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ABSTRACT 

Forced transverse vibrations of an elastically connected rectangular double-plate system with a Pasternak layer in-
between are considered in this paper. Based on the Kirchhoff-Love plate theory, the general solutions of forced vibrations 
of the plates subjected to arbitrarily distributed continuous loads are found. The forced vibration problem is generally 
solved by the application of the modal expansion method for the case of simply supported boundary conditions for the 
plates. The effects of Pasternak layer on the forced vibrations of the double-plate system are discussed for the case of 
particular excitation loading. The dynamic responses of the system caused by arbitrarily distributed continuous loads are 
obtained. Vibrations caused by the harmonic exciting forces are discussed, and conditions of resonance and dynamic 
vibration absorption are formulated. Shear foundation modulus of the Pasternak layer doesn’t have any effect on the first 
frequencies, but has an efficient effect on the second frequencies. Thus the plate-type dynamic absorber with a Pasternak 
layer can be used to more effectively suppress the excessive vibrations of corresponding plate systems with respect to those 
with a Winkler elastic layer in-between. The numerical results of the present method are verified once compared with those 
available in the literature. 
 
Keywords: forced transverse vibration, rectangular double-plate system, Kirchhoff-love plate theory, pasternak layer, modal expansion 
method. 
 
1. INTRODUCTION 

Plate-type and beam-type structures are widely 
used in many branches of civil, mechanical and aerospace 
engineering. An important technological extension of the 
concept of the single plate is that of the elastically 
connected double-plate system. Various problems of 
double-plate systems occupy an important place in many 
fields of structural and foundation engineering. In many 
structure interaction problems, the elastic foundation has 
been modeled by a Winkler elastic layer. It is also known 
that a plate and an elastic layer of a double-plate system 
can be considered as a continuous dynamic absorber to 
suppress the vibration of another plate subjected to a 
dynamic force. A double-plate is a kind of composite plate 
structure bonded together to act as a whole plate. Most 
vibration monographs devoted to distributed systems 
contain fundamental theory concerning transverse 
vibrations of a single rectangular plate. 

Oniszczuk (2003a) analyzed undamped free 
transverse vibrations of an elastically connected 
rectangular plate-membrane system. Solutions of the 
problem are formulated by using the Navier method and 
natural frequencies of the system are determined in the 
form of two infinite sequences. Normal mode shapes of 
vibration expressing two kinds of vibration, synchronous 
and asynchronous, are also presented. In a numerical 
example, the effect of membrane tension on the natural 
frequencies of the plate-membrane system is discussed. 
Also, Oniszczuk (2003b) analyzed undamped forced 

transverse vibrations of an elastically connected complex 
double-beam system with a Winkler elastic layer in-
between. The problem is formulated and solved for the 
case of simply supported beams and the classical modal 
expansion method is applied to ascertain dynamic 
responses of beams due to arbitrarily distributed 
continuous loads. Several cases of particularly interesting 
excitation loadings are investigated in this paper and the 
action of stationary harmonic loads and moving forces is 
considered. Oniszczuk (2004) studied forced transverse 
vibrations of an elastically connected rectangular double-
plate system with a Winkler elastic layer in-between. The 
forced vibration problem is solved generally by the 
application of the modal expansion method for the case of 
simply supported boundary conditions for plates. On the 
basis of general solutions obtained, three particular cases 
of the action of exciting stationary harmonic loads are 
considered. An analysis of harmonic responses of the 
system makes it possible to determine conditions of 
resonance and dynamic vibration absorption. Also a 
numerical example is given to illustrate the theory 
presented. 

Zhang et al. (2008a) studied vibration and 
buckling of a double-beam system under compressive 
axial loading. In their paper, the properties of free 
transverse vibration and buckling of a double beam system 
under compressive axial loading are investigated on the 
basis of the Bernoulli-Euler beam theory. They assumed 
that the two beams of the system are simply supported and 
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continuously joined by a Winkler elastic layer. They 
derived explicit expressions for the natural frequencies. 
Also, they obtained the associated amplitude ratios of the 
two beams, and the analytical solution of the critical 
buckling load. It was shown in their paper that the critical 
buckling load of the system is related to the axial 
compression ratio of the two beams and the Winkler 
elastic layer, and the properties of free transverse vibration 
of the system greatly depend on the axial compressions. 
They also studied Effect of compressive axial load on 
forced transverse vibrations of a double-beam (Zhang et 
al., 2008b). The effects of compressive axial load on the 
forced vibrations of the double-beam system are discussed 
for two cases of particular excitation loadings and the 
properties of the forced transverse vibrations of the system 
are found to be significantly dependent on the compressive 
axial load. 

Stojanovic et al. (2012) considered forced 
transverse vibration and buckling of a Rayleigh and 
Timoshenko double-beam system continuously joined by a 
Winkler elastic layer under compressive axial loading. In 
their paper, deflections of the beams are shown and 
general solutions of forced vibrations of beams subjected 
to arbitrarily distributed continuous loads are found based 
on the Timoshenko beam theory. The analytical solution 
of forced vibration with associated amplitude ratios is 
determined. Also dynamic responses of the system caused 
by arbitrarily distributed continuous loads are obtained. 
Vibrations caused by the harmonic exciting forces are 
discussed, and conditions of resonance and dynamic 
vibration absorption are formulated.  

