, it is possible to avoid a resonance phenomenon or to 
generate a dynamic vibration absorption phenomenon for 
the system subjected to harmonic loadings. This can have 
significant impacts in practical applications. 
 
Nomenclature 
 

Transverse plate (membrane) 
displacement 

 

Exciting distributed load  

Space co-ordinates  

Time  

Flexural rigidity of the plate  

Young’s modulus of elasticity 
of the plate  

Uniform constant tension per 
unit length of the membrane  

Winkler foundation modulus 

Shear foundation modulus  
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Plate (membrane) dimensions  

Poisson’s ratio  

Mass density  

Unknown time functions  

Known mode shape functions  

Partial frequency of the system  
Coupling frequency of the 

system  

Natural frequency of the 
system  

Kronecker delta function 
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