The behavior of foundation materials in 
engineering practice cannot be represented by foundation 
model which consists of independent linear elastic springs. 
In order to find a physically close and mathematically 
simple foundation model, Pasternak proposed a so-called 
two-parameter foundation model with shear interactions. 
In an attempt to find a physically close and mathematically 

simple representation of an elastic foundation for these 
materials, Pasternak (1954) proposed a foundation model 
consisting of a Winkler foundation with shear interactions. 
This may be accomplished by connecting the ends of the 
vertical springs to a beam consisting of incompressible 
vertical elements, which deforms only by transverse shear. 
In Wang et al. (1977) and De Rosa (1995), the natural 
vibrations of a Timoshenko beam on a Pasternak-type 
foundation are studied. Frequency equations are derived 
for beams with different end restraints. A specific example 
is given to show the effects of rotary inertia, shear 
deformation, and foundation constants on the natural 
frequencies of the beam. 

Forced transverse vibrations of an elastically 
connected complex rectangular simply supported double-
plate system with a Pasternak layer in-between are studied 
in the present paper. 
 
2. STRUCTURAL MODEL AND FORMULATION  
    OF THE PROBLEM 

Figure-1 shows the structural model of a layered-
plate system composed of two parallel rectangular plates 
of uniform properties with a Pasternak layer in-between. 
The plates are subjected to arbitrarily distributed 
transverse continuous loads 1f  and 2f  which are 

distributed over the entire surface of both plates. The 
assumption is that the two beams have the same effective 
material constants and both plates are thin, uniform, 
homogeneous and isotropic. The plates are governed by 
simply supported boundary conditions. The vibrations of 
the system with no damping are investigated.  

The Forced transverse vibrations of an elastically 
connected complex rectangular simply supported double-
plate system with a Pasternak layer in-between are 
described by the following set of two coupled non-
homogeneous partial differential equations based on the 
Kirchhoff-Love plate theory: 

 



                               VOL. 10, NO. 14, AUGUST 2015                                                                                                             ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      6006 

 
 

Figure-1. Double-plate system with a Pasternak middle layer. 
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The general form of boundary conditions and 

initial conditions for simply supported plates are assumed 
as follows: 
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and 
 

2 ,1,  0)0,,(,  0)0,,(  iyxwyxw ii &                   (3) 

 
3. SOLUTION OF EQUATIONS 

In order to solve the non-homogeneous partial 
differential equation (1) representing forced vibrations of a 
double-plate system, the natural frequencies and the 
corresponding mode shapes of the system should be 
obtained by solving the undamped free vibration with 
appropriate boundary conditions. In such a general case of 
loading, the most proper and useful method to solve the 
problem is the modal expansion method. Applying the 
mentioned method, the forced responses of a double-plate 
system can be assumed in the following form: 
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Where, ),( yxWmn  satisfying the modal equation
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Substitution of the general solutions (4) into 

equation (1), results in the following relationships: 
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By using modal equation, the relations (5) will take the following form 
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Where,  
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Substitution of expression (6) into equation (7) gives 
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By multiplying equation (8) by klW  and then integrating over the plate surface and using orthogonality condition 
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After some algebra we obtain 
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Their particular solutions satisfying homogeneous initial conditions (3) are as follows  
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The forced transverse vibrations of an elastically 

connected rectangular simply supported double-plate 
system with a Pasternak layer in-between can be described 
by  
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Now these general solutions (15) are used to find 
the vibrations of the double-plate system. 

In the following, we conduct an analysis of 
forced vibrations for the case of harmonic concentrated 
force. For the sake of simplicity in further analysis, it is 
assumed that only one of the two plates is subjected to the 
exciting load, whilst the other one is not loaded (see 
Figure-2). The first plate is loaded by the concentrated 

harmonic force applied transversely at the point which 
position is described by the corresponding rectangular 
coordinates 0xx   and 0yy  . Without loss of 

generality, we suppose: 
 

0),(,  )( )( )sin(),( 2001  txfyyxxptFtxf   (16) 

 

 
 

Figure-2. Double-plate system with a Pasternak layer in-between subjected to 
harmonic concentrated force. 

 
Substituting equation (16) into equation (13), we can obtain  
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Substituting equation (17) into equation (15) gives  
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Ignoring the free response, the forced vibrations 

of the double-plate system can be obtained by 
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      (19) 

The following fundamental conditions of 
resonance and dynamic vibration absorption have practical 
significance: 
 
1- Resonance 

,...3 ,2 ,1,,  2 ,1,   nmip imn
 

 
2- Dynamic vibration absorption 
 

    ,...3 ,2 ,1,,   4,  0

)( )]([
1

21

1
2

41
2

22
0

42
22

22








nmKFAA

MKabDkmbaGkDkpp

mnmnmn

mnnmmnmnmn   

 
4. NUMERICAL RESULTS AND DISCUSSIONS 

The values of the parameters characterizing 
properties of the system are shown in Table-1. 

 

Table-1. Values of the parameters characterizing properties of the system )2,1( i . 
 

a  b  iEE    ihh   k  

m1  m2  -210 Nm101   m101 2  -35 Nm100.6  

abkK   i   hmm i 0  ii abmMM   
ivv   

-15 Nm101.2  
-33 kgm105  -22 kgm105.0  kg101 2  3.0  

 
In Table-2 the effects of the Pasternak layer on 

the frequencies are shown. An evident influence of the 
shear foundation modulus of the Pasternak layer on the 
frequencies of the system is observed and it can be seen 
that by increasing 0G  the frequencies increase. However, 

this influence of the shear foundation modulus of the 
Pasternak layer is different on some particular frequencies, 

being stronger on the frequencies mn2  while weaker on 

mn1  frequencies. If we set 00 G  in all equations 

through this paper, we can obtain the vibration equations 
of the double-plate system with a Winkler elastic layer in-
between, the results of which are verified by comparing 
with those available in Oniszczuk (2004). 
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Table-2. Natural frequencies of rectangular double-plate system imn  for different shear modulus 

of the Pasternak layer. 
 

   0G   0G  
 

500 400 300 200 100 0 

52.7975 52.7975 52.7975 52.7975 52.7975 52.7975 111  

73.7178 73.3823 73.0453 72.7068 72.3666 72.0248 211  

84.476 84.476 84.476 84.476 84.476 84.476 112  

99.6543 99.2574 98.8588 98.4587 98.0569 97.6535 212  

137.274 137.274 137.274 137.274 137.274 137.274 113  

147.938 147.503 147.068 146.631 146.193 145.753 213  

179.512 179.512 179.512 179.512 179.512 179.512 121  

188.317 187.871 187.424 186.976 186.527 186.076 221  

211.19 211.19 211.19 211.19 211.19 211.19 122  

219.062 218.611 218.159 217.706 217.252 216.798 222  

263.988 263.988 263.988 263.988 263.988 263.988 123  

270.782 270.326 269.87 269.412 268.954 268.495 223  

390.702 390.702 390.702 390.702 390.702 390.702 131  

396.073 395.611 395.15 394.687 394.224 393.761 231  

422.38 422.38 422.38 422.38 422.38 422.38 132  

427.526 427.064 426.602 426.139 425.676 425.212 232  

475.178 475.178 475.178 475.178 475.178 475.178 133  

480.015 479.552 479.089 478.625 478.161 477.696 233  

 
The resonant diagram of steady state harmonic response of the system is presented for component amplitudes 

)3,1,,2,1(  nmiAimn  in Figures-3 and 4 for 5000 G , respectively.  
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Figure-3. The resonant diagram of the steady state forced harmonic vibrations for component amplitudes 

213113211111  , , , AAAA  of a double-plate system with Pasternak layer in-between for 5000 G . 

 

 
 

Figure-4. The resonant diagram of the steady state forced harmonic vibrations for component amplitudes 

233133231131  , , , AAAA  of a double-plate system with Pasternak layer in-between for 5000 G . 

 
It shows the progress of component amplitudes 

imnA  as a function of the excitation frequency p . It can 

be clearly seen from the figures when the resonance occurs 

and when the system acts as a dynamic absorber. This can 
help to prevent resonance conditions and the resulting 
consequences. The dynamic absorption phenomenon can 
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be used to reduce excessive forced harmonic vibrations of 
elastically connected double-plate systems. 
 
5. CONCLUSIONS 

Based on Kirchhoff-Love plate theory, forced 
transverse vibrations of an elastically connected 
rectangular simply supported double-plate system with a 
Pasternak layer in-between are studied. The dynamic 
response of the system caused by arbitrarily distributed 
continuous loads is obtained. General solutions of the 
problem formulated for isotropic, thin plates subjected to 
arbitrarily distribute continuous loads are found by 
applying the classical modal expansion method. The 
effects of the shear foundation modulus of the Pasternak 
layer on the forced vibrations of the double-plate system 
are discussed for the case of particular excitation loadings. 
As is seen, in an elastically connected double-plate 
system, when the first plate (main plate) is subjected to an 
exciting harmonic load, the second plate can act like a 
dynamic vibration absorber in relation to the first one. 
Shear foundation modulus of the Pasternak layer doesn’t 
have any effect on the first frequencies, but has an 
efficient effect on the second ones. Thus the plate-type 
dynamic absorber with a Pasternak layer can be used to 
more effectively suppress the excessive vibrations of 
corresponding plates systems rather than those with a 
Winkler elastic layer in-between. However, it should be 
noted that the continuous absorber only reduces the forced 
vibrations of the first plate but never liquidates them 
absolutely. The plate-type dynamic absorber is an 
accepted concept for a Continuous Dynamic Vibration 
Absorber (CDVA). 
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